American University of Beirut **MATH 201**

Calculus and Analytic Geometry III Fall 2012

quiz # 1

Exercise 1 (10 points) Find the limit of the following sequences:

a) $\frac{n^2}{2n+1} \sin(3/n)$ b) $\frac{n^n+1}{2^n+n!}$ c) $(1+\frac{1}{3n})^{2n}$

Exercise 2 (35 points) Determine if the following series converges or diverges Justify your answers

a)
$$\sum_{n=1}^{+\infty} \frac{10^n}{(\ln n)^n}$$

b) $\sum_{n=1}^{+\infty} \frac{1}{n2^n - 1}$
c) $\sum_{n=1}^{+\infty} \frac{2\cos(n!) - 1}{n(n+1)}$
d) $\sum_{n=2}^{+\infty} \frac{\ln(1 + e^{3n^2})}{n\sqrt{n}}$
e) $\sum_{n=1}^{+\infty} (e^{2/n} - 1)$

e)
$$\sum_{n=1}^{+\infty} (e^{2/n} - 1)$$

Exercise 3 (20 points) a) Find the interval of convergence of the power series

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n4^n} (3x-1)^{2n}$$

(do not forget to check at the end points)

b) For what value(s) of x the series converges absolutely ? conditionally ?

Exercise 4 (15 points) Let $f(x) = \frac{x-1}{3+2x}$. Find the Taylor series of f about x = 1, then find $f^{(101)}(1)$

Exercise 5 (10 points) Find the following limit: $\lim_{x\to 0} \frac{\cos(\sqrt{x}) - 1 + \frac{x}{2}}{3x^2}$

Exercise 6 (10 points) By using the Maclaurin series of $\ln(1 + x)$, give an estimate of $\ln(1.1)$ with an error of magnitude less than 10^{-3}