Physics 231D, Final Exam, January 22 2008
Time: 3 hours

Do 5 out of 7 problems

1. A frame F’ with coordinates (z’,?') is moving with a velocity v with respect to frame
F with coordinates (z,t)

' = Az + B(ct)
ct' = Cx + D(ct)

such that the distance 22 — (ct)?> = 2’2 — (ct')? is invariant. Find the conditions on
A, B,C, and D. Using the fact that the when the origins of the two frames coincide at
2’ =0 then x = vt, express A, B,C, and D in terms of v.

2. Define the conformal tensor by

O,ul//-i)\ = R,uym)\ +a (g;le/)\ - gynR,u)\ - g,u)\Rz/n + gl/)\R,Lm) + b (g;mgzx)\ - gu)\gwi) R

such that all contractions of this tensor vanish, and in particular ¢**C),.» = 0 and
g”’\CWH,\ = 0. Find a and b.

3. Find the Christoffel symbols, Riemann curvature tensor and Ricci tensor components
for the space-time with metric

ds? = =2 W dt? + dr?
Determine the function A(r) so that the equations R,, = 0 are satisfied.

4. In flat Minkowski space time find the ten Killing vectors corresponding to invariance

of the metric under translations and rotations. Express these in terms of the basis
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vectors (E’ 900 0y D2

5. For a k = —1 Friedman cosmology with p = p = 0 show that the line element becomes
ds® = —dt* + t* [dx2 + sinh? y (d02 + sin? 9d¢2)]

Exhibit an explicit coordinate transformation to show that this metric describes a
Minkowski space.

6. Solve the first order Friedman equation
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for R(t) when matter is dominated by radiation for the three possibilities £ = 1,0, —1.

7. A particle is falling radially from rest at r = a in Schwarzschild geometry. Derive
the equations of motion relating ¢, and 7. Hint: Use the first integrals of energy and
angular momentum conservation, and use the change of variable r = £ (1 + cos7) to
express dt in terms of dn but do not do the ¢ integral.



