AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH-CMPS 350 FINAL EXAMINATION-Make-up FALL 2007-2008 Two hours

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1		
2		
3		
4		
5		
6		
TOTAL		

Let $\Omega \subset \mathbb{R}^2$ be an open connected domain with $\Gamma = \partial \Omega = \Gamma_D \cup \Gamma_N$, $\Gamma_D \cap \Gamma_N = \Phi$ (empty set). Let a, b f be continuous functions $(C(\overline{\Omega}))$, such that:

$$a(x,y) \ge a_0 > 0, \ b(x,y) \ge 0, \ \forall (x,y) \in \Omega.$$

Consider the problem of finding $u: \overline{\Omega} \to \mathbb{R}$, that verifies:

$$(P) \begin{cases} -div(a(x,y)\nabla u) + b(x,y)u &= f(x,y) & \text{in } \Omega \\ u &= 0 & \text{on } \Gamma \end{cases}$$

1. State Green's formula and derive the variational (weak) form of (P) in the form:

(P')
$$u \in V$$
: $A(u, v) = F(v), \forall v \in V$.

Define the Sobolev space $H^1(\Omega)$ and specify the bilinear form A(.,.), the functional F(.), and the subspace V.

2. Prove existence and uniqueness of the solution to (P').

3. Consider the one-dimensional version corresponding to the problem of question 1, i.e. let:

 $\begin{aligned} \Omega &= (-1,1); T = \{ v \in H^1(\Omega) | v(-) = v(1) = 0 \}; A(u,v) = \int_{\Omega} (a(x)u'v' + b(x)uv) dx; \\ F(v) &= \int_{\Omega} (f(x)v) dx, \text{ where } a(x) \ge a_0 > 0 \text{ and } b(x) \ge 0. \end{aligned}$ Consider the variational problem:

$$u \in T: A(u, v) = F(v), \forall v \in T.$$
(1)

Assume $u \in H^2$ and let

$$S_N = span\{Q_n | n = 0, ..., N\}, N > 2$$

be the orthonormal set of Legendre polynomials in $L^2(\Omega)$. Give an estimate on $||u' - \Pi_{N-1}(u')||$, where $\Pi_{N-1}(u')$ is the L^2 projection of u' on S_{N-1} .

4. By studying the inner product $\langle u', Q_0 \rangle$, show that:

$$T_N = span\{\varphi_n | n = 1, \dots, N-1\},$$

with:

$$\varphi_n = P_{n+1}(x) - P_{n-1}(x), n = 1, 2, ..., N - 1.$$

is a suitable subspace of polynomials of degree n for a Galerkin approximation to (1). Give an estimate on $||u - r_N(u)||_1$, where $r_N(u)(x) = \int_{-1}^x \prod_{N=1} (u')$.

5. Let u_N be the Galerkine spectral approximation $u_N \in T_N$

$$u_N(x) = \sum_{n=1}^N c_n \varphi_n(x).$$

Give the Galerkin formulation based on (1),

$$u_N \in T_N: \tag{2}$$

(a) Give the system of linear equations:

$$Ac = F; c \in \mathbb{R}^N, A \in \mathbb{R}^{N,N}, F \in \mathbb{R}^N.$$
(3)

equivalent to (2). Specify the matrix A the vectors F and c. Give (with proof) the properties of A.

(b) Prove the estimation:

$$||u - u_N||_1 \le c \min_{v \in T_N} ||u - v||_1$$

6. Let A be an $n \times n$ inverible matrix. Let $x^0 \in \mathbb{R}^n$ and $b \in \mathbb{R}^n$, $r^0 = b - Ax^0$, and x the unique solution to Ax = b. Prove that:

$$x \in x^{0} + span\{r^{0}, Ar^{0}, ..., A^{n-1}r^{0}\}$$