AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences
 Mathematics Department

MATH 251
FINAL EXAM
FALL 2007-2008
Closed Book, 2 HOURS

WRITE YOUR ANSWERS ON THE QUESTION SHEET

STUDENT NAME	
ID NUMBER	

Problem	Out of	Grade
1	20	
2	10	
3	20	
4	15	
5	25	
6	10	
TOTAL	100	

The next 2 questions deal with the natural cubic spline $S(x)$ on the following table of 5 data points for a function $f(x)$:

i	0	1	2	3	4
x_{i}	1	2	3	4	5
$f\left(x_{i}\right)$	1	4	11	17	23

1. (20 points) Let $w_{i}=S^{\prime \prime}\left(x_{i}\right)$ be the values of the moments of the cubic spline.
(a) (10 points) Specify the system $A w=r$.
(b) (10 points) Solve $A w=r$ using Naive Gauss Elimination followed by backward substitution.
2. (10 points) On the basis of w, give the formulae only of:
(a) (5 points) The spline derivatives: z_{0} followed by $z_{i}=S^{\prime}\left(x_{i}\right), i=$ $1 \cdots 4$.
(b) (5 points) The expression of $S_{i}(x)$, the spline $S(x)$ restricted for $x \in\left[x_{i}, x_{i+1}\right]$.
3. (20 points) Consider the problem of finding $r=\frac{1}{\sqrt{R}}$.
(a) (5 points) Give the function $f(x)$ for which r is the unique positive solution, such that the computation of $f(x)$ does not require any division.
(b) (7 points) Write Newton's iteration formula that gives the sequence $\left\{x_{n}\right\}$ that would converge to r. Give a graphic justification into why the the sequence $\left\{x_{n}\right\}$ converges for every $x_{0}>0$.
(c) (8 points) Prove that:

$$
x_{n+1}-r=\frac{\left(x_{n}-r\right)^{2}}{2 x_{n}}
$$

4. (15 points) Based on a set of data:

$$
\left\{\left(x_{i}, y_{i}=f\left(x_{i}\right)\right) \mid i=0,1, \ldots n\right\}
$$

where $n h=1$ and $x_{i}=i h, \forall i$. Consider the composite trapezoid rule, $T(h)$ to approximate the integral $I=\int_{0}^{1} f(x) d x$.
(a) (5 points) Give the formula for $T(h)$ and the expression of $I-T(h)$ in terms of powers of h.
(b) (5 points) Prove the following formula:

$$
\begin{equation*}
T(h / 2)=\left(T(h)+h \Sigma_{i=0}^{n-1} f\left(x_{i}+h / 2\right)\right) / 2 \tag{1}
\end{equation*}
$$

(c) (5 points) Complete the following MATLAB program which takes as input two vectors x and y and approximates $I=\int_{0}^{1} f(x) d x$ using the composite trapezoidal rule.

```
function T = trapezoid(x,y)
% x = (x(1), x(2),\ldots......, x(n))
% y = (y(1), y(2),\ldots......, y(n))
```

The next 2 questions deal with the following table of values for a function $f(x)$, arranged in a table as follows:

i	x_{i}	$f\left(x_{i}\right)$
0	0.000	1.0000000
1	0.125	1.1108220
2	0.250	1.1979232
3	0.375	1.2663800
4	0.500	1.3196170
5	0.625	1.3600599
6	0.750	1.3895079
7	0.875	1.4093565
8	1.000	1.4207355

5. (25 points) We intend to approximate $I=\int_{0}^{1} f(x) d x$, using Romberg integration based on the composite trapezoid rule $T(h)$.
(a) (10 points) Derive subsequent, Romberg integration formulae, $R^{1}(h), R^{2}(h), R^{3}(h)$ by giving expressions of the errors: $I-R^{1}(h), I-R^{2}(h), I-R^{3}(h)$.
(b) (15 points) Based on the above $f\left(x_{i}\right)$ data, approximate the integral $I=\int_{0}^{1} f(x) d x$, by filling the empty slots in the following table:
(You may use formula (1) of 4.b, to fill the column of $T(h)$.)

h	$T(h)$	$R^{1}(h)$	$R^{2}(h)$	$R^{3}(h)$
$h_{0}=1$		\times	\times	\times
$h_{0} / 2=0.5$			\times	\times
$\frac{h_{0}}{4}=0.25$				\times
$\frac{h_{0}}{8}=0.125$				

6. (10 points) Using the forward Difference formula to approximate $f^{\prime}(0)$, followed by Richardson extrapolation, find the best approximation to $f^{\prime}(0)$ starting with $h_{0}=0.5$. For that purpose, derive the formulae of the following table and fill the empty slots in its entries:

h	$\phi(h)$	$\phi^{(1)}(h)$	$\phi^{(2)}(h)$
$h_{0}=0.5$		\times	\times
			\times

