AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 251 FINAL EXAM FALL 2007-2008 Closed Book, 2 HOURS

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	30	
2	15	
3	15	
4	40	
TOTAL	100	

1. (30 points) Consider the following 5 points:

X	1	2	3	4	5
f(x)	1	4	11	17	23

Find the cubic spline of each subinterval in the following way:

- (a) Find the values of the moments (w_i) by solving the system Aw = r
 - Specify the elements of matrix A and vector r:

• Apply Naive Gauss Elimination to get an upper triangular system.

(Continued...)

• Perform backward substitution to get the solution of the system Aw = r.

- (b) Find the derivatives (z_i)
 - Find the value of z_0 .

• Using z_0 compute the remaining values of z.

2. (15 points) Let

$$a = (1, a_{q-1}, a_{q-2}, \dots, a_1, a_0), a_i \in \{0, 1\}$$

$$b = (1, b_{r-1}, b_{r-2}, \dots, b_1, b_0), b_i \in \{0, 1\}$$

be the binary representations of 2 base 10 numbers M and N respectively. The base 10 numbers M and N corresponding to the bits given by a and b are:

$$M = 2^{q} + a_{q-1}2^{q-1} + \dots + a_{1}2 + a_{0}$$
$$N = 2^{r} + b_{r-1}2^{r-1} + \dots + b_{1}2 + b_{0}$$

such that $N \leq M \Leftrightarrow r \leq q$.

$$M * N = (2^{r} + b_{r-1}2^{r-1} + \dots + b_{1}2 + b_{0}) * N$$

= $b_{0}N + b_{1}2N + b_{$

(a) Complete the following MATLAB program which evalutes M * N using nested multiplication:

 end

(b) Prove that $r \approx \log_2 N$

- 3. (15 points) Consider the problem of finding $r = \frac{1}{\sqrt{R}}$.
 - (a) Give the function f(x) for which r is the unique positive solution, such that the computation of f(x) does not require any division.

(b) Write Newton's iteration formula that gives the sequence $\{x_n\}$ that would converge to r. Give a graphic justification into why the the sequence $\{x_n\}$ converges for every $x_0 > 0$.

(c) Prove that:

$$x_{n+1} - r = \frac{(x_n - r)^2}{2x_n}$$

4.	The function	values of $f(x)$	are arranged in a table as follows:	

i	x_i	$f(x_i)$
0	0.000	1.0000000
1	0.125	1.1108220
2	0.250	1.1979232
3	0.375	1.2663800
4	0.500	1.3196170
5	0.625	1.3600599
6	0.750	1.3895079
7	0.875	1.4093565
8	1.000	1.4207355

(a) Give the formula for the composite trapezoid rule, T(h) to approximate the integral $I = \int_0^1 f(x) dx$ and write the expression of I - T(h) in terms of powers of h.

(b) Derive subsequent, Romberg integration formulae, $R^1(h)$, $R^2(h)$, $R^3(h)$.

(c) Based on the above $f(x_i)$ data, approximate the integral $I = \int_0^1 f(x) dx$, by filling the following table:

h	T(h)	$R^{(1)}(h)$	$R^{(2)}(h)$	$R^{(3)}(h)$
$h_0 = 1$				
$h_0/2 = 0.5$				
$\frac{h_0}{4} = 0.25$				
$\frac{h_0}{8} = 0.125$				

(d) Using the forward Difference formula to approximate f'(0), followed by Richardson extrapolation, find the best approximation to f'(0) starting with $h_0 = 0.5$. For that purpose, derive the formulae of the following table and fill its entries:

h	$\phi(h)$	$\phi^{(1)}(h)$	$\phi^{(2)}(h)$
$h_0 = 0.5$			