American University of Beirut
 MATH 201
 Calculus and Analytic Geometry III
 Fall 2012
 quiz \# 1

Exercise 1 (10 points) Find the limit of the following sequences:
a) $\frac{n^{2}}{2 n+1} \sin (3 / n)$
b) $\frac{n^{n}+1}{2^{n}+n!}$
c) $\left(1+\frac{1}{3 n}\right)^{2 n}$

Exercise 2 (35 points) Determine if the following series converges or diverges Justify your answers
a) $\sum_{n=1}^{+\infty} \frac{10^{n}}{(\ln n)^{n}}$
b) $\sum_{n=1}^{+\infty} \frac{1}{n 2^{n}-1}$
c) $\sum_{n=1}^{+\infty} \frac{2 \cos (n!)-1}{n(n+1)}$
d) $\sum_{n=2}^{+\infty} \frac{\ln \left(1+e^{3 n^{2}}\right)}{n \sqrt{n}}$
e) $\sum_{n=1}^{+\infty}\left(e^{2 / n}-1\right)$

Exercise 3 (20 points) a) Find the interval of convergence of the power series

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n 4^{n}}(3 x-1)^{2 n}
$$

(do not forget to check at the end points)
b) For what value(s) of x the series converges absolutely? conditionally ?

Exercise 4 (15 points) Let $f(x)=\frac{x-1}{3+2 x}$. Find the Taylor series of f about $x=1$, then find $f^{(101)}(1)$

Exercise 5 (10 points) Find the following limit: $\lim _{x \rightarrow 0} \frac{\cos (\sqrt{x})-1+\frac{x}{2}}{3 x^{2}}$
Exercise 6 (10 points) By using the Maclaurin series of $\ln (1+x)$, give an estimate of $\ln (1.1)$ with an error of magnitude less than 10^{-3}

