AMERICAN UNIVERSITY OF BEIRUT
Faculty of Arts and Sciences
Mathematics Department
MATH-CMPS 350
FINAL EXAMINATION-Make-up
FALL 2007-2008
Two hours

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1		
2		
3		
4		
5		
6		
TOTAL		

Let $\Omega \subset \mathbb{R}^{2}$ be an open connected domain with $\Gamma=\partial \Omega=\Gamma_{D} \cup \Gamma_{N}$, $\Gamma_{D} \cap \Gamma_{N}=\Phi$ (empty set). Let $a, b f$ be continuous functions $(C(\bar{\Omega}))$, such that:

$$
a(x, y) \geq a_{0}>0, b(x, y) \geq 0, \forall(x, y) \in \bar{\Omega}
$$

Consider the problem of finding $u: \bar{\Omega} \rightarrow \mathbb{R}$, that verifies:

$$
(P)\left\{\begin{aligned}
-\operatorname{div}(a(x, y) \nabla u)+b(x, y) u & =f(x, y) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma
\end{aligned}\right.
$$

1. State Green's formula and derive the variational (weak) form of (P) in the form:

$$
\left(\mathrm{P}^{\prime}\right) u \in V: A(u, v)=F(v), \forall v \in V \text {. }
$$

Define the Sobolev space $H^{1}(\Omega)$ and specify the bilinear form $A(.,$.$) , the$ functional $F($.$) , and the subspace V$.
2. Prove existence and uniqueness of the solution to (P^{\prime}).
3. Consider the one-dimensional version corresponding to the problem of question 1, i.e. let:
$\Omega=(-1,1) ; T=\left\{v \in H^{1}(\Omega) \mid v(-)=v(1)=0\right\} ; A(u, v)=\int_{\Omega}\left(a(x) u^{\prime} v^{\prime}+b(x) u v\right) d x$;
$F(v)=\int_{\Omega}(f(x) v) d x$, where $a(x) \geq a_{0}>0$ and $b(x) \geq 0$.
Consider the variational problem:

$$
\begin{equation*}
u \in T: A(u, v)=F(v), \forall v \in T \tag{1}
\end{equation*}
$$

Assume $u \in H^{2}$ and let

$$
S_{N}=\operatorname{span}\left\{Q_{n} \mid n=0, \ldots, N\right\}, N>2
$$

be the orthonormal set of Legendre polynomials in $L^{2}(\Omega)$. Give an estimate on $\left\|u^{\prime}-\Pi_{N-1}\left(u^{\prime}\right)\right\|$, where $\Pi_{N-1}\left(u^{\prime}\right)$ is the L^{2} projection of u^{\prime} on S_{N-1}.
4. By studying the inner product $\left.<u^{\prime}, Q_{0}\right\rangle$, show that:

$$
T_{N}=\operatorname{span}\left\{\varphi_{n} \mid n=1, \ldots, N-1\right\}
$$

with:

$$
\varphi_{n}=P_{n+1}(x)-P_{n-1}(x), n=1,2, \ldots, N-1 .
$$

is a suitable subspace of polynomials of degree n for a Galerkin approximation to (1). Give an estimate on $\left\|u-r_{N}(u)\right\|_{1}$, where $r_{N}(u)(x)=\int_{-1}^{x} \Pi_{N-1}\left(u^{\prime}\right)$.
5. Let u_{N} be the Galerkine spectral approximation $u_{N} \in T_{N}$

$$
u_{N}(x)=\Sigma_{n=1}^{N} c_{n} \varphi_{n}(x) .
$$

Give the Galerkin formulation based on (1),

$$
\begin{equation*}
u_{N} \in T_{N}: \tag{2}
\end{equation*}
$$

(a) Give the system of linear equations:

$$
\begin{equation*}
A c=F ; c \in \mathbb{R}^{N}, A \in \mathbb{R}^{N, N}, F \in \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

equivalent to (2). Specify the matrix A the vectors F and c. Give (with proof) the properties of A.
(b) Prove the estimation:

$$
\left\|u-u_{N}\right\|_{1} \leq c \min _{v \in T_{N}}\|u-v\|_{1}
$$

6. Let A be an $n \times n$ inverible matrix. Let $x^{0} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{n}, r^{0}=b-A x^{0}$, and x the unique solution to $A x=b$. Prove that:

$$
x \in x^{0}+\operatorname{span}\left\{r^{0}, A r^{0}, \ldots, A^{n-1} r^{0}\right\}
$$

