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1. Truck Loading.
In this problem, you need to write a program that emulates loading a truck with a set of items, which
presents a variation of the 0/1 Knapsack problem. Given a truck of limited volume, the goal of your
program is to load it with the most valuable items. You should first create a class Item that models
the items that can be loaded into a truck. Each item is characterized by type, value and volume. In
addition to getters and setters for accessing the item fields, the class item should implement the following
methods:

• __init__() the constructor, which takes as arguments a string representing type, and two integers
representing volume and value, respectively.

• __str__(), which returns a string representation of an item in the following format: “type: value,
volume” (e.g., couch: 50$, 50 m3).

You will then need to create a class called Truck that comprises as fields the id, a list of loaded items
items and the maximum volume of the truck, volume. In addition to getters and setters for accessing
the truck fields, the class should implement the following methods:

• __init__() the constructor, which takes as arguments a string representing the truck id and an
integer representing its volume, and it should set its items to None.

• __str__(), which returns a string representation of a truck in the following format: “id: volume”
(e.g., T112: 200 m3).

• loadbf(), which takes as argument the list of items to load the truck with. It uses a brute force
strategy by generating the powerset of all the provided items, and then sets the truck’s items as
the subset of items that provides the highest value and whose total volume does not exceed the
truck’s volume.

• loadgreedy(), which takes as arguments the list of items to load the truck with and a string
criteria (i.e., key function), which is used to choose which items to load the truck with. This
method should load the truck by picking the items in a greedy manner based on the provided
criteria until the truck is full.

• loaddp(), which uses dynamic programming to load the truck. Again, this method takes as
argument the list of items to load. It should make use of memoization to efficiently choose the
subset of items to load the truck with, given its volume.

You should implement a program loadtruck.py that creates a Truck object and loads it using your three
different methods. In the process of doing so, you need to prompt the user for the Truck parameters
(i.e., id, volume). You also need to create a function that generates a random list of n items, where n is
also provided by the user. Feel free to write additional helper functions if you need them!

2. Longest Common Subsequence.
In this problem, you need to write a program that uses dynamic programming to find the longest common
subsequence between pairs of DNA sequences. A DNA sequence can be viewed as a string composed of
four characters A, C, G and T, representing nucleotides. For example, the following strings can all be
viewed as DNA sequences:

• GCGGGTCCCGCTGTTGCCTA
• CGTCCGTAGCGTACAACTTG
• CTCGGGCTCTACCGGTATCA

Your program should consist of the following methods:

• generate_sequences(), which takes two arguments, n the number of DNA sequences to generate,
and m the length of each sequence. It should generate random strings of length m using the
characters A,C,G and T. It should return a list of the n generated DNA sequences.



• LCS(), which takes as argument a pair of DNA sequences represented as strings s1 and s2, and
returns the length of their longest common subsequence by building a memoization table L with
len(s1) + 1 rows and len(s2) + 1 columns as follows:

L[i, j] =


0 if i = 0 or j = 0

L[i− 1][j − 1] + 1 if i, j > 0, s1[i− 1] = s2[j − 1]

max(L[i− 1][j], L[i][j − 1]) if i, j > 0, s1[i− 1] 6= s2[j − 1]

The length of the longest common subsequence between the two sequences s1 and s2 can then be
found in the cell L[len(s1)][len(s2)].

• find_LCS(), which takes as argument a pair of DNA sequences s1 and s2, and the memoization
table L you built using the previous function LCS(), and returns the longest common subsequence
between s1 and s2.

Your program should read two command line arguments n and m, representing the number of sequences
to generate and their length, respectively. It should then generate n random sequences of length m each
and then finds the longest common subsequence between every pair of sequences. Finally, it should print
every pair of sequences, along with their longest common subsequence and the length of that subsequence.

For example, assume your run your program as follows python lcs.py 3 5 and assume that the gener-
ated 3 DNA sequences are as follows:

• GTTCG
• GGGGC
• CTCGG

Your program should print the following output:

• LCS(GTTCG,GGGGC) = GG, 2
• LCS(GTTCG,CTCGG) = TCG, 3
• LCS(GGGGC,CTCGG) = GG, 2

3. K-means Clustering.
In this problem, you will implement the k-means clustering algorithm to cluster a set of data instances
into K clusters. You should assume that your input would consist of N instances {x1, x2, . . . , xN},
each consisting of d real-valued features. The k-means clustering algorithm is given in the following
pseudocode:

Randomly initialize K cluster centroids µ1, µ2, . . . , µK

repeat
for i = 1, 2, 3 . . . , N do

assign xi to cluster Ck where dist(xi, µk) is minimum
end for
for k = 1, 2, 3, . . . ,K do
µk =

∑
xi∈Ck

xi

|Ck|

end for
until cluster assignment does not change
Return C1, C2, . . . , CK

Design and implement a program kmeans.py which implements the k-means clustering algorithm de-
scribed above. You should think about what classes to use to represent data instances and clusters. The
centroid of a cluster is computed as the mean (i.e., average) of the instances that belong to the cluster,
hence the name k-means clustering. You could assume that the distance between two instances or the
distance between a data instance and a cluster centroid can be measured using the Euclidean distance
between their features. You need to think about what methods to use and operations to override to
compute distances between instances, to compute centroids of clusters and to assess whenever a centroid
of a cluster does not change.

You program should read a .csv file consisting of comma-separated values (N rows and d columns),
representing the N instances to be clustered, and a value K representing the number of clusters. To
start off your program, you should set the centroids of your K clusters as K instances chosen randomly
from the providedN instances. Your program should then print out the final clusters into a .csv file, which



has the same format and data as the input file but with an additional column at the end representing
the cluster each instance belongs to. You can simply use an integer between 1 and K to represent each
cluster.

You should test your program on the provided file wine.csv, which you can download from Moodle. The
file consists of a set of wine samples represented using 13 features such as the percentage of Alcohol in
the sample, Ash, Acidity, Color Intensity, etc. You should skip the header row, and use the remaining
rows as the data instances to be clustered. To determine the number of clusters K, we will use two
different strategies:

1. Given that there are three different types of wine, namely red, white and rosé, you will set K = 3
and run your program and save the output as wine3.csv.

2. Although there are three main types of wine, there are many variants of each (Sauvignon blanc,
Chardonnay, Pinot noir, etc.). Thus, instead of clustering the samples into only three clusters,
you will try to find the optimum number of clusters K based on the data. To this end, run your
k-means clustering program using different values for K (from 2 till 10) and for each case, compute
the average distance between the K centroids. Finally, pick K as the one which corresponds to the
least average distance between the centroids. You should save the output of the clustering with
this chosen K as wineK.csv, replacing K with its value. How many clusters did you get? Does
this number reflect some “plausible” grouping of wine? Provide the answers as comments in your
code.

4. Hierarchical Clustering.
Another strategy to determine the optimum number of clusters K is to use the hierarchical Clustering
algorithm, which is given in the below pseudocode:

Start with each instance in its own cluster
repeat

Among the current clusters, pick the two clusters Ci and Cj that are most similar
Replace Ci and Cj with a single cluster Ci ∪ Cj

until min
i,j

dist(µi, µj) > τ

Return the top-level clusters only

The algorithm works as follows. You start by creating one cluster for each of the N instances to be
clustered, each consisting of a single instance and whose centroid is that instance. It then proceeds by
computing the pairwise distances between every two clusters, where the distance between two clusters
is again the Euclidean distance between their two centroids. It then merges the pair of clusters whose
distance is the smallest. It then repeats the same procedure until the minimum distance between every
pair of clusters is greater than some threshold value τ . To merge two clusters, your program should
create a new cluster, which consists of the instances in both clusters and whose centroid is the mean of
the instances in both clusters. You should also remove the two merged clusters from the current set of
clusters.

You should write a program hierarchical.py, which implements the above algorithm. Your program
should take two arguments, the instances to be clustered and the threshold value τ that will be used by
the algorithm to determine when to stop the hierarchical clustering. You should make use of the classes
and methods you implemented for the k-means approach. You should also test your program using the
wine samples in the wine.csv file used in the previous problem. The output of your program should be
the final set of clusters in the same format as in the previous problem. Your program should try out
different values of the threshold τ (10, 100, 1000), and for each outputs a separate file. What do you
observe about the effect of the different τ values on the number of clusters? Provide the answer as a
comment in your code.

Zip your files in a single archive file asst12_netid where netid is your AUBnet user name. Your
submission to Moodle must be received by noon of the due date. Late submissions will get no grade.


