

AMERICAN UNIVERSITY OF BEIRUT Geology Department Geology 224 Final Exam

June 24, 1998

St	udent Name:				
Pa	art I. Choose the best answer (56 pts.)				
1.	As Mesozoic was the time of the break up of, the similarity of depositional conditions between Arabia and central Iran prevailed in Palaeozoic				
	a. Laurasia ceased b. Pangaea ceased c. Laurasia continued d. Pangaea continued				
2.	Although it is difficult to separate it from Upper Permian, Triassic was marked by partial quite extensive episodes.				
	a. transgressional b. regressional c. taphrogenic d. orogenic				
3.					
	a. high to middle large by low to middle large c. high to middle little d. low to middle little				
4.	Short episodes of gypsiferous coloured deposition of a continental to near-shore facies dominated early Triassic.				
	a. shale and limestone b. limestone and sandstone c. shale and sandstone d. limestone and dolomite				
5.	As the Triassic advanced an increasing periodic shallow-water limestone and dolomite deposition often interbedded with becoming similar to Khuff depositional times.				
	a. anhydrite b. shale c. rock salt d. sandstone				
6.	The aeromagnetic data from Jordan, data from Lebanon and stratigraphic facies for the older Jurassic of the maritime of Lebanon and Syria indicate that the underlying crust is				
	a. gravity oceanic b. seismic oceanic c. gravity continental d. seismic continental				

Dr. K. Khair

Geology 224, Final Exam

THE LINE

	a. north-western c. western	b. north-eastern d. southern
8.	In late Cretaceous, open sea w	vere the predominant facies.
	a. pelagic carbonates c. pelagic muc	
9.	The central Arabian arc is trending graben trough system.	and bordered to the by the central Arabian
	a. N-S east c. N-S west	b. E-Wsouth d. E-Wnorth
10.	The NE-SW trending Huqf-Haus reactivated later and continued to Palaeozoic and Mesozoic.	shi (Infra-Cambrian to early Palaeozoic) was o influence facies and thickness development in
	a. Ga'ara axis c. Ja'alan axis	b. Ga'ra graben d. Ja'alan graben
11.	The Rub-al-Khali basin is a epi carly Palaeozoic as a sag basin.	cratonic basin and it has apparently originated in the
	a. Holocene c. Pliocene	b. Quaternary d. Tertiary
12.	In the Levant, Triassic evaporites are asymmetric anticlines.	exposed to the surface in the cores of some of the
	a. eastern Hermon c. western Hermon	
13.	The crescentic-shaped belt of emplaced in Cretaceous.	ophiolites along the eastern edge of Arabia was
	a. discontinuous early	b continuous early

14	The development of early Cretaceous lateritic horizons and the presence of discontinuous, but extensive, levels in the Levant indicate that the climate was warm and			
	a. lignite humid b. evaporite humid			
	c. lignite dry d. evaporite dry			
15	Mesozoic rocks of the central Arabian outcrop area (Saudi Arabia) are extensively exposed in an fashion to the of the Palaeozoic rim of the Arabian shield.			
	a. arcuate west c. arcuate east d. elliptic east			
16.	Mesozoic outcrops in the eastern and northern Arabian margin are restricted to the Zagros and eastern Taurus ranges, but there are limited Mesozoic outcrops in			
	a. eastern Syria b. western Iraq c. eastern Saudi Arabia d. southern Iraq			
17.	In southern Arabia, Mesozoic rocks are well and widely exposed in different portions of plateau outcrop erosion windows, and in the of uplifts and mountains.			
	a. continuously cores b. discontinuously, but cores c. continuously margins d. discontinuously, but margins			
18.	At the south-western end of Arabia, terminal Cretaceous saw the initial phases of uplift and , fracturing with flood basalt outpourings.			
	a. epeirogenetic shear b. orogenic shear c. epeirogenetic tensional d. orogenic tensional			
19.	Haynes and McQuilan (1974) pointed that the Zagros suture zone is divisible into the following (from NE to SW) zones: stable block of the Iranian "continent", and Arabian platform part.			
	 a. Zagros crush, simply folded, trench, imbricate b. trench, imbricate, Zagros crush, simply folded c. imbricate, Zagros crush, simply folded, trench d. Zagros crush, trench, imbricate, simply folded 			
20.	The Cenozoic opened with a Palaeocene covering almost the entire Arabian Platform except for			
	a. regression Yemen b. transgression Yemen c. regression Oman d. transgression Oman			

	a. Pliocene vertical b. Oligocene vertical				
	a. I		b. Oligoo . horizontal		
	···			d. Ongovene nonzontal	
22.	In the eastern part of Arabia, the shallow sea way shoaled and became isolated in middle Miocene giving rise to lower Fars:				
	a. s	sandstones	b. shales		
		c. evaporites		d. carbonates	
23.	In Paleogene, the side of Arabia underwent tectonics with broad uplift (large dome).				
	a.	eastern tensional	b. easter	n compressional	
		c. western	tensional	d. westerncompressional	
24.	In explain	ing the late Miocene N	Aediterranean Mes	sinian salinity crisis, data favoured the	
	a. deep water-deep basin b. shallow water-deep basin				
		c. deep water-	-shallow basin	d. shallow water-shallow basin	
25.	In Oman, salts moved with piercement to the surface in late Tertiary.				
,	a. I	Devonian	b. Infraca	umbrian-Cambrian	
	a. I	Devonian c. Silurian	b. Infraca	unbrian-Cambrian d. Permo-Carboniferous	
	Dubertret (c. Silurian	nypothesis of 1		
	Dubertret (Levant blo	c. Silurian 1932) developed the l	nypothesis of 1 for km.	d. Permo-Carboniferous novement and suggested that the Sinai-	
	Dubertret (Levant blo	c. Silurian 1932) developed the lock moved southwards	nypothesis of i for km. b. dextral	d. Permo-Carboniferous novement and suggested that the Sinai-	
26.	Dubertret (Levant bloo a. s	c. Silurian 1932) developed the lek moved southwards inistral 160	nypothesis of i for km. b. dextral	d. Permo-Carboniferous movement and suggested that the Sinai 160 d. dextral 110	
26.	Dubertret (Levant bloc a. s	c. Silurian 1932) developed the lek moved southwards inistral 160 c. sinistral	nypothesis of i for km. b. dextrain 110	d. Permo-Carboniferous movement and suggested that the Sinai 160 d. dextral 110 n late Cenozoic.	
26.	Dubertret (Levant bloc a. s	c. Silurian 1932) developed the lek moved southwards inistral 160 c. sinistral	nypothesis of i for km. b. dextral	d. Permo-Carboniferous movement and suggested that the Sinai 160 d. dextral 110 n late Cenozoic.	
26.	Dubertret (Levant bloc a. s In Yemen a.	c. Silurian 1932) developed the leck moved southwards inistral 160 c. sinistral the salt was extrud Cambrian c. Permian	b. dextral	d. Permo-Carboniferous movement and suggested that the Sinai 160 d. dextral 110 In late Cenozoic.	
26.	Dubertret (Levant block a. s In Yetnen a.	c. Silurian 1932) developed the leck moved southwards inistral 160 c. sinistral the salt was extrud Cambrian c. Permian	b. dextral	d. Permo-Carboniferous movement and suggested that the Sinai 160 d. dextral 110 n late Cenozoic. ian d. Jurassic	

	a. Owen 1000 b. Owen 500 c. Sheba 1000 d. Sheba	500		
Pa	Part II. Using the map (figure 1) write the names of the nu			
	indicating their types (basin, high, axis, graben, arch	, . ,		
1.	1, 2			
	3, 4			
). 7	5	,		
7. O	7	······································		
	9			
	13, 14			
	· · · · · · · · · · · · · · · · · · ·	,		
Pя	Part III. Answer only two of the following three questions (20	pts.)		
1.	1. Outling the testanic quarries, of Masozaia			
1. 2.	outside the total of the order of the outside of th			
	Discuss the summary of the opening of the Gulf of Aden and Red Sea. Give the conclusion on the evolution and development of the Levant (Dead Sea) Fracture			
 3	3. Give the conclusion on the evolution and development of the	e Levant (Llogo Negl Ergotiit)		

Part IV. Describe, in only one page, the presented formations correlation (figure 2) in terms of Palaeogeography, lithology and deposition (10 pts.)

GOOD LUCK

