AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences
 Mathematics Department

MATH 251
FINAL EXAM
FALL 2007-2008
Closed Book, 2 HOURS

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	30	
2	15	
3	15	
4	40	
TOTAL	100	

1. (30 points) Consider the following 5 points:

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	1	4	11	17	23

Find the cubic spline of each subinterval in the following way:
(a) Find the values of the moments $\left(w_{i}\right)$ by solving the system $A w=r$

- Specify the elements of matrix A and vector r :
- Apply Naive Gauss Elimination to get an upper triangular system.
(Continued...)
- Perform backward substitution to get the solution of the system $A w=r$.
(b) Find the derivatives $\left(z_{i}\right)$
- Find the value of z_{0}.
- Using z_{0} compute the remaining values of z.

2. (15 points) Let

$$
\begin{aligned}
a & =\left(1, a_{q-1}, a_{q-2}, \cdots \cdots, a_{1}, a_{0}\right), a_{i} \in\{0,1\} \\
b & =\left(1, b_{r-1}, b_{r-2}, \cdots \cdots, b_{1}, b_{0}\right), b_{i} \in\{0,1\}
\end{aligned}
$$

be the binary representations of 2 base 10 numbers M and N respectively. The base 10 numbers M and N corresponding to the bits given by a and b are:

$$
\begin{aligned}
M & =2^{q}+a_{q-1} 2^{q-1}+\cdots \cdots+a_{1} 2+a_{0} \\
N & =2^{r}+b_{r-1} 2^{r-1}+\cdots \cdots+b_{1} 2+b_{0}
\end{aligned}
$$

such that $N \leq M \Leftrightarrow r \leq q$.

$$
\begin{aligned}
M * N= & \left(2^{r}+b_{r-1} 2^{r-1}+\cdots \cdots+b_{1} 2+b_{0}\right) * N \\
= & b_{0} N \quad+ \\
= & b_{1} 2 N \quad+ \\
& \vdots \\
= & b_{r-1} 2^{r-1} N+ \\
= & 2^{r} N
\end{aligned}
$$

(a) Complete the following MATLAB program which evalutes $M * N$ using nested multiplication:

```
function [P]= MbyN(r,b,N)
T = N;
P = 1;
%%% Using the nonzero elements of vector b compute M*N
for i=
```

(b) Prove that $r \approx \log _{2} N$
3. (15 points) Consider the problem of finding $r=\frac{1}{\sqrt{R}}$.
(a) Give the function $f(x)$ for which r is the unique positive solution, such that the computation of $f(x)$ does not require any division.
(b) Write Newton's iteration formula that gives the sequence $\left\{x_{n}\right\}$ that would converge to r. Give a graphic justification into why the the sequence $\left\{x_{n}\right\}$ converges for every $x_{0}>0$.
(c) Prove that:

$$
x_{n+1}-r=\frac{\left(x_{n}-r\right)^{2}}{2 x_{n}}
$$

4. The function values of $f(x)$ are arranged in a table as follows:

i	x_{i}	$f\left(x_{i}\right)$
0	0.000	1.0000000
1	0.125	1.1108220
2	0.250	1.1979232
3	0.375	1.2663800
4	0.500	1.3196170
5	0.625	1.3600599
6	0.750	1.3895079
7	0.875	1.4093565
8	1.000	1.4207355

(a) Give the formula for the composite trapezoid rule, $T(h)$ to approximate the integral $I=\int_{0}^{1} f(x) d x$ and write the expression of $I-T(h)$ in terms of powers of h.
(b) Derive subsequent, Romberg integration formulae, $R^{1}(h), R^{2}(h), R^{3}(h)$.
(c) Based on the above $f\left(x_{i}\right)$ data, approximate the integral $I=$ $\int_{0}^{1} f(x) d x$, by filling the following table:

h	$T(h)$	$R^{(1)}(h)$	$R^{(2)}(h)$	$R^{(3)}(h)$
$h_{0}=1$				
$h_{0} / 2=0.5$				
$\frac{h_{0}}{4}=0.25$				
$\frac{h_{0}}{8}=0.125$				

(d) Using the forward Difference formula to approximate $f^{\prime}(0)$, followed by Richardson extrapolation, find the best approximation to $f^{\prime}(0)$ starting with $h_{0}=0.5$. For that purpose, derive the formulae of the following table and fill its entries:

h	$\phi(h)$	$\phi^{(1)}(h)$	$\phi^{(2)}(h)$
$h_{0}=0.5$			

