
Math 210 - Quiz 1

American University of Beirut - Dr. Richard Aoun - Spring 2018

Exercise 1. Let (an)n∈N be a sequence of real numbers which is bounded from above and non-decreasing
(i.e. an ≤ an+1 for every n ∈ N). Show that (an)n∈N converges to l := sup{an;n ∈ N}.

Exercise 2. For each of the following subsets of R, compute its infimum. Precise if it is a minimum or
not.
All your claims should be proved rigorously but concisely. In this exercise, you are not allowed to use
the sequential criterion for the infimum or supremum.

1. A = { 1n −
1
m ;n,m ∈ N∗}.

2. B = {|x−
√

2|;x ∈ Q}

Exercise 3. Let (an)n≥1 be the sequence defined for every integer n ≥ 1 by:

an =

 1− 1
n if n is even

−2 + 10
n if n is odd

Write, using quantifiers, what does it mean for a sequence of real numbers not to be of Cauchy.
Then show that (an)n≥1 diverges using Cauchy criterion (Be rigorous).

Exercise 4. Let A ⊂ R and x ∈ R. Assume that one can find some sequence (an)n∈N in A such that
an −→

n→+∞
x. Compare supA and x (state your claim then prove it).

Exercise 5. Prove that if a sequence (an)n∈N has no convergent subsequence in R, then |an| −→
n→+∞

+∞.
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Exercise 6. (The Stolz-Cesaro Theorem)

1. Let (an)n≥1 and (bn)n≥1 be two sequences of real numbers. Assume that bn > 0 for every n ≥ 1
and that b1 + · · ·+ bn −→

n→+∞
+∞.

Show that
an
bn
−→

n→+∞
l ∈ R =⇒ a1 + · · ·+ an

b1 + · · ·+ bn
−→

n→+∞
l.

2. Deduce that if (An)n≥1 and (Bn)n≥1 are two sequences of real numbers such that (Bn)n≥1 is
increasing and tending to +∞, then

An+1 −An

Bn+1 −Bn
−→

n→+∞
l ∈ R =⇒ An

Bn
−→

n→+∞
l.

3. (Vague question, Bonus) The result stated in Question 2 can be seen as a “discrete” version of a
classical result in Calculus. Can you guess and explain which one?

4. Deduce that if an −→
n→+∞

l ∈ R, then a1+···+an

n −→
n→+∞

l .

5. Application:

(a) Use Question 2 to show that the following limit exists (and compute it):

lim
n→+∞

∑n
k=1

1√
k√

n
.

(b) More generally, suppose that (xn)n∈N is a sequence of real numbers such that√
nxn −→

n→+∞
C ∈ R. Show that the following limit exists (and compute it)

lim
n→+∞

∑n
k=1 xk√
n

.
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Solution
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Exercise 1. Denote by S ⊆ R the range of the sequence, i.e. S = {xn;n ∈ N}, and by l its
supremum (which is finite as S is bounded from above by the given and R has the least upper bound
property). Let ε > 0. Since l − ε < l and l is the least upper bound of S, we can find some s ∈ S
such that s > l − ε. Since s ∈ S, we can write s = an0

for some n0 = n0(ε) ∈ N. But (an)n∈N is
non-decreasing. Hence, for every n ≥ n0, an ≥ an0

. By transitivity of the relation ≤, we deduce
that an > l − ε. Since l is an upper bound of S, we deduce that

∀n ≥ n0, l − ε < an ≤ l < l + ε.

This proves that (an)n∈N converges to l.

Exercise 2. 1. We claim that inf A = −1 and that it is not a minimum. Indeed, let x ∈ A.
Then, there exists some n,m ≥ 1 such that x = 1

n −
1
m . Since m ≥ 1, we deduce that 1

m ≤ 1.
Since 1

n > 0, we deduce that x > −1. This being true for every x ∈ A, we deduce that −1 is
an upper bound for A. Moreover, let ε > 0. By the Archimedean property, there exists some
n0 ∈ N∗ such that 1

n0
< ε. In particular, z := 1

n0
− 1 < −1 + ε. Obviously, z ∈ A (take n = n0

and m = 1). Hence z is an element in A greater than 1− ε. Hence −1 + ε is not a lower bound
for A. This being true for every ε > 0, we deduce that inf A = −1 indeed.
Finally, −1 is not a minimum for A as we checked earlier that x > −1 for every x ∈ A.

2. We claim that inf B = 0. Indeed, 0 is clearly a lower bound for B in R. Moreover, take ε > 0.
By the density of Q in R, we can find a rational number x0 such that

√
2− ε < x0 <

√
2 + ε.

In other terms, |x0 −
√

2| < ε. Clearly, z := |x0 −
√

2| ∈ B. Hence ε is not a lower bound for
B. This being true for every ε > 0, we deduce that inf B = 0 indeed.
Now 0 is not a minimum. Indeed 0 ∈ B, if and only if, there exists some x ∈ Q such that
|x−

√
2| = 0, i.e. x =

√
2. Since

√
2 is an irrational number, we deduce that 0 6∈ B.

Exercise 3. 1. A sequence (xn)n∈N of real numbers is not of Cauchy in R, if and only, if

∃ε0 > 0;∀n ∈ N,∃k ≥ n,∃l ≥ n; |xk − xl| ≥ ε0.

2. Consider now the sequence (xn)n≥1 given by the exercise. For every n ≥ 1, one has:

xn+1 − xn =

{
−3 + 1

n + 10
n+1 if n is even

3− 1
n+1 −

10
n if n is odd

If n ≥ 11,

max

{
1

n
+

10

n+ 1
,

1

n+ 1
+

10

n

}
≤ 1

n
+

10

n
=

11

n
≤ 1.

Hence, if n ≥ 11,

| − 3 +
1

n
+

10

n+ 1
| = |3− (

1

n
+

10

n+ 1
)| = 3− (

1

n
+

10

n+ 1
) ≥ 2,

and similarly

|3− 1

n+ 1
− 10

n
| ≥ 2.

Hence,
∀n ≥ 11, |xn+1 − xn| ≥ 2. (1)

Put ε0 := 2 and consider an arbitrary n ≥ 1. Take k := max{11, n} and l := k + 1. We have
k, l ≥ n and, by (1),

|xk − xl| ≥ ε0.
Hence the sequence (xn)n≥1 is not of Cauchy. A fortiori, it diverges.
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Exercise 4. Let A be a subset of R and x ∈ R. Assume that there exists a sequence (an)n∈N of
elements in A such that an −→

n→+∞
x. We claim that supA ≥ x. Indeed, one can assume without loss

of generality that A is bounded from above so that supA ∈ R (otherwise the result is trivial). Arguing
by contradiction, assume that x > supA. Put ε0 := x−supA

2 > 0. Since the sequence (an)n∈N
converges to x, then there exists n0 ∈ N such that an0

> x− ε. But x− ε > x− (x− supA) = supA.
Hence an0 > supA. This leads to a contradiction as an0 ∈ A and supA is an upper bound for A.
We conclude that supA ≥ x.

Remark on Exercise 5. You cannot deduce the result of Exercise 5. immediately from the
contrapositive of Bolzano-Weierstrass theorem. Indeed, the latter says that a bounded sequence
has a convergence subsequence; hence a sequence that does not have a convergent subsequence is
unbounded. But an unbounded sequence need to tend to +∞ (even in absolute value). It is true
that the result of this exercise is closely related to Bolzano-Weierstrass but one should be careful in
the reasoning. Actually, once you deduce from Bolzano-Weierstrass theorem that your sequence is
unbounded, in order to conclude that it tends to +∞ in absolute value; you should use once again
Bolzano-Weierstrass (and not just say that it follows from the unboundness of your sequence). A
concise proof is given below.

Exercise 5. Consider a sequence (an)n∈N of real numbers having no convergent subsequences in R.
Arguing by contradiction, suppose that the sequence (|an|)n∈N does not tend to +∞. The key point
is to observe that this is equivalent to saying that there exists a subsequence (ank

)k∈N of (an)n∈N
that is bounded. This fact follows immediately from the negation of the statement “(|an|)n∈N tend
to +∞’).
Now we can use Bolzano-Weierstrass theorem for the new sequence (ank

)k∈N, to obtain a convergent
subsequence (ankl

)l∈N. The latter is also a subsequence of the original sequence (an)n∈N. Hence, by
our given, it cannot converge. Contradiction. In consequence, |an| −→

n→+∞
+∞.
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Exercise 6. 1. For every n ≥ 1, let Bn := b1 + · · ·+ bn. Recall that bn > 0 for every n ≥ 1 and
that Bn −→

n→+∞
+∞. Let ε > 0. Since an

bn
−→

n→+∞
l, then there exists some N ≥ 1 such that for

every n ≥ N , |anbn − l| <
ε
2 , i.e.

∀n ≥ N, |an − bnl| < bn
ε

2
. (2)

Take now an arbitrary n ≥ N . We have

∣∣a1 + · · ·+ an
b1 + · · ·+ bn

− l
∣∣ =

∣∣(a1 + · · ·+ an)− (lb1 + · · ·+ lbn)
∣∣)

b1 + · · ·+ bn

=

∣∣∑n
k=1 (ak − bkl)

∣∣
Bn

≤
∑n
k=1 |ak − bkl|

Bn
(3)

=

∑n0−1
k=1 |ak − bkl|

Bn
+

∑n
k=n0

|ak − bkl|
Bn

<

∑n0−1
k=1 |ak − bkl|

Bn
+
ε

2

∑n0−1
k=1 bk
Bn

(4)

≤
∑n0−1
k=1 |ak − bkl|

Bn
+
ε

2
(5)

Inequality (3) comes from the triangular inequality, (4) is due to (2) and (5) comes from the fact

that (Bn)n≥1 is increasing (as the bi’s are positive). Since Bn −→
n→+∞

+∞ (and
∑n0−1
k=1 |ak − bkl|

is a finite quantity independent of n), we deduce that
∑n0−1

k=1 |ak−bkl
Bn

−→
n→+∞

0. Hence

∃n1 ≥ 1;∀n ≥ n1, 0 ≤
∑n0−1
k=1 |ak − bkl

Bn
<
ε

2
.

Hence

∀n ≥ max{n0, n1},
∣∣a1 + · · ·+ an
b1 + · · ·+ bn

− l
∣∣ < ε

2
+
ε

2
= ε.

This shows that a1+···+an
b1+···+bn −→

n→+∞
l.

2. Let (An)n and (Bn)n be sequences such that (Bn)n is increasing and tending to +∞. Construct
sequences (an)n and (bn)n as follows:

an =

{
A1 if n = 1

An −An−1 if n ≥ 2
, bn =

{
B1 if n = 1

Bn −Bn−1 if n ≥ 2

Notice that for every n ≥ 1,

a1 + · · · an = An and b1 + · · · bn = Bn.

Observe also that the assumptions on (Bn)n imply that bn > 0 for every n ≥ 1 and that

b1 + · · · bn = Bn −→
n→+∞

+∞.

It suffices to apply now the previous questions.

3. L’Hospital’s Rule for evaluating limits of quotient in indeterminate forms!

4. Apply Question 1 for (an)n the same sequence and bn := 1, n ≥ 1. The sequence (bn)n is
indeed positive and satisfies b1 + b2 + · · ·+ bn = n −→

n→+∞
+∞.
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5. (a) Let An =
∑n
k=1

1√
k

and Bn =
√
n. The conditions on (Bn)n are clearly fulfilled. More-

over, for every n ≥ 1,

An+1 −An
Bn+1 −Bn

=

1√
n+1√

n+ 1−
√
n

= 1 +

√
n

n+ 1
.

Hence An+1−An

Bn+1−Bn
−→

n→+∞
2. By Question 2, we deduce that An

Bn
−→

n→+∞
2, i.e.

1 + 1√
2

+ · · ·+ 1√
n√

n
−→

n→+∞
2.

(b) More generally, consider a sequence (xn)n such that
√
nxn −→ C ∈ R. Take An :=

x1 + · · ·+ xn and Bn =
√
n.

We have that:

An+1 −An
Bn+1 −Bn

= (
√
n+ 1 +

√
n)xn+1 =

(
1 +

√
1 +

n

n+ 1

)√
n+ 1xn+1 −→

n→+∞
2C.

By Question 2, we deduce that An

Bn
−→

n→+∞
2, i.e.

∑n
k=1 xk√
n

−→
n→+∞

2C.
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