Exercise 1 Discuss the convergence of the following series:
a) $\sum_{n=0}^{+\infty} \frac{1}{\sqrt{n!}}$
b) $\sum_{n=0}^{+\infty} \frac{n+10}{n \ln ^{3} n}$
c) $\sum_{n=0}^{+\infty}(-1)^{n^{2}} \frac{1}{n^{2}+\sqrt{n}}$
d) $\sum_{n=1}^{+\infty} \frac{1-\cos n}{n^{\ln n}}$
e) $\sum_{n=1}^{+\infty} n\left(e^{1 / n}-1\right)$

Exercise 2 a) Estimate the value of the integral $\int_{0}^{1} e^{-3 x^{2}} d x$ with an error of magnitude no less than 10^{-3}
(hint: Maclaurin then alternating series and ...)
b) Find $f^{(2001)}(0)$ if $f(x)=x^{6} \sin \left(x^{5}\right)$

Exercise 3 If $w=f(x, y)$ is differentiable and $x=r+s, y=r-s$, show that

$$
\frac{\partial w}{\partial r} \times \frac{\partial w}{\partial s}=\left(\frac{\partial f}{\partial x}\right)^{2}-\left(\frac{\partial f}{\partial y}\right)^{2}
$$

Exercise 4 Find the absolute extremum of $f(x, y)=5+4 x-2 x^{2}+3 y-y^{2}$ on the region R bounded by the lines $y=2, y=x$, and $y=-x$.

Exercise 5 Use Lagrange multipliers to find the maximum and minimum of $f(x, y)=4 x y$ subject to $x^{2}+y^{2}=8$.

Exercise 6 Convert to polar coordinates, then evaluate the following integral

$$
\int_{0}^{2} \int_{-\sqrt{1-(y-1)^{2}}}^{0} x y^{2} d x d y
$$

Exercise 7 Here is the region of integration of the integral

$$
\int_{0}^{1} \int_{-1}^{0} \int_{0}^{y^{2}} d z d y d x
$$

Rewrite the integral as an equivalent iterated integral in the other 5 orders, then evaluate one of them

Exercise 8 Let V be the volume of the region D enclosed by the paraboloid $z=x^{2}+y^{2}$, and the plane $z=2 y$
a) Express V as an iterated triple integral in cartesian coordinates in the order $d z d x d y$ (do not evaluate the integral)
b) Express V as an iterated triple integral in cylindrical coordinates, then evaluate the resulting integral
(you may use the result: $\int \sin ^{4} x d x=-\frac{\sin ^{3} x \cos x}{4}-\frac{3 \cos x \sin x}{8}+\frac{3 x}{8}$)

Exercise 9 Let V be the volume of the region D that is bounded below by the $x y$-plane, above by the sphere $x^{2}+y^{2}+z^{2}=4$, and on the sides by the cylinder $x^{2}+y^{2}=1$
a) Express V as an iterated triple integral in spherical coordinates in the order $d \rho d \phi d \theta$ (do not evaluate the integral)
b) Express V as an iterated triple integral in spherical coordinates in the order $d \phi d \rho d \theta$ (do not evaluate the integral)

Exercise 10 Let V be the volume of the region that is bounded form below by the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ and from above by the cone $z=\sqrt{x^{2}+y^{2}}$. Express V as an iterated triple integral in spherical coordinates, then evaluate the resulting integral (sketch the region of integration)

Exercise 11 Set up an integral in rectangular coordinates equivalent to the integral

$$
\int_{0}^{\pi / 2} \int_{1}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} r^{3}(\sin \theta \cos \theta) z^{2} d z d r d \theta
$$

(do not evaluate the integral)
Exercise 12 a) Find the work done by the force $\vec{F}=x \vec{i}+y^{2} \vec{j}+(y-z) \vec{k}$ along the straight line from $(0,0,0)$ to $(1,1,1)$
b) Evaluate

$$
\int_{(0,0,1)}^{(1, \pi / 2, e)}\left(\ln z+e^{x} \sin y\right) d x+e^{x} \cos y d y+(x / z-z) d z
$$

c) Find the outward flux of the field $\vec{F}=(y-2 x) \vec{i}+(x+y) \vec{j}$ across the curve C in the first quadrant, bounded by the lines $y=0, y=x$ and $x+y=1$.
i) by direct calculation
ii) by Green's theorem

Exercise 13 a) The Curl vector of a vector field in space $F=M(x, y, z) \vec{i}+N(x, y, z) \vec{j}+$ $P(x, y, z) \vec{k}$ is defined by:
$\operatorname{Curl}(F)=\nabla \times F=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right|=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \vec{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \vec{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \vec{k}$
Show that $\operatorname{div}(\operatorname{Curl}(F))=0$
b) Show that $C \operatorname{url}(\operatorname{grad} f)=0$ if $f(x, y, z)$ is a differentiable function

Exercise 14 Use the transformation $u=y-2 x$ and $v=x+2 y$ to find the value of the integral

$$
\iint_{R} \frac{x+2 y}{y-2 x} d A
$$

where R is the region in the second quarter of the plane, and enclosed by the lines $y-2 x=2$, and $y-2 x=4$

