American University of Beirut
MATH 201
Calculus and Analytic Geometry III
Fall 2010-2011
\section*{Final Exam}

Exercise 1 Determine if the following series converges or diverges. Justify your answers.
a) $\sum_{n=0}^{\infty} e^{-n^{2}}$
b) $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$
c) $\sum_{n=2}^{\infty} \frac{5}{\ln ^{2} n}$

Exercise 2 Give the parametric equations of the line tangent to the curve of intersection of the surfaces $x y z=1$ and $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $P(1,1,1)$

Exercise 3 a) Find the absolute maximum and minimum values of the function

$$
f(x, y)=2 x^{2}-x y+y^{2}-7 x
$$

on the region $R=\{(x, y) ; x \geq 0, y \leq 3,2 x-y \leq 3\}$
(group your points and their values in a table)
b) Use Lagrange multipliers to find the point on the plane $2 x+3 y+4 z=12$ at which the function $f(x, y, z)=4 x^{2}+y^{2}+5 z^{2}$ has its least value.

Exercise 4 Change the order of integration, then evaluate the integral $\int_{0}^{2} \int_{y / 2}^{1} e^{x^{2}} d x d y$
Exercise 5 Let V be the the volume of the region D enclosed by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=4$.
a) Express, but do not evaluate, V as a triple integral in cartesian coordinates in the order $d z d y d x$.
b) Express V as a triple integral in cylindrical coordinates, then evaluate the resulting integral.

Exercise 6 Convert to spherical coordinates the integral:

$$
\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1} d z d y d x
$$

then evaluate the resulting integral.

Exercise 7 Evaluate

$$
\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x
$$

by applying the transformation $u=x+y$ and $v=y-2 x$

Exercise 8 a) Find the work done by the force $\mathbf{F}=x y \mathbf{i}+(y-x) \mathbf{j}$ over the straight line from $(1,1)$ to $(2,3)$.
b) Find the counterclockwise circulation of the field $\mathbf{F}=x y \mathbf{i}+(x-y) \mathbf{j}$ around the curve C in the first quadrant, bounded by the curve $y=x^{2}$ and $y=x$.
i) by direct calculation
ii) by Green's theorem

