Math 210 - Quiz 1

American University of Beirut - Dr. Richard Aoun - Spring 2018

Exercise 1. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers which is bounded from above and non-decreasing (i.e. $a_{n} \leq a_{n+1}$ for every $n \in \mathbb{N}$). Show that $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to $l:=\sup \left\{a_{n} ; n \in \mathbb{N}\right\}$.

Exercise 2. For each of the following subsets of \mathbb{R}, compute its infimum. Precise if it is a minimum or not.
All your claims should be proved rigorously but concisely. In this exercise, you are not allowed to use the sequential criterion for the infimum or supremum.

1. $A=\left\{\frac{1}{n}-\frac{1}{m} ; n, m \in \mathbb{N}^{*}\right\}$.
2. $B=\{|x-\sqrt{2}| ; x \in \mathbb{Q}\}$

Exercise 3. Let $\left(a_{n}\right)_{n \geq 1}$ be the sequence defined for every integer $n \geq 1$ by:

$$
a_{n}=\left\{\begin{array}{cc}
1-\frac{1}{n} & \text { if } n \text { is even } \\
-2+\frac{10}{n} & \text { if } n \text { is odd }
\end{array}\right.
$$

Write, using quantifiers, what does it mean for a sequence of real numbers not to be of Cauchy. Then show that $\left(a_{n}\right)_{n \geq 1}$ diverges using Cauchy criterion (Be rigorous).

Exercise 4. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Assume that one can find some sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in A such that $a_{n} \underset{n \rightarrow+\infty}{\longrightarrow} x$. Compare sup A and x (state your claim then prove it).

Exercise 5. Prove that if a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has no convergent subsequence in \mathbb{R}, then $\left|a_{n}\right| \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$.

Exercise 6. (The Stolz-Cesaro Theorem)

1. Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ be two sequences of real numbers. Assume that $b_{n}>0$ for every $n \geq 1$ and that $b_{1}+\cdots+b_{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$.
Show that

$$
\frac{a_{n}}{b_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} l \in \mathbb{R} \quad \Longrightarrow \quad \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} l
$$

2. Deduce that if $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are two sequences of real numbers such that $\left(B_{n}\right)_{n \geq 1}$ is increasing and tending to $+\infty$, then

$$
\frac{A_{n+1}-A_{n}}{B_{n+1}-B_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} l \in \mathbb{R} \quad \Longrightarrow \quad \frac{A_{n}}{B_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} l
$$

3. (Vague question, Bonus) The result stated in Question 2 can be seen as a "discrete" version of a classical result in Calculus. Can you guess and explain which one?
4. Deduce that if $a_{n} \underset{n \rightarrow+\infty}{\longrightarrow} l \in \mathbb{R}$, then $\frac{a_{1}+\cdots+a_{n}}{n} \underset{n \rightarrow+\infty}{\longrightarrow} l$.
5. Application:
(a) Use Question 2 to show that the following limit exists (and compute it):

$$
\lim _{n \rightarrow+\infty} \frac{\sum_{k=1}^{n} \frac{1}{\sqrt{k}}}{\sqrt{n}}
$$

(b) More generally, suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real numbers such that $\sqrt{n} x_{n} \underset{n \rightarrow+\infty}{\longrightarrow} C \in \mathbb{R}$. Show that the following limit exists (and compute it)

$$
\lim _{n \rightarrow+\infty} \frac{\sum_{k=1}^{n} x_{k}}{\sqrt{n}}
$$

Solution

Exercise 1. Denote by $S \subseteq \mathbb{R}$ the range of the sequence, i.e. $S=\left\{x_{n} ; n \in \mathbb{N}\right\}$, and by l its supremum (which is finite as S is bounded from above by the given and \mathbb{R} has the least upper bound property). Let $\epsilon>0$. Since $l-\epsilon<l$ and l is the least upper bound of S, we can find some $s \in S$ such that $s>l-\epsilon$. Since $s \in S$, we can write $s=a_{n_{0}}$ for some $n_{0}=n_{0}(\epsilon) \in \mathbb{N}$. But $\left(a_{n}\right)_{n \in \mathbb{N}}$ is non-decreasing. Hence, for every $n \geq n_{0}, a_{n} \geq a_{n_{0}}$. By transitivity of the relation \leq, we deduce that $a_{n}>l-\epsilon$. Since l is an upper bound of S, we deduce that

$$
\forall n \geq n_{0}, l-\epsilon<a_{n} \leq l<l+\epsilon
$$

This proves that $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to l.

Exercise 2. 1. We claim that $\inf A=-1$ and that it is not a minimum. Indeed, let $x \in A$. Then, there exists some $n, m \geq 1$ such that $x=\frac{1}{n}-\frac{1}{m}$. Since $m \geq 1$, we deduce that $\frac{1}{m} \leq 1$. Since $\frac{1}{n}>0$, we deduce that $x>-1$. This being true for every $x \in A$, we deduce that -1 is an upper bound for A. Moreover, let $\epsilon>0$. By the Archimedean property, there exists some $n_{0} \in \mathbb{N}^{*}$ such that $\frac{1}{n_{0}}<\epsilon$. In particular, $z:=\frac{1}{n_{0}}-1<-1+\epsilon$. Obviously, $z \in A$ (take $n=n_{0}$ and $m=1$). Hence z is an element in A greater than $1-\epsilon$. Hence $-1+\epsilon$ is not a lower bound for A. This being true for every $\epsilon>0$, we deduce that $\inf A=-1$ indeed.
Finally, -1 is not a minimum for A as we checked earlier that $x>-1$ for every $x \in A$.
2. We claim that $\inf B=0$. Indeed, 0 is clearly a lower bound for B in \mathbb{R}. Moreover, take $\epsilon>0$. By the density of \mathbb{Q} in \mathbb{R}, we can find a rational number x_{0} such that $\sqrt{2}-\epsilon<x_{0}<\sqrt{2}+\epsilon$. In other terms, $\left|x_{0}-\sqrt{2}\right|<\epsilon$. Clearly, $z:=\left|x_{0}-\sqrt{2}\right| \in B$. Hence ϵ is not a lower bound for B. This being true for every $\epsilon>0$, we deduce that inf $B=0$ indeed.
Now 0 is not a minimum. Indeed $0 \in B$, if and only if, there exists some $x \in \mathbb{Q}$ such that $|x-\sqrt{2}|=0$, i.e. $x=\sqrt{2}$. Since $\sqrt{2}$ is an irrational number, we deduce that $0 \notin B$.

Exercise 3. 1. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers is not of Cauchy in \mathbb{R}, if and only, if

$$
\exists \epsilon_{0}>0 ; \forall n \in \mathbb{N}, \exists k \geq n, \exists l \geq n ;\left|x_{k}-x_{l}\right| \geq \epsilon_{0}
$$

2. Consider now the sequence $\left(x_{n}\right)_{n \geq 1}$ given by the exercise. For every $n \geq 1$, one has:

$$
x_{n+1}-x_{n}=\left\{\begin{array}{cc}
-3+\frac{1}{n}+\frac{10}{n+1} & \text { if } n \text { is even } \\
3-\frac{1}{n+1}-\frac{10}{n} & \text { if } n \text { is odd }
\end{array}\right.
$$

If $n \geq 11$,

$$
\max \left\{\frac{1}{n}+\frac{10}{n+1}, \frac{1}{n+1}+\frac{10}{n}\right\} \leq \frac{1}{n}+\frac{10}{n}=\frac{11}{n} \leq 1
$$

Hence, if $n \geq 11$,

$$
\left|-3+\frac{1}{n}+\frac{10}{n+1}\right|=\left|3-\left(\frac{1}{n}+\frac{10}{n+1}\right)\right|=3-\left(\frac{1}{n}+\frac{10}{n+1}\right) \geq 2
$$

and similarly

$$
\left|3-\frac{1}{n+1}-\frac{10}{n}\right| \geq 2
$$

Hence,

$$
\begin{equation*}
\forall n \geq 11,\left|x_{n+1}-x_{n}\right| \geq 2 \tag{1}
\end{equation*}
$$

Put $\epsilon_{0}:=2$ and consider an arbitrary $n \geq 1$. Take $k:=\max \{11, n\}$ and $l:=k+1$. We have $k, l \geq n$ and, by (1),

$$
\left|x_{k}-x_{l}\right| \geq \epsilon_{0}
$$

Hence the sequence $\left(x_{n}\right)_{n \geq 1}$ is not of Cauchy. A fortiori, it diverges.

Exercise 4. Let A be a subset of \mathbb{R} and $x \in \mathbb{R}$. Assume that there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements in A such that $a_{n} \underset{n \rightarrow+\infty}{\longrightarrow} x$. We claim that $\sup A \geq x$. Indeed, one can assume without loss of generality that A is bounded from above so that $\sup A \in \mathbb{R}$ (otherwise the result is trivial). Arguing by contradiction, assume that $x>\sup A$. Put $\epsilon_{0}:=\frac{x-\sup A}{2}>0$. Since the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to x, then there exists $n_{0} \in \mathbb{N}$ such that $a_{n_{0}}>x-\epsilon$. But $x-\epsilon>x-(x-\sup A)=\sup A$. Hence $a_{n_{0}}>\sup A$. This leads to a contradiction as $a_{n_{0}} \in A$ and $\sup A$ is an upper bound for A. We conclude that $\sup A \geq x$.

Remark on Exercise 5. You cannot deduce the result of Exercise 5. immediately from the contrapositive of Bolzano-Weierstrass theorem. Indeed, the latter says that a bounded sequence has a convergence subsequence; hence a sequence that does not have a convergent subsequence is unbounded. But an unbounded sequence need to tend to $+\infty$ (even in absolute value). It is true that the result of this exercise is closely related to Bolzano-Weierstrass but one should be careful in the reasoning. Actually, once you deduce from Bolzano-Weierstrass theorem that your sequence is unbounded, in order to conclude that it tends to $+\infty$ in absolute value; you should use once again Bolzano-Weierstrass (and not just say that it follows from the unboundness of your sequence). A concise proof is given below.

Exercise 5. Consider a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers having no convergent subsequences in \mathbb{R}. Arguing by contradiction, suppose that the sequence $\left(\left|a_{n}\right|\right)_{n \in \mathbb{N}}$ does not tend to $+\infty$. The key point is to observe that this is equivalent to saying that there exists a subsequence $\left(a_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ that is bounded. This fact follows immediately from the negation of the statement " $\left(\left|a_{n}\right|\right)_{n \in \mathbb{N}}$ tend to $+\infty$ ').
Now we can use Bolzano-Weierstrass theorem for the new sequence $\left(a_{n_{k}}\right)_{k \in \mathbb{N}}$, to obtain a convergent subsequence $\left(a_{n_{k_{l}}}\right)_{l \in \mathbb{N}}$. The latter is also a subsequence of the original sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$. Hence, by our given, it cannot converge. Contradiction. In consequence, $\left|a_{n}\right|_{n \rightarrow+\infty}^{\longrightarrow}+\infty$.

Exercise 6. 1. For every $n \geq 1$, let $B_{n}:=b_{1}+\cdots+b_{n}$. Recall that $b_{n}>0$ for every $n \geq 1$ and that $B_{n} \xrightarrow[n \rightarrow+\infty]{\longrightarrow}+\infty$. Let $\epsilon>0$. Since $\frac{a_{n}}{b_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} l$, then there exists some $N \geq 1$ such that for every $n \geq N,\left|\frac{a_{n}}{b_{n}}-l\right|<\frac{\epsilon}{2}$, i.e.

$$
\begin{equation*}
\forall n \geq N,\left|a_{n}-b_{n} l\right|<b_{n} \frac{\epsilon}{2} \tag{2}
\end{equation*}
$$

Take now an arbitrary $n \geq N$. We have

$$
\begin{align*}
\left|\frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}}-l\right| & =\frac{\left.\left|\left(a_{1}+\cdots+a_{n}\right)-\left(l b_{1}+\cdots+l b_{n}\right)\right|\right)}{b_{1}+\cdots+b_{n}} \\
& =\frac{\left|\sum_{k=1}^{n}\left(a_{k}-b_{k} l\right)\right|}{B_{n}} \\
& \leq \frac{\sum_{k=1}^{n}\left|a_{k}-b_{k} l\right|}{B_{n}} \tag{3}\\
& =\frac{\sum_{k=1}^{n_{0}-1}\left|a_{k}-b_{k} l\right|}{B_{n}}+\frac{\sum_{k=n_{0}}^{n}\left|a_{k}-b_{k} l\right|}{B_{n}} \\
& <\frac{\sum_{k=1}^{n_{0}-1}\left|a_{k}-b_{k} l\right|}{B_{n}}+\frac{\epsilon}{2} \frac{\sum_{k=1}^{n_{0}-1} b_{k}}{B_{n}} \tag{4}\\
& \leq \frac{\sum_{k=1}^{n_{0}-1}\left|a_{k}-b_{k} l\right|}{B_{n}}+\frac{\epsilon}{2} \tag{5}
\end{align*}
$$

Inequality (3) comes from the triangular inequality, (4) is due to (2) and (5) comes from the fact that $\left(B_{n}\right)_{n \geq 1}$ is increasing (as the b_{i} 's are positive). Since $B_{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$ (and $\sum_{k=1}^{n_{0}-1}\left|a_{k}-b_{k} l\right|$ is a finite quantity independent of n), we deduce that $\frac{\sum_{k=1}^{n_{0}-1} \mid a_{k}-b_{k} l}{B_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} 0$. Hence

$$
\exists n_{1} \geq 1 ; \forall n \geq n_{1}, 0 \leq \frac{\sum_{k=1}^{n_{0}-1} \mid a_{k}-b_{k} l}{B_{n}}<\frac{\epsilon}{2}
$$

Hence

$$
\forall n \geq \max \left\{n_{0}, n_{1}\right\},\left|\frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}}-l\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

This shows that $\frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} l$.
2. Let $\left(A_{n}\right)_{n}$ and $\left(B_{n}\right)_{n}$ be sequences such that $\left(B_{n}\right)_{n}$ is increasing and tending to $+\infty$. Construct sequences $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ as follows:

$$
a_{n}=\left\{\begin{array}{cc}
A_{1} & \text { if } n=1 \\
A_{n}-A_{n-1} & \text { if } n \geq 2
\end{array} \quad, \quad b_{n}=\left\{\begin{array}{cc}
B_{1} & \text { if } n=1 \\
B_{n}-B_{n-1} & \text { if } n \geq 2
\end{array}\right.\right.
$$

Notice that for every $n \geq 1$,

$$
a_{1}+\cdots a_{n}=A_{n} \text { and } b_{1}+\cdots b_{n}=B_{n}
$$

Observe also that the assumptions on $\left(B_{n}\right)_{n}$ imply that $b_{n}>0$ for every $n \geq 1$ and that

$$
b_{1}+\cdots b_{n}=B_{n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty
$$

It suffices to apply now the previous questions.
3. L'Hospital's Rule for evaluating limits of quotient in indeterminate forms!
4. Apply Question 1 for $\left(a_{n}\right)_{n}$ the same sequence and $b_{n}:=1, n \geq 1$. The sequence $\left(b_{n}\right)_{n}$ is indeed positive and satisfies $b_{1}+b_{2}+\cdots+b_{n}=n \underset{n \rightarrow+\infty}{\longrightarrow}+\infty$.
5. (a) Let $A_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ and $B_{n}=\sqrt{n}$. The conditions on $\left(B_{n}\right)_{n}$ are clearly fulfilled. Moreover, for every $n \geq 1$,

$$
\frac{A_{n+1}-A_{n}}{B_{n+1}-B_{n}}=\frac{\frac{1}{\sqrt{n+1}}}{\sqrt{n+1}-\sqrt{n}}=1+\sqrt{\frac{n}{n+1}} .
$$

Hence $\frac{A_{n+1}-A_{n}}{B_{n+1}-B_{n}} \underset{n \rightarrow+\infty}{\longrightarrow}$ 2. By Question 2, we deduce that $\frac{A_{n}}{B_{n}} \underset{n \rightarrow+\infty}{\longrightarrow} 2$, i.e.

$$
\frac{1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}}{\sqrt{n}} \underset{n \rightarrow+\infty}{\longrightarrow} 2 .
$$

(b) More generally, consider a sequence $\left(x_{n}\right)_{n}$ such that $\sqrt{n} x_{n} \longrightarrow C \in \mathbb{R}$. Take $A_{n}:=$ $x_{1}+\cdots+x_{n}$ and $B_{n}=\sqrt{n}$.
We have that:

$$
\frac{A_{n+1}-A_{n}}{B_{n+1}-B_{n}}=(\sqrt{n+1}+\sqrt{n}) x_{n+1}=\left(1+\sqrt{1+\frac{n}{n+1}}\right) \sqrt{n+1} x_{n+1} \underset{n \rightarrow+\infty}{\longrightarrow} 2 C
$$

By Question 2, we deduce that $\frac{A_{n}}{B_{n}} \underset{n \rightarrow+\infty}{\longrightarrow}$ 2, i.e.

$$
\frac{\sum_{k=1}^{n} x_{k}}{\sqrt{n}} \underset{n \rightarrow+\infty}{\longrightarrow} 2 C
$$

