American University of Beirut
 MATH 201
 Calculus and Analytic Geometry III
 Fall 2012
 quiz \# 2

Exercise 1 (answer on page 1 of the booklet)
a) Find the domain and the range of the function $f(x, y)=\ln \left(\frac{1}{e-x^{2}-y^{2}}\right)$; determine if the domain open or closed, also determine if the domain is bounded or unbounded; find the equation of the level curve of f that passes through the point $(1,0)$
b) Find $\frac{d y}{d x}$ at $P(0,1)$ if the equation $1-x-y^{2}-\sin (x y)=0$ define y as differentiable function of x

Exercise 2 (answer on page 2 of the booklet)
a) Can the function $f(x, y)=\frac{y^{2} \sin x}{2 x^{2}+3 y^{2}}$ be extended by continuity at $(0,0)$?
b) Use the two path test to show that $f(x, y)=\frac{x y-x}{x^{2}+2(y-1)^{2}}$ has no limit at $(0,1)$

Exercise 3 (answer on pages 3 and 4 of the booklet)
Suppose that the derivative of the function $f(x, y, z)$ at $P(1,1,1)$ is greatest in the direction of $\vec{u}=6 \vec{i}-3 \vec{j}+3 \vec{k}$, and that in this direction the value of the derivative is $\sqrt{6}$. Also suppose that
$f(3,0,0)=1, \quad \vec{\nabla} f(3,0,0)=3 \vec{i}-\vec{j}+5 \vec{k}, \quad f(3,2,1)=3, \quad$ and $\quad \vec{\nabla} f(3,2,1)=6 \vec{i}-2 \vec{j}+\vec{k}$
a) Find the derivative of f at the point $(3,2,1)$ in the direction of $\vec{v}=\vec{i}+\vec{j}+\sqrt{2} \vec{k}$
b) Find $\vec{\nabla} f(1,1,1)$
c) Give an approximate value of $f(2.99,2.02,1)$
d) Let $x=r^{2}+s, y=r s, z=\frac{2 r}{s}$, and $w=f(x, y, z)$

Find $\frac{\partial w}{\partial s}$ at the point $(r, s)=(1,2)$
e) Let $w=w(r, s)$ be defined as in part d). Find a plane tangent to the surface

$$
\frac{2}{1-t}+3=w(r, s)
$$

in the $r s t$-space
(hint: start by finding a point $\left(r_{0}, s_{0}, t_{0}\right)$ on the surface)
Exercise 4 (answer on page 5 of the booklet)
Find the points on the surface $x y+y z+z x-x-z^{2}=0$ where the tangent plane is perpendicular to the $x z$-plane

Exercise 5 (answer on page 6 of the booklet, and last page if needed)
Find the extreme values of $f(x, y)=x^{2}+y^{2}-3 x-x y$ on the region R in plane defined by: $R=\left\{x^{2}+y^{2} \leq 9, x \geq 0, y \geq 0\right\}$

