SEMASTER : Spring	CHEM 206	DATE: June 10, 1999
TIME: 90 minutes	LAB, FINAL	
NAME:		
ID # :	·	
Write the answers at the b	ack of the page unles	s space is provided
You are provided with the for A burette (50 ml ±0.05), a p papers, phenolphthalein, An	ipette (25 ml), volume	tric flasks (500 ml), a funnel. filter water
spilled part of its load over a to measure the acidity of the The acid is assumed to be	a cultivated land. The lessoil in order to raise in ave as a strong acid ided above, describe h	ow can you determine the amount (in
b) If the concentration of a	standardised titrant N	aOH (aq) is 0.0012 M, and the table of (CIAc-1) of Weight = 211.26 g is:

TABLE - 1

2 nd Reading-ml	7.75	14.30	20.90	27.35
1st Reading-ml	0.40	7.75	14.30	20.90
Vol. Titrant -ml				

- i) Calculate the error propagated as you determine the average volume of the titrant? ii) Calculate the % by wt. of the acid in the mud using batch (ClAc-1)? (Don't miss the stoichiometric eq.)?
- c) To assign a pH for the soil, a batch of mud of weight 115.87g was taken and dried in an oven.
- i) What is the purpose of this drying procedure?

ii)	After	drying	and	in or	rder to	det	ermine	the 9	6 by	weight	of	water	to	mud	the	next	step
is t	0																<u> </u>

iii) If the % by weight of water to mud is 35%, calculate the pH for the batch of soil,in part (b),i.e. (ClAc-1)?

d) A bicarbonate solution [NaHCO₃ = 1.12 g/l] was used to neutralise the acid in the

i) Calculate the volume of the bicarbonate solution required to neutralise the acid in the batch of mud (ClAc-1)? (Don't miss the stoichiometric eq.)

ii) After sampling a large number of batches taken from different locations, a graph is plotted as shown in [fig-1]. For practical reasons, the batch of mud (ClAc-1)

of a size of 100 cm³ was taken from a larger cubical batch (20×20×20) cm³ sampled from AREA III. Can you give an estimate of the volume of the bicarbonate solution required to neutralise the acid in AREA III? Area of a circle = Π r².

PART TWO:

A mixture of oxide salts PbO, Ag₂O,CuO and ZnO are mixed with silica. It is agreed that using a proper acidic solution the following general reaction can occur:

 $MO(s) + H^{-}(aq) \rightarrow M^{n-}(aq)$ except for silica.

Consider the following information:

a) Y^2 is known to chelate only to Zn^2 or Cu^2 , but the complex ZnY is more stable than CuY using buffer 'A' at pH = 10.

b) An indicator molecule T forms a complex only with Zn²⁻ which is less stable than Zn-Y complex where : Zn^{2-} (Orange) $+ T^{2-} \rightarrow Zn$ -T(Green)

c) W²⁻, known to chelate to Cu²⁻ and Pb²⁻, form the complexes CuW and PbW that are UV-Visible active and soluble in organic solvents. The complexes show the characteristics that appear in [fig-2],

And their distribution coefficients are:

For CuW Korg/aq = 13.04, for PbW Korg/aq = 8.15

d) No chelating agent is provided for Ag ions. Silver can be quantitatively determined by depositing the Ag ions on a clean weighed Pt electrode using an electrochemical cell.

Ouestions:

- 1) What technique is used to separate silica from the soluble salts?
- 2) For the extraction of *copper ions* the following were mixed:
- a) 25 ml withdrawn from the salt solution mixture.
- b) 10 ml of a buffer
- c) 25 ml of a chelating agent.
- d) 40 ml of distilled water.
- e) 92 ml of CCl₄ divided into four portions.
- i) Name the piece of glassware where these reagents are mixed?
- ii) In part(b) which one of the above buffers is used?
- iii) In part(c) which one of the above chelating agents is used?
- iv) Calculate the % of copper extracted into the CCl4 solvent?
- v) By referring to the table shown below, determine the concentration of copper[in ppm] in the original sample, knowing that:
- a)Standard [Cu²⁻] = 5.65×10^{-3} M.
- b) The volume of extracts taken from this standard solution are 15 ml,25 ml and 35 ml respectively for photometric studies.
- e) The organic extracts are transferred to a 100 ml volumetric flask.

TABLE-2

TABLE-2	C Francis	Absorbance	
Mixture _	Volume of Extracts	· · · · · · · · · · · · · · · · · · ·	
Standard 1	15.00 ml	0.48	
Standard 2	25.00 ml	0.81	
Standard 3	35.00 ml	1.13	
Reference	-	0.00	
Unknown (1st run)	25.00 ml	0.65	
Unknown (2 nd run)	25.00 ml	0.63	
CHKHOWH (2 tull)			

(Should plot a graph and everything that goes with it).

- vi) At this stage, which metallic ions are left in the aqueous phase?
- vii) Following the above scheme (i.e. (a)...(e)), what modification is done in order to extract another metallic ion? Name this metallic ion?

- 3) Having extracted the 2nd ion, which metallic ions are left in the aqueous phase?
- 4) One of these metallic ions can be quantified using the other chelating agent. Name the titration method used in this case?
- i) Write down the chemical reaction that occurs long before the end point, indicating the color of the solution?
- ii) Depict the chemical reaction that occurs right at the end point, indicating the change in color?
- iii) At the end point there is a neutral chemical species and a charged one, name them?
- 5) Electric currents do not affect the neutral species, but the charged one gets reduced to free metal.
- i) Write down the half reaction?
- ii) By picking up the right standard electrode potential from table-3, calculate the Nernst potential at a concentration of $[M^{q-}] = 10^{-4} M$?

TABLE-3

Reaction	E 0 (V) vs SHE
$Zn^{2+} + 2e^{-} \rightarrow Zn^{0}$	-0.763
$Pb^{2} \pm 2e \rightarrow Pb^{0}$	-0.126
$Cu^{2-} + 1e- \rightarrow Cu^{-}$	+0.167
$Cu^{2-} + 2e^{-} \rightarrow Cu^{0}$	+0.337
$Cu^{-} + 1e^{-} \rightarrow Cu^{0}$	+0.521
$Ag^- + 1e \rightarrow Ag^0$	+0.799

Please write vour answer in this space:

6) Using an ammeter the current was measured against time and the results shown in table-4 were obtained.

TABLE - 4

Time (seconds)	Current (Amps)
0	1.20
5	1.15
10	1.05
15	0.85
20	0.65
25	0.50
30	0.35
35	0.25
40	0.15
45	0.10
50	0.05
55	0.02
60	0.00

i) What makes the current goes to zero as time goes to infinity?

ii) If you plot Current (I) vs Time (t) a nearly decaying feature is obtained. Connect the data points by straight lines. Calculate the area of the individual trapezoids, then find their summation. Their summation ($I \times t$) represents the

If the amount (in moles) of $M^{q^{-}}$ deposited is determined using $n = (I \times t) / (q \times F)$ Where, F = 96485 C,

and q is the number of e- in a half reaction

iii) Calculate the concentration of M q- in the original solution?