
1 The properties of gases 

1A The perfect gas 

Answers to discussion questions 
1A.2 The partial pressure of a gas in a mixture of gases is the pressure the gas would exert if it 

occupied alone the same container as the mixture at the same temperature. Dalton’s law is a 
limiting law because it holds exactly only under conditions where the gases have no effect 
upon each other. This can only be true in the limit of zero pressure where the molecules of 
the gas are very far apart. Hence, Dalton’s law holds exactly only for a mixture of perfect 
gases; for real gases, the law is only an approximation. 

 
Solutions to exercises 

1A.1(b) The perfect gas law [1A.5] is pV = nRT, implying that the pressure would be 

  
p =

nRT
V  

All quantities on the right are given to us except n, which can be computed from the given 
mass of Ar. 

   
n = 25 g

39.95 −1
g mol

= 0.626 mol
 

so 
  
 p =

(0.626 mol) × (8.31×10−2 dm3  bar K−1  mol−1) × (30 + 273) K
1.5 dm3 = 10.5bar  

So no, the sample would not exert a pressure of 2.0 bar. 

1A.2(b) Boyle’s law [1A.4a] applies. 
 pV = constant so pfVf = piVi 
Solve for the initial pressure: 

(i) 
  
pi =

pfVf

Vi

=
(1.97 bar) × (2.14dm3)

(2.14 +1.80)dm3 = 1.07 bar  

(ii) The original pressure in Torr is 

 
  
pi = (1.07 bar) × 1 atm

1.013 bar





×

760 Torr
1 atm






= 803 Torr  

1A.3(b) The relation between pressure and temperature at constant volume can be derived from the 
perfect gas law, pV = nRT [1A.5] 

so 
  
p ∝ T and

pi

Ti

=
pf

Tf

 

The final pressure, then, ought to be 

 
  
pf =

piTf

Ti

=
(125 kPa) × (11+ 273)K

(23+ 273)K
= 120 kPa  

1A.4(b) According to the perfect gas law [1.8], one can compute the amount of gas from pressure, 
temperature, and volume. 
 pV = nRT 

so 
  
n = pV

RT
=

(1.00 atm) × (1.013×105 Pa atm−1) × (4.00 ×103m3)
(8.3145 J K−1mol−1) × (20 + 273)K

= 1.66 ×105 mol  

Once this is done, the mass of the gas can be computed from the amount and the molar 
mass: 

 
  
m = (1.66 ×105 mol) × (16.04 −1g mol ) = 2.67 ×106 g = 2.67 ×103  kg  

1A.5(b) The total pressure is the external pressure plus the hydrostatic pressure [1A.1], making the 
total pressure 
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 p = pex + ρgh . 
Let pex be the pressure at the top of the straw and p the pressure on the surface of the liquid 
(atmospheric pressure). Thus the pressure difference is 

 

  

p − pex = ρgh = (1.0 −3g cm ) × 1 kg
103  g

×
1 cm

10−2  m






3

× (9.81 m s−2 ) × (0.15m)

= 1.5×103 Pa = 1.5×10−2  atm

 

1A.6(b) The pressure in the apparatus is given by 
 p = pex + ρgh [1A.1] 
where pex = 760 Torr = 1 atm = 1.013×105 Pa, 

and 
  
ρgh = 13.55 g cm−3 ×

1 kg
103  g






×

1 cm
10−2  m






3

× 0.100 m × 9.806 m s−2 = 1.33×104  Pa  

   p = 1.013×105  Pa +1.33×104  Pa = 1.146 ×105  Pa = 115 kPa  

1A.7(b) Rearrange the perfect gas equation [1A.5] to give 
  
R = pV

nT
=

pVm

T
 

All gases are perfect in the limit of zero pressure. Therefore the value of pVm/T extrapolated 
to zero pressure will give the best value of R. 
The molar mass can be introduced through 

 
 
pV = nRT =

m
M

RT  

which upon rearrangement gives 
 
M =

m
V

RT
p

= ρ RT
p

 

The best value of M is obtained from an extrapolation of ρ/p versus p to zero pressure; the 
intercept is M/RT. 
Draw up the following table: 
 
 
 
 
 

From Figure 1A.1(a), 
  
R = lim

p→0

pVm

T






= 0.082 062 dm3  atm K−1  mol−1  

Figure 1A.1 
 
(a) 

 
 

p/atm (pVm/T)/(dm3 atm K–1 mol–1) (ρ/p)/(g dm–3 atm–1) 
0.750 000 0.082 0014 1.428 59 
0.500 000 0.082 0227 1.428 22 
0.250 000 0.082 0414 1.427 90 
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(b) 
 

 

From Figure 1A.1(b), 
  
lim
p→0

ρ
p






= 1.427 55 g dm-3  atm−1  

  

M = lim
p→0

RT ρ
p






= (0.082062 dm3  atm K−1  mol−1) × (273.15 K) × (1.42755 g dm-3  atm−1)

                        = 31.9988 g mol−1

 

The value obtained for R deviates from the accepted value by 0.005 per cent, better than can 
be expected from a linear extrapolation from three data points. 

1A.8(b) The mass density ρ is related to the molar volume Vm by 

 
  
Vm =

V
n
=

V
m
×

m
n
=

M
ρ

 

where M is the molar mass. Putting this relation into the perfect gas law [1A.5] yields 

 pVm = RT so 
 

pM
ρ

= RT  

Rearranging this result gives an expression for M; once we know the molar mass, we can 
divide by the molar mass of phosphorus atoms to determine the number of atoms per gas 
molecule. 

 

  

M =
RTρ

p
=

(8.3145 Pa m3 −1mol ) × [(100 + 273) K]× (0.6388kg m−3 )
1.60 ×104  Pa

=  0.124 kg mol−1 = 124 g mol−1

 

 
The number of atoms per molecule is 

 
 

124 −1g mol
31.0 −1g mol

= 4.00  

suggesting a formula of P4. 

1A.9(b) Use the perfect gas equation [1A.5] to compute the amount; then convert to mass. 

 pV = nRT so 
 
n = pV

RT
 

We need the partial pressure of water, which is 53 per cent of the equilibrium vapour 
pressure at the given temperature and standard pressure. (We must look it up in a handbook 
like the CRC or other resource such as the NIST Chemistry WebBook.) 
   p = (0.53) × (2.81×103 Pa) = 1.49 ×103 Pa  
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so 
  
n = (1.49 ×103  Pa) × (250 m3)

(8.3145 J K−1  mol−1) × (23+ 273) K
= 151 mol  

and 
  
m = (151 mol) × (18.0 −1g mol ) = 2.72 ×103  g = 2.72 kg  

1A.10(b) (i) The volume occupied by each gas is the same, since each completely fills the container. 
Thus solving for V we have (assuming a perfect gas, eqn. 1A.5) 

 
  
V =

nJ  RT
pJ

 

We have the pressure of neon, so we focus on it 

 
  
nNe =

0.225 g
20.18 g mol−1 = 1.115×10−2  mol  

Thus

 

  
 V =

1.115 ×10−2  mol × 8.3145 Pa m3  K−1  mol−1 × 300 K
8.87 ×103  Pa

= 3.14 ×10−3  m3 = 3.14 dm3  

(ii) The total pressure is determined from the total amount of gas, 
  
n = nCH4

+ nAr + nNe . 

 

  

nCH4
= 0.320 g

16.04 g mol−1 = 1.995 ×10−2  mol nAr =
0.175 g

39.95 g mol−1 = 4.38 ×10−3  mol

n = 1.995 + 0.438 +1.115( )×10−2 mol = 3.55×10−2  mol
 

and 

  

p =
nRT
V

=
3.55×10−2  mol × 8.3145 Pa m3  K−1  mol−1 × 300 K

3.14 ×10−3  m3

= 2.82 ×104  Pa = 28.2 kPa

 

1A.11(b) This exercise uses the formula, 
 
M =

ρRT
p

, which was developed and used in Exercise 

1A.8(b). First the density must first be calculated. 

 
 
ρ = 33.5×10−3 g

250cm3 ×
103  cm3

dm3







= 0.134 g dm−3  

 
  
M =

(0.134 g dm−3 ) × (62.36 −1
dm3 torr K −1mol ) × (298 K)

152 torr
= 16.4 g mol−1  

1A.12(b) This exercise is similar to Exercise 1.12(a) in that it uses the definition of absolute zero as 
that temperature at which the volume of a sample of gas would become zero if the substance 
remained a gas at low temperatures. The solution uses the experimental fact that the volume 
is a linear function of the Celsius temperature: 
 V = V0 + αθ where V0 = 20.00 dm3 and α = 0.0741 dm3 °C–1 . 
At absolute zero, V = 0 = V0 + αθ 

so 
  
θ(abs.zero) = −

V0

α
= −

20.00 dm3

0.0741 dm3  ¡C−1 = Ğ270°C  

which is close to the accepted value of –273C. 

1A.13(b) (i) Mole fractions are 

   
xN =

nN

ntotal

[1A.9] = 2.5 mol
(2.5+1.5) mol

= 0.63  

Similarly,   xH = 0.37  
 
According to the perfect gas law 
 ptotV = ntotRT 
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so 
  
ptot =

ntot RT
V

=
(4.0 mol) × (0.08206 dm3  atm mol−1  K−1) × (273.15 K)

22.4 dm3 = 4.0 atm  

 
(ii) The partial pressures are 

   pN = xN ptot = (0.63) × (4.0 atm) = 2.5 atm  

and   pH = (0.37) × (4.0 atm) = 1.5 atm  
 

(iii)   p = pH + pN[1A.10] = (2.5+1.5) atm = 4.0 atm  

 
Solutions to problems 

1A.2 Solving for n from the perfect gas equation [1A.5] yields pVn
RT

= . From the definition of 

molar mass mn
M

= , hence 
 
ρ = m

V
= Mp

RT .
 Rearrangement yields the desired relation, namely 

RTp
M

ρ= . 

Therefore, for ideal gases 
 

p
ρ
= RT

M
 and 

 
M = RT

p / ρ
. For real gases, find the zero-pressure 

limit of 
 

p
ρ

by plotting it against p. Draw up the following table.  

p/(kPa) 12.223 25.20 36.97 60.37 85.23 101.3 
ρ/(kg m–3) 0.225 0.456 0.664 1.062 1.468 1.734 

  

p / ρ
103  m2  s−2

 54.3 55.3 55.7 56.8 58.1 58.4 

 
 
Bear in mind that 1 kPa = 103 kg m–1 s–2. 
p
ρ

 is plotted in Figure 1A.2. A straight line fits the data rather well. The extrapolation to p = 0 

yields an intercept of 54.0×103 m2 s–2 . Then 

   

M =
RT

5.40 ×104  m2  s−2 =
(8.3145 J K−1  mol−1) × (298.15K)

5.40 ×104 m2  s−2

= 0.0459 kg mol−1 = 45.9 −1g mol
 

Figure 1A.2 
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Comment. This method of the determination of the molar masses of gaseous compounds is 
due to Cannizarro who presented it at the Karlsruhe Congress of 1860. That conference had 
been called to resolve the problem of the determination of the molar masses of atoms and 
molecules and the molecular formulas of compounds. 

1A.4 The mass of displaced gas is ρV, where V is the volume of the bulb and ρ is the density of the 
displaced gas. The balance condition for the two gases is 

  m(bulb) = ρV(bulb) and m(bulb) = ρ′V(bulb) 

which implies that ρ = ρ′. Because [Problem 1.2] 
 
ρ = pM

RT
 

the balance condition is pM = p′M′ , 

which implies that 
 

′M =
p
′p
× M  

This relation is valid in the limit of zero pressure (for a gas behaving perfectly). 
In experiment 1, p = 423.22 Torr, p′ = 327.10 Torr; 

hence 
  

′M =
423.22 Torr
327.10 Torr

× 70.014 g mol−1 = 90.59 g mol−1  

In experiment 2, p = 427.22 Torr, p′ = 293.22 Torr; 

hence 
  

′M =
427.22 Torr
293.22 Torr

× 70.014 g mol−1 = 102.0 g mol−1  

In a proper series of experiments one should reduce the pressure (e.g. by adjusting the 
balanced weight). Experiment 2 is closer to zero pressure than experiment 1, so it is more 
likely to be close to the true value: 

 
  

′M ≈ 102 g mol−1  
The molecules CH2FCF3 and CHF2CHF2 have molar mass of 102 g mol–1. 
Comment. The substantial difference in molar mass between the two experiments ought to 
make us wary of confidently accepting the result of Experiment 2, even if it is the more likely 
estimate. 

1A.6 We assume that no H2 remains after the reaction has gone to completion. The balanced 
equation is 
 N2 + 3 H2 → 2 NH3 . 

We can draw up the following table 
 N2 H2 NH3 Total 
Initial amount n n′ 0 n + n′ 
Final amount   n −

1
3 ′n  0   

2
3 ′n    n +

1
3 ′n  

Specifically 0.33 mol 0 1.33 mol 1.66 mol 
Mole fraction 0.20 0 0.80 1.00 

 
  
p =

nRT
V

= (1.66 mol) × (0.08206 dm3  atm mol−1  K−1) × (273.15K)
22.4dm3







= 1.66 atm

 
 p(H2) = x(H2)p = 0 
 p(N2) = x(N2)p = 0.20 × 1.66 atm = 0.33 atm 
 p(NH3) = x(NH3)p = 0.80 × 1.66 atm = 1.33 atm 

1A.8 The perfect gas law is pV = nRT so 
 
n = pV

RT
 

At mid-latitudes 

   
n = (1.00atm) ×{(1.00dm2 ) × (250 ×10−3  cm) / 10 cm dm−1}

(0.08206dm3 atm K−1mol−1) × (273K)
= 1.12 ×10−3  mol  

In the ozone hole 

   
n = (1.00atm) ×{(1.00dm2 ) × (100 ×10−3  cm) / 10cm dm−1}

(0.08206dm3 atm K−1mol−1) × (273 K)
= 4.46 ×10−4  mol  

The corresponding concentrations are 
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n
V
=

1.12 ×10−3  mol
(1.00dm2 ) × (40 ×103  m) × (10dm m−1)

= 2.8 ×10−9  moldm−3  

and 
  

n
V
=

4.46 ×10−4  mol
(1.00dm2 ) × (40 ×103  m) × (10dm m−1)

= 1.1×10−9  moldm−3  

respectively. 

1A.10 The perfect gas law [1A.5] can be rearranged to 
 
n = pV

RT
 

The volume of the balloon is 
  
V = 4π

3
r3 = 4π

3
× (3.0 m)3 = 113 m3  

(a) 
  
n = (1.0atm) × (113 ×103 dm3)

(0.08206 dm3  atm mol−1  K−1) × (298 K)
= 4.62 ×103 mol  

(b) The mass that the balloon can lift is the difference between the mass of displaced air and 
the mass of the balloon. We assume that the mass of the balloon is essentially that of the gas it 
encloses: 

   m = m(H2 ) = nM (H2 ) = (4.62 ×103 mol) × (2.02 −1
g mol ) = 9.33 ×103 g  

  Mass of displaced air = (113 m3) × (1.22 −3
kg m ) = 1.38 ×102 kg  

Therefore, the mass of the maximum payload is 

  138 kg − 9.33 kg = 1.3×102 kg  

(c) For helium,   m = nM (He) = (4.62 ×103 mol) × (4.00 g mol−1) = 18kg  

The maximum payload is now 
 
138 kg −18kg = 1.2 ×102 kg  

1A.12 Avogadro’s principle states that equal volumes of gases contain equal amounts (moles) of the 
gases, so the volume mixing ratio is equal to the mole fraction. The definition of partial 
pressures is 
 pJ = xJp . 
The perfect gas law is 

   
pV = nRT so

nJ

V
=

pJ

RT
=

xJ p
RT

 

(a) 
  

n(CCl3F)
V

=
(261×10−12 ) × (1.0atm)

(0.08206dm3 atm K−1mol−1) × (10 + 273) K
= 1.1×10−11 moldm-3  

and 
  

n(CCl2F2 )
V

=
(509 ×10−12 ) × (1.0atm)

(0.08206dm3 atm K−1mol−1) × (10 + 273) K
= 2.2 ×10−11 moldm-3  

(b) 
  

n(CCl3F)
V

=
(261×10−12 ) × (0.050atm)

(0.08206dm3  atm K−1mol−1) × (200 K)
= 8.0 ×10−13 moldm-3  

and 
  

n(CCl2F2 )
V

=
(509 ×10−12 ) × (0.050atm)

(0.08206dm3 atm K−1mol−1) × (200 K)
= 1.6 ×10−12 moldm-3  

 

1B The kinetic model 

Answers to discussion questions 
1B.2 The formula for the mean free path [eqn 1B.13] is  

 
 
λ =

kT
σ p

 

In a container of constant volume, the mean free path is directly proportional to temperature 
and inversely proportional to pressure. The former dependence can be rationalized by 
noting that the faster the molecules travel, the farther on average they go between collisions. 
The latter also makes sense in that the lower the pressure, the less frequent are collisions, 
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and therefore the further the average distance between collisions. Perhaps more fundamental 
than either of these considerations are dependences on size. As pointed out in the text, the 
ratio T/p is directly proportional to volume for a perfect gas, so the average distance 
between collisions is directly proportional to the size of the container holding a set number 
of gas molecules. Finally, the mean free path is inversely proportional to the size of the 
molecules as given by the collision cross section (and therefore inversely proportional to the 
square of the molecules’ radius). 

Solutions to exercises 
1B.1(b) The mean speed is [1B.8] 

 
  
vmean =

8RT
π M







1/2

 

The mean translational kinetic energy is 

 
  

Ek = 1
2 mv2 = 1

2 m v2 = 1
2 mvrms

2 =
m
2

3RT
M







[1B.3] = 3kT
2

 

The ratios of species 1 to species 2 at the same temperature are 

 
  

vmean,1

vmean,2

=
M2

M1








1/2

     and     
Ek 1

Ek 2

= 1  

 (i) 
  

vmean,H2

vmean,Hg

=
200.6
4.003







1/2

= 7.079  

 (ii) The mean translation kinetic energy is independent of molecular mass and 
depends upon temperature alone! Consequently, because the mean translational kinetic 
energy for a gas is proportional to T, the ratio of mean translational kinetic energies for 
gases at the same temperature always equals 1. 

1B.2(b) The root mean square speed [1B.3] is 

 
  
vrms =

3RT
M







1/2

 

For CO2 the molar mass is 
 M = (12.011 + 2×15.9994)×10–3 kg mol–1 = 44.010×10–3 kg mol–1  

so 
  
vrms =

3(8.3145 J K−1  mol−1)(20 + 273) K
44.01×10−3  kg mol−1








1/2

= 408 m s−1  

For He  

 
  
vrms =

3(8.3145 J K−1  mol−1)(20 + 273) K
4.003×10−3  kg mol−1








1/2

= 1.35×103  m s−1 = 1.35 km s−1  

1B.3(b) The Maxwell-Boltzmann distribution of speeds [1B.4] is 

 
  
f (v) = 4π M

2πRT






3/2

v2e− Mv2 /2 RT  

and the fraction of molecules that have a speed between v and v+dv is f(v)dv. The fraction of 

molecules to have a speed in the range between v1 and v2 is, therefore, 
  

f (v)dv
v1

v2∫ . If the 

range is relatively small, however, such that f(v) is nearly constant over that range, the 
integral may be approximated by f(v)∆v, where f(v) is evaluated anywhere within the range 
and ∆v = v2 – v1 . Thus, we have, with M = 44.010×10–3 kg mol–1 [Exericse 1B.2(b)], 
 

 2

1

3/23 1
1 2

1 1

44.010 10 kg mol( )d ( ) 4 (402.5 m s )
2 (8.3145 J K mol )(400 K)

v

v
f v v f v v π

π

− −
−

− −

 ×
≈ ∆ =  

 
∫  
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× exp −
(44.010 ×10−3  kg mol−1)(402.5 m s−1)2

2(8.3145 J K−1  mol−1)(400 K)






× (405− 400) m s−1

= 0.0107 ,  just over 1%

 

 

 

1B.4(b) The most probable, mean, and mean relative speeds are, respectively 

 
  
vmp =

2RT
M







1/2

 [1B.9] 
  
vmean =

8RT
π M







1/2

 [1B.8] 
  
vrel =

8RT
πµ







1/2

 [1B.10b]  

The temperature is T = (20+273) K = 293 K. 

so 
  
vmp =

2(8.3145 J K−1  mol−1)(293 K)
2 ×1.008 ×10−3  kg mol−1








1/2

= 1.55×103  m s−1  

and 
  
vmean =

8(8.3145 J K−1  mol−1)(293 K)
π (2 ×1.008 ×10−3  kg mol−1)








1/2

= 1.75×103  m s−1  

For many purposes, air can be considered as a gas with an average molar mass of 29.0 g 
mol–1 . In that case, the reduced molar mass [1B.10b] is 

 
  
µ =

MA MB

MA + MB

=
(29.0 g mol−1)(2 ×1.008 g mol−1)

(29.0 + 2 ×1.008) g mol−1 = 1.88 g mol−1  

and 
  
vrel =

8(8.3145 J K−1  mol−1)(293 K)
π (1.88 ×10−3  kg mol−1)








1/2

= 1.81×103  m s−1  

Comment. One computes the average molar mass of air just as one computes the average 
molar mass of an isotopically mixed element, namely by taking an average of the species 
that have different masses weighted by their abundances. 
Comment. Note that vrel and vmean are very nearly equal. This is because the reduced mass 
between two very dissimilar species is nearly equal to the mass of the lighter species (in this 
case, H2). 

1B.5(b) (i) 
  
vmean =

8RT
π M







1/2

[1B.8] = 8(8.3145 J K−1  mol−1)(298 K)
π (2 ×14.007 ×10−3  kg mol−1)








1/2

= 475 m s−1  

(ii) The mean free path [1B.13] is 

 

  

λ =
kT
σ p

=
kT

πd 2 p
=

(1.381×10−23  J K−1)(298 K)
π (395×10−12  m)2 (1×10−9  Torr)

×
1 Torr

133.3 Pa

= 6.3 ×104  m = 63 km

 

The mean free path is much larger than the dimensions of the pumping apparatus used to 
generate the very low pressure. 
(iii) The collision frequency is related to the mean free path and relative mean speed by 
[1B.12] 

 
  
λ =

vrel

z
 so 

  
z =

vrel

λ
=

21/2 vmean

λ
 [1B.10a] 

 
  
z = 21/2 (475 m s−1)

6.3 ×104  m
= 1.1 ×10−2  s−1  

1B.6(b) The collision diameter is related to the collision cross section by 
 σ = πd2 so d = (σ/π)1/2 = (0.36 nm2/π)1/2 = 0.34 nm . 
The mean free path [1B.13] is 

 
 
λ =

kT
σ p

 

Solve this expression for the pressure and set λ equal to 10d: 
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p =

kT
σλ

=
(1.381×10−23  J K−1)(293 K)

0.36 × (10−9  m)2 (10 × 0.34 ×10−9  m)
= 3.3×106  J m−3 = 3.3 MPa  

Comment. This pressure works out to 33 bar (about 33 atm), conditions under which the 
assumption of perfect gas behavior and kinetic model applicability at least begins to come 
into question. 

1B.7(b) The mean free path [1B.13] is 

 
  
λ =

kT
σ p

=
(1.381×10−23  J K−1)(217 K)

0.43× (10−9  m)2 (12.1×103  Pa atm−1)
= 5.8 ×10−7  m  

Solutions to problems 
1B.2 The number of molecules that escape in unit time is the number per unit time that would have 

collided with a wall section of area A equal to the area of the small hole. This quantity is 
readily expressed in terms of ZW, the collision flux (collisions per unit time with a unit area), 
given in eqn 19A.6. That is, 

 
  

dN
dt

= −ZW A =
−Ap

(2πmkT )1/2  

where p is the (constant) vapour pressure of the solid. The change in the number of molecules 
inside the cell in an interval t∆  is therefore WN Z A t∆ = − ∆ , and so the mass loss is 

 
  
∆w = m∆N = −Ap m

2πkT






1/2

∆t = −Ap M
2πRT







1/2

∆t  

Therefore, the vapour pressure of the substance in the cell is 

 
1/ 22 RTwp

A t M
π−∆   = ×      ∆

 

For the vapour pressure of germanium 

 

  

p =
43×10−9  kg

π (0.50 ×10−3 m)(7200 s)






×

2π (8.3145 J K−1  mol−1)(1273 K)
72.64 ×10−3  kg mol−1








1/2

= 7.3×10−3  Pa = 7.3 mPa

 

1B.4 We proceed as in Justification 1B.2 except that, instead of taking a product of three one-
dimensional distributions in order to get the three-dimensional distribution, we make a product 
of two one-dimensional distributions. 

 
  
f (vx ,vy )dvxdvy = f (vx

2 ) f (vy
2 )dvxdvy =

m
2πkT







e−mv2 /2kT dvxdvy  

where
  
v2 = vx

2 + vy
2 . The probability f(v)dv that the molecules have a two-dimensional speed, v, 

in the range v to v + dv is the sum of the probabilities that it is in any of the area elements 
dvxdvy in the circular shell of radius v. The sum of the area elements is the area of the circular 
shell of radius v and thickness dv which is π(ν+dν)2 – πν2 = 2πνdν . Therefore, 

 
  
f (v) = m

kT






ve−mv2 /2kT =
M
RT







ve− Mv2 /2 RT   
M
R

=
m
k









  

The mean speed is determined as 

  
  
vmean = vf (v)dv

0

∞

∫ =
m
kT







v2e−mv2 /2kT dv
0

∞

∫  

Using integral G.3 from the Resource Section yields 

 
  
vmean =

m
kT






×

π 1/2

4






×

2kT
m







3/2

=
πkT
2m







1/2

=
πRT
2M







1/2

 

1B.6 The distribution [1B.4] is 

 10 



 
  
f (v) = 4π

3/2
M

2πRT






v2e− Mv2 /2 RT . 

The proportion of molecules with speeds less than vrms is 

 
  
P = f (v)dv

0

vrms

∫ = 4π
3/2

M
2πRT







v2e− Mv2 /2 RT dv
0

vrms∫  

Defining   a ≡ R / 2RT , 

 
  
P = 4π

3/2
a
π






v2e−av2
dv

0

vrms

∫ = −4π
3/2

a
π






d
da

e−av2
dv

0

vrms∫  

Defining 2 2 1/ 2. Then, d d  andav v aχ χ−≡ =  

 

  

P = −4π
3/2

a
π






d
da

1
a1/2 e−χ2

dχ
0

vrmsa
1/2

∫{ }
= −4π

3/2
a
π






− 1
2

3/2
1
a() e−χ2

dχ
0

vrmsa
1/2

∫ +
1/2

1
a() d

da
e−χ2

dχ
0

vrmsa
1/2

∫












 

Then we use the error function [Integral G.6]: 

 
  

e−χ2
dχ

0

vrmsa
1/2

∫ = π 1/2 / 2( )erf (vrmsa
1/2 ) . 

 
  

d
da

e−χ2
dχ

0

vrmsa
1/2

∫ =
dvrmsa

1/2

da








 × (e−avrms

2

) = 1
2

c
a1/2







e−avrms
2

 

where we have used 
  
d
dz f ( y)d y

0

z

∫ = f (z)  

Substituting and cancelling we obtain 
  
P = erf (vrmsa

1/2 ) − 2vrmsa
1/2 / π 1/2( )e−avrms

2

 

Now 
  
vrms =

3RT
M







1/2

 so 
  
vrmsa

1/2 =
3RT
M







1/2

×
M

2RT






1/21/2

=
3
2







1/2

 

and 
  
P = erf 3

2


















−

1/2
6
π






e−3/2 = 0.92 − 0.31= 0.61  

Therefore, 
(a) 1 – P = 39% have a speed greater than the root mean square speed. 
(b) P = 61% of the molecules have a speed less than the root mean square speed. 
(c) For the proportions in terms of the mean speed vmean, replace vrms by 

 
  
vmean = 8kT / πm( )1/2

= 8 / 3π( )1/2
vrms  so vmeana1/2 = 2/π1/2 . 

Then 

  

P = erf (vmeana1/2 ) − 2vmeana1/2 / π 1/2( )× (e−av2
mean )

= erf 2 / π 1/2( )− 4 / π( )e−4/π = 0.889 − 0.356 = 0.533

 

That is, 53% of the molecules have a speed less than the mean, and 47% have a speed greater 
than the mean. 

1B.8 The average is obtained by substituting the distribution (eqn 1B.4) into eqn 1B.7: 

 
  

vn = vn f (v)dv
0

∞

∫ = 4π M
2πRT







3/2

vn+2e− Mv2 /2 RT dv
0

∞

∫  

For even values of n, use Integral G.8: 

 

  

vn = 4π M
2πRT







3/2
(n +1)!!

2
n+4

2






2RT
M







n+2
2





 2πRT

M






1/2

= (n +1)!! RT
M







n
2







 

where (n+1)!! = 1 × 3 × 5 ... × (n+1) 

Thus 

  

vn 1/n
= (n +1)!! RT

M


















1/2

 even n 
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For odd values of n, use Integral G.7: 

 
  

vn = 4π M
2πRT







3/2
n +1

2






!

2
2RT

M






n+3
2







=
2
π 1/2

2RT
M







n/2

 

Thus 

  

vn 1/n
=

2
π 1/2

2RT
M







n/2











1/n

=
21/n

π 1/2n

2RT
M







1/2

 odd n 

Question. Show that these expressions reduce to vmean and vrms for n = 1 and 2 respectively. 

1B.10 Dry atmospheric air is 78.08% N2, 20.95% O2, 0.93% Ar, 0.04% CO2, plus traces of other 
gases. Nitrogen, oxygen, and carbon dioxide contribute 99.06% of the molecules in a volume 
with each molecule contributing an average rotational energy equal to kT. (Linear molecules 
can rotate in two dimensions, contributing two “quadratic terms” of rotational energy, or kT 
by the equipartition theorem [Topic B.3(b)]. The rotational energy density is given by  

 

  

ρR =
ER

V
=

0.9906N ε R

V
=

0.9906NkT
V

= 0.9906 p

= 0.9906(1.013×105  Pa) = 1.004 ×105  J m−3 = 0.1004 J cm−3

 

The total energy density is translational plus rotational (vibrational energy contributing 
negligibly):  

  ρtot = ρT + ρR = 0.15 J cm−3 + 0.10 J cm−3 = 0.25 J cm−3  

1B.12 The fraction of molecules (call it F) between speeds a and b is given by 

 
  
F(a,b) = f (v)dv

a

b

∫  

where f(v) is given by eqn 1B.4. This integral can be approximated by a sum over a discrete 
set of velocity values. For convenience, let the velocities vi be evenly spaced within the 
interval such that vi+1 = vi + ∆v: 
 ( , ) ( )ΔiF a b f v v≈ ∑  
On a spreadsheet or other mathematical software, make a column of velocity values and then a 
column for f(v) [1B.4] at 300 K and at 1000 K. Figure 1B.1 shows f(v) plotted against v for 
these two temperatures. Each curve is labeled with the numerical value of T/K, and each is 
shaded under the curve between the speeds of 100 and 200 m s–1. F(a,b) is simply the area 
under the curve between v = a and v = b. One should take some care to avoid double counting 
at the edges of the interval, that is, not including both endpoints of the interval with full 
weight. example, beginning the sum with the area under the curve at those speeds. Using a 
spreadsheet that evaluates f(v) at 5-m s–1 intervals, and including points at both 100 and 200 m 
s–1 with half weight, F(100 m s–1, 200 m s–1) ≈ 0.281 at 300 K and 0.066 at 1000 K. 

 
 Figure 1B.1 
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1C Real gases 

Answers to discussion questions 
1C.2 The critical constants represent the state of a system at which the distinction between the 

liquid and vapour phases disappears. We usually describe this situation by saying that above 
the critical temperature the liquid phase cannot be produced by the application of pressure 
alone. The liquid and vapour phases can no longer coexist, though supercritical fluids have 
both liquid and vapour characteristics. 

1C.4 The van der Waals equation is a cubic equation in the volume, V. Every cubic equation has 
some values of the coefficients for which the number of real roots passes from three to one. 
In fact, any equation of state of odd degree n > 1 can in principle account for critical 
behavior because for equations of odd degree in V there are necessarily some values of 
temperature and pressure for which the number of real roots of V passes from n to 1. That is, 
the multiple values of V converge from n to 1 as the temperature approaches the critical 
temperature. This mathematical result is consistent with passing from a two phase region 
(more than one volume for a given T and p) to a one phase region (only one V for a given T 
and p), and this corresponds to the observed experimental result as the critical point is 
reached. 

Solutions to exercises 
1C.1(b) The van der Waals equation [1C.5a] is 

 
  
p = nRT

V − nb
−

an2

V 2
 

From Table 1C.3 for H2S, a = 4.484 dm6 atm mol–1 and b = 0.0434 dm3 mol–1. 

(i) 

  

p =
(1.0 mol) × (0.08206 dm3  atm mol−1  K−1) × (273.15 K)

22.414 dm3 − (1.0 mol) × (4.34 ×10−2  dm3  mol−1)

   − (4.484 dm6  atm mol−2 ) × (1.0 mol)2

(22.414 dm3)2 = 0.99 atm

 

  

 

(ii) 

  

p =
(1.0 mol) × (0.08206 dm3  atm mol−1  K−1) × (500 K)

0.150dm3 − (1.0 mol) × (4.34 ×10−2 dm3  mol−1)

   − (4.484 dm3  atm mol−1) × (1.0 mol)2

(0.150 dm3)2 = 190 atm  (2 sig. figures)

 

1C.2(b) The conversions needed are as follows: 
1 atm = 1.013×105 Pa, 1 Pa = 1 kg m–1 s–2, 1 dm6 = (10–1 m)6 = 10–6 m6, 1 dm3 = 10–3 m3. 
Therefore, 

 

  

a = 1.32 atm dm6  mol−2 ×
1.013×105  kg m−1  s−2

1 atm
×

10−6  m6

dm6

= 1.34 ×10−1  kg m5  s−2  mol−2

 

and 
  
b = 0.0426 dm3  mol−1 ×

10−3  m3

dm3 = 4.26 ×10−5  m3  mol−1  

1C.3(b) The compression factor Z is [1C.1] 

 
  
Z =

Vm

Vm
° =

pVm

RT
 

(i) Because   Vm = Vm
ο + 0.12   Vm

ο = (1.12)Vm
ο , we have   Z = 1.12  

(ii) The molar volume is 
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Vm = (1.12)Vm
ο = (1.12) × RT

p






= (1.12) × (0.08206 dm3  atm mol−1  K−1) × (350 K)
12atm







= 2.7 dm3  mol−1

 

Since   Vm >Vm
o  repulsive forces dominate. 

1C.4(b) (i) According to the perfect gas law 

 
  
Vm

o =
RT
p

=
(8.3145 J K−1  mol−1) × (298.15K)

(200 bar) × (105 −1Pa bar )
×

1 dm
10−1  m






3

= 0.124 dm3  mol−1  

(ii) The van der Waals equation [1C.5b] is a cubic equation in Vm. Cubic equations can be 
solved analytically. However, this approach is cumbersome, so we proceed as in Example 
1C.1. The van der Waals equation is rearranged to the cubic form 

   
Vm

3 − b + RT
p







Vm
2 +

a
p







Vm −
ab
p
= 0  

or 
  
x3 − b + RT

p






x2 +
a
p







x − ab
p
= 0  with x = Vm/(dm3 mol–1) . 

It will be convenient to have the pressure in atm: 

 
 
200 bar × 1 atm

1.013 bar
= 197.4 atm  

The coefficients in the equation are

 

   

b + RT
p

= (3.183×10−2  dm3  mol−1) + (0.08206 dm3  atm mol−1  K−1) × (298.15 K)
197.4 atm

= (3.183×10−2 + 0.1239) dm3  mol−1 = 0.1558 dm3  mol−1

 

   

a
p
=

1.360 dm6  atm mol−2

197.4 atm
= 6.89 ×10−3  dm6  mol−2  

   

ab
p
=

(1.360 dm6  atm mol−2 ) × (3.183×10−2  dm3  mol−1)
197.4 atm

= 2.193 ×10−4  dm9  mol−3  

Thus, the equation to be solved is   x
3 − 0.1558x2 + (6.89 ×10−3 )x − (2.193 ×10−4 ) = 0 . 

Calculators and computer software for the solution of polynomials are readily available. In 
this case we find 
 x = 0.112 and Vm = 0.112 dm3 mol–1 . 
The perfect-gas value is about 15 percent greater than the van der Waals result. 

1C.5(b) The molar volume is obtained by solving 
  
Z =

pVm

RT
[1C.2], for Vm , which yields 

 
  
Vm =

ZRT
p

=
(0.86) × (0.08206 dm3  atm mol−1  K−1) × (300 K)

20atm
= 1.06 dm3  mol−1  

(i) Then, 
  
V = nVm = (8.2 ×10−3 mol) × (1.06 dm3  mol−1) = 8.7 ×10−3 dm3 = 8.7 cm3  

(ii) An approximate value of B can be obtained from eqn 1C.3b by truncation of the series 
expansion after the second term, B/Vm, in the series. Then, 

   

B = Vm

pVm

RT
−1







= Vm × (Z −1)

= (1.06 dm3  mol−1) × (0.86 −1) = −0.15 dm3  mol−1

 

1C.6(b) Equations 1C.6are solved for b and a, respectively, and yield 
 b = Vc/3 and a = 27b2pc = 3Vc

2pc .  Substituting the critical constants 

   
b = 148 cm3  mol−1

3
= 49.3 cm3  mol−1 = 0.0493 dm3  mol−1  
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and   a = 3× (0.148 dm3  mol−1)2 × (48.20atm) = 3.17 dm6 −2
atm mol  

But this problem is overdetermined. We have another piece of information 

   
Tc =

8a
27Rb  

If we use Tc along with Vc as above, we would arrive at the same value of b along with 

 

  

a =
27RbTc

8
=

9RVcTc

8

=
9(0.08206 dm3  atm mol−1  K−1)(0.148 dm3  mol−1)(305.4 K)

8
= 4.17 dm6  atm mol−2

 

Or we could use Tc along with pc. In that case, we can solve the pair of equations for a and b 
by first setting the two expressions for a equal to each other: 

   
a = 27b2 pc =

27RbTc

8  
Solving the resulting equation for b yields 

 
  
b =

RTc

8pc

=
(0.08206 dm3  atm mol−1  K−1)(305.4 K)

8(48.20 atm)
= 0.06499 dm3  mol−1  

and then 
 a = 27(0.06499 dm3 mol–1)2(48.20 atm) = 5.497 dm6 atm mol–2  
These results are summarized in the following table 
 

Using a/dm6 atm mol–2 b/dm3 mol–1 
Vc & pc 3.17 0.0493 
Vc & Tc 4.17 0.0493 
pc & Tc 5.497 0.06499 

 
One way of selecting best values for these parameters would be to take the mean of the 
three determinations, namely a = 4.28 dm6 atm mol–2  and b = 0.0546 dm3 mol–1 . 
By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain 
an estimate of molecular size. The centres of spherical particles are excluded from a sphere 
whose radius is the diameter of those spherical particles (i.e., twice their radius); that 
volume times the Avogadro constant is the molar excluded volume b 

   
b = NA

4π (2r)3

3






so r = 1

2

1/3
3b

4πNA







 

   
r = 1

2

1/3
3(0.0546 dm3  mol−1)

4π (6.022 ×1023  mol−1)






= 1.39 ×10−9 dm = 0.139 nm  

1C.7(b) The Boyle temperature, TB, is the temperature at which the virial coefficient B = 0. In order 
to express TB in terms of a and b, the van der Waals equation [1C.5b] must be recast into 
the form of the virial equation. 

   
p =

RT
Vm − b

−
a

Vm
2

 

Factoring out 
  

RT
Vm

 yields 
  
p =

RT
Vm

1
1− b /Vm

−
a

RTVm












 

So long as b/Vm < 1, the first term inside the brackets can be expanded using  
 (1–x)–1 = 1 + x + x2 + ... , 
which gives 

   
p =

RT
Vm

1+ b − a
RT






×

1
Vm







+L












 

We can now identify the second virial coefficient as 
 
B = b − a

RT
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At the Boyle temperature 

 
  
B = 0 = b − a

RTB

 so 
  
TB =

a
bR

=
27Tc

8
 

(i) From Table 1C.3, a = 4.484 dm6 atm mol–2 and b = 0.0434 dm3 mol–1. Therefore, 

   
TB =

(4.484 dm6  atm mol−2 )
(0.08206 L atm mol−1  K−1) × (0.0434 dm3  mol−1)

= 1259 K  

(ii) As in Exercise 1C.6(b), 

   
b = NA

4π (2r)3

3






so r = 1

2

1/3
3b

4πNA







 

   
r = 1

2

1/3
3(0.0434 dm3  mol−1)

4π(6.022 ×1023  mol−1)






= 1.29 ×10−9 dm = 1.29 ×10−10 m = 0.129 nm  

1C.8(b) States that have the same reduced pressure, temperature, and volume [1C.8] are said to 
correspond. The reduced pressure and temperature for N2 at 1.0 atm and 25°C are [Table 
1C.2] 

   
pr =

p
pc

=
1.0atm

33.54atm
= 0.030 and Tr =

T
Tc

=
(25+ 273) K

126.3K
= 2.36  

The corresponding states are 
(i) For H2S (critical constants obtained from NIST Chemistry WebBook) 
 T = 2.36(373.3 K) = 881 K 

 p = 0.030(89.7 atm) = 2.67 atm 
(ii) For CO2 
 T = 2.36(304.2 K) = 718 K 

 p = 0.030(72.9 atm) = 2.2 atm 
(iii) For Ar 
 T = 2.36(150.7 K) = 356 K 

 p = 0.030(48.0 atm) = 1.4 atm 

1C.9(b) The van der Waals equation [1C.5b] is 

   
p =

RT
Vm − b

−
a

Vm
2

 

which can be solved for b 

   

b = Vm −
RT

p + a
Vm

2

= 4.00 ×10−4 m3 mol−1 −
(8.3145 J K−1  mol−1) × (288 K)

4.0 ×106 Pa + 0.76 m6 Pa mol−2

(4.00 ×10−4 m3 mol−1)2








= 1.3×10−4  m3  mol−1

 

The compression factor is 

   
Z =

pVm

RT
[1C.2] = (4.0 ×106 Pa) × (4.00 ×10−4 m3  mol−1)

(8.3145 J K−1  mol−1) × (288 K)
= 0.67  

 
Solutions to problems 

1C.2 From the definition of Z [1C.1] and the virial equation [1C.3b], Z may be expressed in virial 
form as 

   
Z = 1+ B 1

Vm







+ C

2
1

Vm







+L  
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Since 
  
Vm = RT

p
 (by assumption of approximate perfect gas behavior), 

  

1
Vm

= p
RT

;  hence upon 

substitution, and dropping terms beyond the second power of 
  

1
Vm







 

  

 

  

Z = 1+ B p
RT






+ C p

RT






2

= 1+ (−21.7 ×10−3 dm3 mol−1) × 100atm
(0.08206 dm3  atm mol−1  K−1) × (273K)








+(1.200 ×10−3 dm6 mol−2 ) ×
2

100atm
(0.08206 dm3  atm mol−1  K−1) × (273K)








= 1− 0.0968 + 0.0239 = 0.927

 

 

  

Vm = (0.927) RT
p







= (0.927) (0.08206 dm3  atm mol−1  K−1)(273 K)
100 atm







= 0.208 dm3

 

Question. What is the value of Z obtained from the next approximation using the value of Vm 
just calculated? Which value of Z is likely to be more accurate? 

1C.4 Since B′(TB) = 0 at the Boyle temperature [Topic 1.3b]:   ′B (TB ) = a + be−c/TB
2

= 0  

Solving for TB: 
( )

1/2
1/2

2
2

B 1

1

(1131K ) 5.0 10 K
( 0 1993bar )ln ln
(0 2002bar )

cT
a

b
−

−

 
   

− −   = = = ×   −  − − .       .  

 

1C.6 From Table 1C.4 
  
Tc =

2
3






×

2a
3bR







1/2

,  pc =
1

12





×

2aR
3b3







1/2

 

( )1 22
3

a
bR

/

 may be solved for from the expression for pc and yields 
  

12bpc

R






. 

Thus

 
  

Tc =
2
3






×

12 pcb
R







=

8
3






×

pcVc

R







                               = 8
3






×

(40 atm) × (160 ×10−3  dm3  mol−1)
0.08206 dm3  atm mol−1  K−1







= 210K  

By interpreting b as the excluded volume of a mole of spherical molecules, we can obtain an 
estimate of molecular size. The centres of spherical particles are excluded from a sphere 
whose radius is the diameter of those spherical particles (i.e., twice their radius); that volume 
times the Avogadro constant is the molar excluded volume b 

 
  
b = NA

4π(2r)3

3






so r = 1

2

1/3
3b

4πNA







 [Exercise 1C.6(b)] = 1

2

1/3
Vc

4πNA







 

   
r = 1

2

1/3
160 cm3  mol−1

4π(6.022 ×1023  mol−1)






= 1.38 ×10−8 cm = 0.138 nm

 
1C.8 Substitute the van der Waals equation [1C.5b] into the definition of the compression factor 

[1C.2] 
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Z =
pVm

RT
= 1

1− b
Vm








− a
RTVm

 [Exercise 1C.7(a)] 

which upon expansion of 
1 2

m m m
1 1b b b

V V V

−
   − = + + +   
   

  yields 

 

2
2

m m

1 11 aZ b b
RT V V

    = + − × + +     
     

  

We note that all terms beyond the second are necessarily positive, so only if 

 

2

m m m

a b b
RTV V V

 
> + + 

 
  

can Z be less than one. If we ignore terms beyond 
  

b
Vm

, the conditions are simply stated as 

   
Z < 1 when a

RT
> b Z > 1 when a

RT
< b  

Thus Z < 1 when attractive forces predominate and when there is insufficient thermal energy 
to disrupt those forces, and Z > 1 when size effects (short-range repulsions) predominate. 

1C.10 The Dieterici equation is 

 
  
p =

RTe−a/ RTVm

Vm − b
 [Table 1C.4] 

At the critical point the derivatives of p with respect to Vm equal zero along the isotherm 
defined by T = Tc . This means that   (∂p / ∂Vm )T = 0  and   (∂

2 p / ∂Vm
2 )T = 0  at the critical point. 

   T

∂p
∂Vm







= p

aVm − ab − RTVm
2

Vm
2 (Vm − b)(RT )












 

and 
( )

{ }
2 3 222

m m mm m
2 2 3 2

mm m m m m

2 4 2

( )( ) ( ) ( )TT

aV V ab RTV abaV ab RTVp p p
VV V V b RT V V b RT

− + + −     − −∂ ∂
= +    ∂∂ −  −      

 

Setting the Dieterici equation equal to the critical pressure and making the two derivatives 
vanish at the critical point yields three equations: 

and   

pc =
RTce

−a/ RTcVc

Vc − b
aVc − ab − RTcVc

2 = 0

−2aVc
2 + 4Vcab + RTcVc

3 − 2ab2 = 0  
Solving the middle equation for Tc, substitution of the result into the last equation, and solving 
for Vc yields the result 
 Vc = 2b or b = Vc / 2 
(The solution Vc = b is rejected because there is a singularity in the Dieterici equation at the 
point Vm = b.) Substitution of Vc = 2b into the middle equation and solving for Tc gives the 
result 
 Tc = a / 4bR or a = 2RTcVc 
Substitution of Vc = 2b and Tc = a / 4bR into the first equation gives 

   
pc =

ae−2

4b2 =
2RTce

−2

Vc

 

The equations for Vc, Tc, pc are substituted into the equation for the critical compression factor 
[1C.7] to give 

 
  
Zc =

pcVc

RTc

= 2e−2 = 0.2707 . 

This is significantly lower than the critical compression factor that is predicted by the van der 
Waals equation:   Zc (vdW) = pcVc / RTc = 3 / 8 = 0.3750 . Experimental values for Zc are 
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summarized in Table 1C.2 where it is seen that the Dieterici equation prediction is often 
better. 

1C.12  2m 1pV B p C p
RT

′ ′= + + +  [1C.3a] 

 m
2

m m

1
pV CB
RT V V

= + + +  [1C.3b] 

Thus 2
2

m m

CBB p C p
V V

′ ′+ + = + +   

Multiply through by Vm, replace pVm by RT{1+(B/Vm) + ...}, and equate coefficients of 
powers of 1/Vm: 

 
2 2

m m

BB RT C R T CB RT B
V V

′ ′+′ + + = + +   

Hence, B′RT = B, implying that 
 

′B =
B

RT
 

Also BB′RT + C′R2T2 = C = B2 + C′R2T2, implying that 
  

′C =
C − B2

R2T 2  

1C.14 Write Vm = f(T, p); then 
  
dVm =

p

∂Vm

∂T






dT +

T

∂Vm

∂p






dp  

Restricting the variations of T and p to those which leave Vm constant, that is dVm = 0, we 
obtain 

   p

∂Vm

∂T






= −

T

∂Vm

∂p






×

Vm

∂p
∂T







= −
T

−1
∂p
∂Vm







×

Vm

∂p
∂T







 

From the equation of state 

   T

∂p
∂Vm







= −

RT
Vm

2 −
2(a + bT )

Vm
3 = −

Vm RT + 2(a + bT )
Vm

3

 

and 
  Vm

∂p
∂T







=
R

Vm

+
b

Vm
2 =

RVm + b
Vm

2  

Substituting 

   P

∂Vm

∂T






=

Vm
3

Vm RT + 2(a + bT )










RVm + b
Vm

2









 =

RVm
2 + bVm

Vm RT + 2(a + bT )
 

From the equation of state, a + bT = pVm
2 – RTVm 

Then 
  P

∂Vm

∂T






=

RVm
2 + bVm

Vm RT + 2 pVm
2 − 2RTVm

=
RVm + bm

2 pVm − RT
 

1C.16  
  
Z =

Vm

Vm
o

 [1C.1], where Vm° = the molar volume of a perfect gas 

From the given equation of state 

 
  
Vm = b + RT

p
= b +Vm

o  

For Vm =10b, we have 10b = b + Vm°, so Vm° = 9b . 

Then 
  
Z = 10b

9b
=

10
9
= 1.11  

1C.18 The virial equation is 

 m 2
m m

1 B CpV RT
V V

 
= + + + 

 
 [1C.3b] 
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or m
2

m m

1
pV B C
RT V V

= + + +  

(a) If we assume that the series may be truncated after the B term, then a plot of 
  

pVm

RT
 vs 

  

1
Vm

 

will have B as its slope and 1 as its y-intercept. Transforming the data gives 
p/MPa Vm/(dm3 mol–1) (1/Vm)/(mol dm–3) pVm/RT 
0.4000 6.2208 0.1608 0.9976 
0.5000 4.9736 0.2011 0.9970 
0.6000 4.1423 0.2414 0.9964 
0.8000 3.1031 0.3223 0.9952 
1.000 2.4795 0.4033 0.9941 
1.500 1.6483 0.6067 0.9912 
2.000 1.2328 0.8112 0.9885 
2.500 0.98357 1.017 0.9858 
3.000 0.81746 1.223 0.9832 
4.000 0.60998 1.639 0.9782 

 
 Figure 1C.1(a) 

  
The data are plotted in Figure 1C.1(a). The data fit a straight line reasonably well, and the y-
intercept is very close to 1. The regression yields B = –1.324×10–2 dm3 mol–1. 
 
(b) A quadratic function fits the data somewhat better (Figure 1C.1(b)) with a slightly better 
correlation coefficient and a y-intercept closer to 1. This fit implies that truncation of the virial 
series after the term with C is more accurate than after just the B term. The regression then 
yields 
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Figure 1C.1(b) 

 
 

 B = –1.503×10–2 dm3 mol–1 and C = –1.06×10–3 dm6 mol–2 

1C.20 The perfect gas equation [1A.5] gives 

 
  
Vm =

RT
p

=
(8.3145 J K−1  mol−1)(250 K)

150 ×103  Pa
= 0.0139 m3 = 13.9 dm3  

The van der Waals equation [1C.5b] is a cubic equation in Vm. Cubic equations can be solved 
analytically. However, this approach is cumbersome, so we proceed as in Example 1C.1. The 
van der Waals equation is rearranged to the cubic form 

   
Vm

3 − b + RT
p







Vm
2 +

a
p







Vm −
ab
p
= 0

 

or 
  
x3 − b + RT

p






x2 +
a
p







x − ab
p
= 0  with x = Vm/(dm3 mol–1) . 

It will be convenient to have the pressure in atm: 

 
 
150 kPa × 1 atm

101.3 kPa
= 1.481 atm  

The coefficients in the equation are

 

   

b + RT
p

= (5.42 ×10−2  dm3  mol−1) + (0.08206 dm3  atm mol−1  K−1) × (250 K)
1.481 atm

= (5.42 ×10−2 +13.85) dm3  mol−1 = 13.91 dm3  mol−1

 

   

a
p
=

6.260 dm6  atm mol−2

1.481 atm
= 4.23 dm6  mol−2  

 
  

ab
p
=

(6.260 dm6  atm mol−2 ) × (5.42 ×10−2  dm3  mol−1)
1.481 atm

= 2.291 ×10−2  dm9  mol−3  

Thus, the equation to be solved is   x
3 −13.91x2 + 4.23x − (2.291 ×10−2 ) = 0 . 

Calculators and computer software for the solution of polynomials are readily available. In 
this case we find 
 x = 13.6 and Vm = 13.6 dm3 mol–1 . 
Taking the van der Waals result to be more accurate, the error in the perfect-gas value is 

 
 

13.9 −13.6
13.6

×100% = 2%  
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Assume all gases are perfect unless stated otherwise. Unless otherwise stated, 
thermochemical data are for 298.15 K. 

2  The First Law 
 
2A  Internal energy 
 

Answers to discussion questions 
 
 
2A.2 Work is a precisely defined mechanical concept. It is produced from the application of a force through 

a distance. The technical definition is based on the realization that both force and displacement are 
vector quantities and it is the component of the force acting in the direction of the displacement that is 
used in the calculation of the amount of work, that is, work is the scalar product of the two vectors. In 
vector notation cosw fd θ= − ⋅ = −dF , where θ  is the angle between the force and the displacement. 
The negative sign is inserted to conform to the standard thermodynamic convention. 
Heat is associated with a non-adiabatic process and is defined as the difference between the adiabatic 
work and the non-adiabatic work associated with the same change in state of the system. This is the 
formal (and best) definition of heat and is based on the definition of work. A less precise definition of 
heat is the statement that heat is the form of energy that is transferred between bodies in thermal 
contact with each other by virtue of a difference in temperature. 

 The interpretations of heat and work in terms of energy levels and populations is based upon the 
change in the total energy of a system that arises from a change in the molecular energy levels of a 
system and from a change in the populations of those levels as explained more fully in Chapter 15 of 
this text. The statistical thermodynamics of Chapter 15 allows us to express the change in total energy 
of a system in the following form:  

  d d di i i i
i i

N N Nε ε ε〈 〉 = +∑ ∑  

 The work done by the system in a reversible, isothermal expansion can be identified with the second 
term on the right of this expression, since there is no change in the populations of the levels which 
depend only on temperature; hence, the first term on the right is zero. Because the influx of energy as 
heat does not change the energy levels of a system, but does result in a change in temperature, the 
second term on the right of the above equation is zero and the heat associated with the process (a 
constant volume process, with no additional work) can be identified with the first term. The change in 
populations is due to the change in temperature, which redistributes the molecules over the fixed 
energy levels.  

 
Solutions to exercises 

 
2A.1(b) See the solution to Exercise 2A.1(a) where we introduced the following equation based on the 

material of Chapter 15. 

   
  
CV ,m = 1

2 (3+ vR
* + 2vV

* )R   

with a mode active if 
  
T > θ M  (where M is T, R, or V). 

(i) 
  
O3 : CV ,m = 1

2 (3+ 3+ 0)R = 3R  [experimental = 3.7R] 

 1 1 13 3 8.314 J K  mol 298.15 K= 7.436 kJ molE RT − − −= = × ×  

(ii) 
  
C2H6 : CV ,m = 1

2 (3+ 3+ 2 ×1)R = 4R  [experimental = 6.3R] 

 1 1 14 4 8.314 J K  mol 298.15 K= 9.915 kJ molRTE − − −= × ×=  
 

2:1 



(iii) 1
2 ,m 2SO : (3 3 0) 3VC R R= + + =  [experimental = 3.8R] 

 1 1 13 3 8.314 J K  mol 298.15 K= 7.436 kJ molE RT − − −= = × ×  
 
Consultation of Herzberg references, G. Herzberg, Molecular spectra and Molecular structure, II, 
Chapters 13 and 14, Van Nostrand, 1945, turns up only one vibrational mode among these molecules 
whose frequency is low enough to have a vibrational temperature near room temperature.  That mode 
was in C2H6, corresponding to the “internal rotation” of CH3 groups.  The discrepancies between the 
estimates and the experimental values suggest that there are vibrational modes in each molecule that 
contribute to the heat capacity—albeit not to the full equipartition value—that our estimates have 
classified as inactive. 

 
2A.2(b)  (i) volume, (iii) internal energy, and (iv) density are state functions. 
 
2A.3(b) This is an expansion against a constant external pressure; hence ex  [2A.6]w p V= − ∆  

The change in volume is the cross-sectional area times the linear displacement: 

 
3

2 3 31m(75.0cm ) (25.0cm) 1.87 10 m
100cm

V − 
∆ = × × = × 

 
  

so 3 3 3(150 10 Pa) (1.87 10 m ) 281Jw −= − × × × = −  as 1 Pa m
3
 = 1 J  

 
 
2A.4(b) For all cases   ∆U = 0,  since the internal energy of a perfect gas depends only on temperature.  From the 

definition of enthalpy, H = U + pV, so   ∆H = ∆U + ∆( pV ) = ∆U + ∆(nRT )  (perfect gas).   ∆H = 0  as 
well, at constant temperature for all processes in a perfect gas. 

(i)   ∆U = ∆H = 0  

 

f

i

3
1 1 3

3

3

ln  [2A.9]

20.0dm(2 00mol) (8 3145J K mol ) 273K ln 6.29 10 J
5.0dm

6.29 10 J

Vw nRT
V

q w

− −

 
= −  

 

= − . × . × × = − ×

= − = ×

 

(ii)   ∆U = ∆H = 0  

  w = − pex∆V  [2A.6] 

where   pex  in this case can be computed from the perfect gas law  

 pV = nRT   

so 
1 1

1 3 5
3

(2 00mol) (8 3145JK mol ) 273K (10dm m ) 2.22 10 Pa
20.0dm

p
− −

−. × . ×
= × = ×  

and 
5 3

3
1 3

(2.22 10 Pa) (20.0 5.0)dm 3.34 10 J
(10dm m )

w −

− × × −
= = − ×   

33.34 10 Jq w= − = ×  

(iii)   ∆U = ∆H = 0  

   w = 0  [free expansion]   q = ∆U − w = 0 − 0 = 0  

 Comment. An isothermal free expansion of a perfect gas is also adiabatic. 
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2A.5(b) The perfect gas law leads to  

  

p1V
p2V

=
nRT1

nRT2

or p2 =
p1T2

T1

=
(111k Pa) × (356 K)

277 K
= 143k Pa  

There is no change in volume, so w = 0.  The heat flow is 

  

q = CV dT ≈ CV∆T = (2.5) × (8.3145J K−1 mol−1) × (2.00 mol) × (356 − 277) K∫
= 3.28 ×103 J

 

   ∆U = q + w = 3.28 ×103J  
 
 

2A.6(b) (i) 
3 3

ex 1 3

(7 7 10 Pa) (2 5dm ) 19J
(10dm m )

w p V −

− . × × .
= − ∆ = = −   

(ii) f

i

ln  [2A.9]
Vw nRT
V

 
= −  

 
 

 
( ) ( ) ( ) 3

1 1
1 3

2.5 18.5 dm6.56g 8.3145J K mol 305 K ln
39.95g mol 18.5dm

52.8 J

w − −
−

+ 
= − × × × 

 

= −

 

 
 

Solutions to problems 
 

2A.2   ex f i f
ex

[2A.6] sonRTw p V V V V V
p

= − ∆ = >> ; ∆ ≈   

Hence 
  
w ≈ (− pex ) × nRT

pex







= −nRT = (−1.0 mol) × (8.314 J K−1 mol−1) × (1073K)  

 w ≈ –8.9 kJ 
Even if there is no physical piston, the gas drives back the atmosphere, so the work is also 

  w ≈ –8.9 kJ 

 
 
2A.4 
 
 
    

 
 
 
By multiplying and dividing the value of each variable by its critical value we obtain  

  

  

w = −nR ×
T
Tc







Tc × ln

V2

Vc

−
nb
Vc

V1

Vc

−
nb
Vc



















−
n2a
Vc







×

Vc

V2

−
Vc

V1







 

  

w = −
V1

V2∫ pdV = −nRT
V1

V2∫
dV

V − nb
+ n2a

V1

V2∫
dV
V 2

= −nRT ln
V2 − nb
V1 − nb







− n2a 1

V2

−
1
V1
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  r r c c
c c

8 3 [Table 1C.4]
27

T V aT V T V nb
T V Rb

= , = , = , =  

  

  

w = −
8na
27b






× (Tr ) × ln

Vr,2 −
1
3

Vr,1 −
1
3
















−

na
3b






×

1
Vr,2

−
1

Vr,1









  

The van der Waals constants can be eliminated by defining 
  
wr =

3bw
a

, then 
  
w =

awr

3b
and  

  

wr = −
8
9

nTr ln
Vr,2 −1 / 3
Vr,1 −1 / 3









 − n 1

Vr,2

−
1

Vr,1









  

Along the critical isotherm, Tr = 1, Vr,1 = 1, and Vr,2 = x.  Hence  

  

wr

n
= −

8
9

ln 3x −1
2






−

1
x
+1  

 
 

2A.6  One obvious limitation is that the model treats only displacements along the chain, not displacements that 
take an end away from the chain.  (See Fig. 2A.2 in the Student’s Solutions Manual) 
(a) The displacement is twice the persistence length, so 
 x = 2l, n = 2, ν = n/N = 2/200 = 1/100 

and 
  
F =

kT
2l

 ln 1+ν
1− ν





=

(1.381×10−23  J K−1)(298 K)
2 × 45×10−9  m

 ln 1.01
0.99






= 9.1×10−16  N  

Figure 2A.1 
 
 

  
 
(b) Fig. 2A.1 displays a plot of force vs. displacement for Hooke’s law and for the one-dimensional 
freely jointed chain.  For small displacements the plots very nearly coincide.  However, for large 
displacements, the magnitude of the force in the one-dimensional model grows much faster.  In fact, in 
the one-dimensional model, the magnitude of the force approaches infinity for a finite displacement, 
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namely a displacement the size of the chain itself (|ν| = 1).  (For Hooke’s law, the force approaches 
infinity only for infinitely large displacements.) 

 (c) Work is 
  
dw = − F  dx = kT

2l
 ln 1+ν

1− ν






dx = kNT
2

 ln 1+ν
1− ν






dν  

 This integrates to 

  

  

w = kNT
2

 ln 1+ν
1−ν






dν
0

νf∫ =
kNT

2
 [ln(1+ν ) − ln(1−ν )]dν

0

νf∫

=
kNT

2
[(1+ν ) ln(1+ν ) −ν + (1−ν ) ln(1−ν ) +ν]

0

νf

=
kNT

2
[(1+ν f ) ln(1+ν f ) + (1−ν f ) ln(1−ν f )]

 

(d) The expression for work is well behaved for displacements less than the length of the chain; 
however, for νf = ±1, we must be a bit more careful, for the expression above is indeterminate at these 
points.  In particular, for expansion to the full length of the chain 

 

  

w = lim
ν→1

kNT
2

[(1+ ν ) ln(1+ ν ) + (1− ν ) ln(1− ν )]

=
kNT

2
(1+1) ln(1+1) + lim

ν→1
(1− ν ) ln(1− ν )



 =

kNT
2

2 ln 2 + lim
ν→1

ln(1−ν )
(1− ν )−1











 

where we have written the indeterminate term in the form of a ratio in order to apply l’Hospital’s rule.  
Focusing on the problematic limit and taking the required derivatives of numerator and denominator 
yields: 

 
 
lim
ν→1

ln(1−ν )
(1−ν )−1 = lim

ν→1

−(1−ν )−1

(1−ν )−2 = lim
ν→1

[−(1−ν )] = 0  

Therefore; 
  
w =

kNT
2

(2 ln 2) = kNT ln 2  

 
2B  Enthalpy 
 

Answers to discussion questions 
 
2B.2 See figure 2B.3 of the text. There are two related reasons that can be given as to why Cp is greater than CV. 

For ideal gases Cp − CV = nR. For other gases that can be considered roughly ideal the difference is still 
approximately nR. Upon examination of figure 2B.3, we see that the slope of the curve of enthalpy 
against temperature is in most cases greater that the slope of the curve of energy against temperature; 
hence Cp is in most cases greater than CV. 

 
 

Solutions to exercises 
 

 
2B.1(b) 

  
qp = nCp,m∆T  [2B.7] 

 
  
Cp,m =

qp

n∆T
=

178J
1.9 mol ×1.78 K

= 53J K−1 mol−1  

  
  
CV ,m = Cp,m − R = (53− 8.3) J K−1 mol−1 = 45J K−1 mol−1  
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2B.2(b) (i) At constant pressure, q = ∆H.  

( )

100 273K 1
p 25 273K

373K
2

1

298K

2 2 3

d [20 17 (0 4001) K]d J K

120 17 (0 4001) J K
2 K

1(20 17) (373 298) (0 4001) (373 298 ) J 11 6 10 J
2

q C T T T

TT

H

+ −

+

−

= = . + . /

  
= . + . ×  

  

 = . × − + . × − = . × = ∆  

∫ ∫

 

 ( ) ( ) ( )1 11.00 mol 8.3145 J K  mol 75 K 623 Jw p V nR T − −= − ∆ = − ∆ = − × × = −  
 ( )11.6 0.623  kJ 11.0 kJU q w∆ = + = − =  

(ii) The energy and enthalpy of a perfect gas depend on temperature alone. Thus, 
11.6kJH∆ =  and 11.0 kJU∆ = , as above. At constant volume, w = 0 and  ∆U = q , so 

11.0 kJq = + . 

 
2B.3(b) ,m[2B.2, 2B.7]p p pH q C T nC T∆ = = ∆ = ∆  

  
  
∆H = qp = (2.0 mol) × (37.11J K−1 mol−1) × (277 − 250) K = 2.0 ×103 J mol−1  

   ∆H = ∆U + ∆( pV ) = ∆U + nR∆T so ∆U = ∆H − nR∆T  

 
  

∆U = 2.0 ×103 J mol−1 − (2.0 mol) × (8.3145J K−1 mol−1) × (277 − 250) K

= 1.6 ×103 J mol−1
 

 
 

Solutions to problems 
 
 
2B.2   In order to explore which of the two proposed equations best fit the data we have used PSI-
 PLOT®. The parameters obtained with the fitting process to eqn. 2B.8 along with their standard 
 deviations are given in the following table. 

  

parameters a b/10-3 K-1 c/105 K2 

values 28.796 27.89 -1.490 

std dev of  parameter 0.820 0.91 0.6480 

 

 The correlation coefficient is 0.99947. The parameters and their standard deviations obtained with  the  
 fitting process to the suggested alternate equation are as follows: 

  

parameters α β/10-3 K-1 γ/10-6 K-2 

values 24.636 38.18 -6.495 

std dev of  parameter 0.437 1.45 1.106 

2:6 



 

The correlation coefficient is 0.99986. It appears that the alternate form for the heat capacity equation 
fits the data slightly better, but there is very little difference. 

 

2B.4 
 
CV =

V

∂U
∂T







 

 
T

∂CV

∂V






=

T

∂
∂V V

∂U
∂T

















=
V

∂
∂T T

∂U
∂V

















[Derivatives may be taken in any order.] 

  T

∂U
∂V







= 0  for a perfect gas [Section 2D.2(a)] 

Hence, 

  T

∂CV

∂V






= 0  

Likewise 
 
Cp =

p

∂H
∂T







 so 

 
T

∂Cp

∂p








 =

T

∂
∂p p

∂H
∂T

















=
p

∂
∂T T

∂H
∂p

















 

  

∂ H
∂p






 T

= 0  for a perfect gas. 

Hence, 
  

∂Cp

∂p











T

= 0.  

 

2C  Thermochemistry 
 

Answers to discussion questions 
 
2C.2 The standard state of a substance is the pure substance at a pressure of 1 bar and a specified 

temperature. The term reference state generally refers to elements and is the thermodynamically most 
stable state of the element at the temperature of interest. The distinction between standard state and 
reference state for elements may seem slight but becomes clear for those elements that can exist in 
more than one form at a specified temperature. So an element can have more than one standard state, 
one for each form that exists at the specified temperature. 

 
 

Solutions to exercises 
 
2C.1(b) At constant pressure 

   O 1
vap (1.75 mol) (43.5 kJ mol ) 76.1 kJq H n H −= ∆ = ∆ = × =  

 and 1 1
vaporV (1.75 mol) (8.3145 J K  mol ) (260 K)w p pV nRT − −= − ∆ ≈ − = − = − × ×  

  33.78 10  J 3.78 kJw = − × = −  

  3.78 76.1 72.3 kJU w q∆ = + = − + =  

2:7 



Comment. Because the vapor is treated as a perfect gas, the specific value of the external 
pressure provided in the statement of the exercise does not affect the numerical value of the 
answer. 

 
2C.2(b) The reaction is 

    C6H5OH(l) + 7 O2 (g)→  6 CO2 (g) + 3 H2O(l)  

 
O O O O O

c f 2 f 2 f 6 5 f 2

1 1

6 (CO ) 3 (H O) (C H OH) 7 (O )

[6( 393.51) 3( 285.83) ( 165.0) 7(0)] kJ mol 3053.6 kJ mol

H H H H H
− −

∆ = ∆ + ∆ −∆ − ∆

= − + − − − − = −
 

 
2C.3(b) We need   ∆ f H O  for the reaction 

 (4)  2B(s) + 3H2 (g)→ B2H6 (g)  

  reaction(4) = reaction(2) + 3 × reaction(3) – reaction(1) 

Thus,   ∆ f H O = ∆ r H
O {reaction(2)}+ 3× ∆ r H

O {reaction(3)}− ∆ r H
O {reaction(1)} 

 1 1[ 1274 3 ( 241.8) ( 2036)] kJ mol +36.6 kJ mol− −= − + × − − − =  

 
2C.4(b) Because O

f ( , aq) 0H H +∆ = the whole of O
f H∆ (HI,aq) is ascribed to O

f (I , aq)H −∆ . Therefore, 

   O 1
f (I , aq) 55 kJ/molH − −∆ = −  

 
 
2C.5(b) For anthracene the reaction is 

 
 
C14H10 (s) + 33

2
O2 (g)→ 14CO2 (g) + 5H2O(l)  

 O O
c c g g

5[2B.4],  mol
2

U H n RT n∆ = ∆ −∆ ∆ = −  

 

  

∆cU
O = −7061 kJ mol−1 − −

5
2
× 8.3×10−3kJ K−1  mol−1 × 298 K







= −7055 kJ mol−1

 

 ( )
3

O 1
c 1

225 10 g 7055 kJ mol
178.23 g mol

8.91 kJ

Vq q n U
−

−
−

 ×
= = ∆ = × 

 
=

 

 18.91 kJ 6.60 kJ K
1.35 K

q
C

T
−= = =

∆
 

When phenol is used the reaction is 
 
C6H5OH(s) + 15

2
O2 (g)→ 6CO2 (g) + 3H2O(l)  

  O 1
c 3054kJ mol [Table 2C.1]H −∆ = −  

 

  

∆cU = ∆c H − ∆ng RT , ∆ng = −
3
2

= (−3054 kJ mol−1) + ( 3
2 ) × (8.314 ×10−3 kJ K−1 mol−1) × (298 K)

= −3050 kJ mol−1

 

 ( )
3

1
1

135 10  g 3050 kJ mol 4.375 kJ
94.12 g mol

q
−

−
−

 ×
= × = 
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 1

4.375 kJ 0.663 K
6.60 kJ K

q
T

C −∆ = = = +  

 
2C.6(b) (a) reaction(3) = (–2) × reaction(1) + reaction(2) and

  
∆ng = −1 

The enthalpies of reactions are combined in the same manner as the equations (Hess’s law). 

  

  

∆ r H
O (3) = (−2) × ∆ r H

O (1) + ∆ r H
O (2)

= [(−2) × (52.96) + (−483.64)]kJ mol−1

= −589.56 kJ mol−1

 

 

  

∆ rU
O = ∆ r H

O − ∆ng RT

= −589.56 kJ mol−1 − (−3) × (8.314 J K−1  mol−1) × (298 K)

= −589.56 kJ mol−1 + 7.43 kJ mol−1 = −582.13 kJ mol−1

 

(b)   ∆ f H O  refers to the formation of one mole of the compound, so  

 ( )O 1 1
f

1(HI) 52.96 kJ mol 26.48 kJ mol
2

H − −∆ = =  

  ( )O 1 1
f 2

1(H O) 483.64 kJ mol 241.82 kJ mol
2

H − −∆ = − = −  

 
2C.7(b)   O O

r r  [2B.4]gH U RT n∆ = ∆ + ∆  

 

= −772.7 kJ mol−1 + (5) × (8.3145×10−3  kJ K−1  mol−1) × (298 K)

= −760.3 kJ mol−1
 

 
2C.8(b)The hydrogenation reaction is  

  (1)C2H2 (g) + H2 (g)→ C2H4 (g) ∆ r H
O (T ) = ?  

The reactions and accompanying data which are to be combined in order to yield reaction (1) and 

  ∆ r H
O (T )  are 

 
  
(2) H2 (g) + 1

2
O2 (g)→ H2O(l) ∆c H O (2) = −285.83kJ mol−1  

   (3) C2H4 (g) + 3O2 (g)→ 2H2O(l) + 2CO2 (g) ∆c H O (3) = −1411kJ mol−1  

 
  
(4) C2H2 (g) + 5

2
O2 (g)→ H2O(l) + 2CO2 (g) ∆c H O (4) = −1300 kJ mol−1  

  reaction (1) = reaction (2) − reaction (3) + reaction (4)  

Hence, at 298 K: 

(i) 
  

∆ r H
O = ∆c H O (2) − ∆c H O (3) + ∆c H O (4)

= [(−285.83) − (−1411) + (−1300)]kJ mol−1 = −175kJ mol−1
  

 
O O

r r g g

1 1 1

[2B.4]; 1

175kJ mol ( 1) (2 48kJ mol ) 173kJ mol

U H n RT n
− − −

∆ = ∆ − ∆ ∆ = −

= − − − × . = −
 

(ii) At 427 K: 

 O O O
r r r(427 K) (298K) (427 K 298K)pH H C∆ = ∆ + ∆ −  [Example 2C.2] 
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O O O O

r J ,m ,m 2 4 ,m 2 2 ,m 2
J

3 1 1 3 1 1

(J)[2C.7c] (C H g) (C H g) (H g)

(43 56 43 93 28 82) 10 kJ K mol 29 19 10 kJ K mol

p p p p pC C C C Cν

− − − − − −

∆ = = , − , − ,

= . − . − . × = − . ×

∑
 

   
O 1 3 1 1

r

1

(427 K) ( 175kJ mol ) (29 19 10 kJ K mol ) (129K)

171 kJ mol

H − − − −

−

∆ = − − . × ×

= −
 

 
  
2C.9(b) For the reaction 8 2 2 210C H (l) + 12O (g) 10CO (g) + 4H O(g)→   

  O O O O
r f 2 f 2 f 81010 (CO ,g) + 4 (H O,g) (C H , l)H H H H∆ = ∆ ×∆ − ∆×  

 In order to calculate the enthalpy of reaction at 478 K we first calculate its value at 298 K using data in 
Tables 2C.1 and 2C.2. Note at 298 K naphthalene is a solid. It melts at 80.2 °C = 353.4 K. 

 O 1 1 1

r

1 ) 4(298 K) 10 393.51 kJ mol ( 241.82 kJ mol ) (78.53 kJ mol ) 4980.91 kJ mol(H − − −− +∆ = − × − − = −×  

 Then, using data on the heat capacities and transition enthalpies of all the reacting substances, we can 
calculate the change in enthalpy, ΔH, of each substance as the temperature increases from 298 K to 478 K. 
The enthalpy of reaction at 478 K can be obtained by adding all these enthalpy changes to the enthalpy of 
reaction at 298 K. This process is shown below: 

 O O

r r 2 2 8 210(478 K) (298 K) 10 (CO , g) 4 (H O, g) (C H ) 12 (O , g)H H H H H H∆ = ∆ + ∆ + × ∆ − ∆ − × ∆×  

 For H2O(g), CO2(g), and O2(g) we have 

   
O478K

O O
f f ,m

298K
(478 K) (298 K) dpH H C T∆ = ∆ + ∫  

 For naphthalene we have to take into account the change in state from solid to liquid at 80.2 °C = 353.4 K. 
Then 

  
O O353.4K 478K

O O
f f ,m trs ,m

298K 353.4K
(478 K) (298 K) d  + dp pH H C T H C T∆ = ∆ + ∆ +∫ ∫   

 We will express the temperature dependence of the heat capacities in the form of the equation given in 
Problem 2C.7 because data for the heat capacities of the substances involved in this reaction are only 
available in that form. They are not available for all the substances in the form of the equation of Table 
2B.1. We use 

   
O

,m
2

pC T Tα β γ= + +    

 For H2O(g), CO2(g), and O2(g), α, β, and γ values are given in Problem 2C.7. For naphthalene, solid and 
liquid, γ is zero and the two forms of the heat capacity equation are then identical and we take α = a and β 
= b from Table 2B.1.  

   O 1
fus 10 8(C H ) 19.01 kJ molH −∆ =        

 Using the data given in Problem 2C.7 we calculate 

 1 1 1   (CO ,g) 5.299 kJ mol ,  (H O, g) 6.168 kJ mol ,  and (O ,g) 5.4302 2 2 kJ molH H H− − −∆ = ∆ = ∆ =  

 Using the data from Table 2C.1 we calculate for naphthalene 
  1

10 8(C H ) 55.36 kJ molH −∆ =  

 Collecting all these enthalpy changes we have 

 O O 1 1(478 K) (298 K) (10 5.299 4 6.168 55.36 12 5.430)kJ mol 5023.77 kJ mol
r r
H H − −∆ = ∆ + × + × − − × = −  

 
2C.10(b) The cycle is shown in Fig. 2C.1. 
  

 
Figure 2C.1 
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O 2 O O O
hyd soln 2 f 2 sub

O O O
vap 2 diss 2 ion

O O O
ion eg hyd

(Ca ) (CaBr ) (CaBr s) (Ca)

(Br ) (Br ) (Ca)

(Ca ) 2 (Br) 2 (Br )

[ ( 103 1) ( 682 8) 178 2 30 91 192 9
589 7 1145 2( 331 0) 2( 289)]kJ mol

H H H H

H H H

H H H

+

+ −

−

−∆ = −∆ −∆ , + ∆

+ ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

= − − . − − . + . + . + .

+ . + + − . + − 1

11684kJ mol−=

 

so O 2 1
hyd (Ca ) 1684kJ molH + −∆ = −  

 
 

Solutions to problems 
 
2C.2 

  
Cr(C6H6 )2 (s)→ Cr(s) + 2C6H6 (g) ∆ng = +2 mol  

O O
r r

1 1 1 1

2  from[2B.4]

(8 0kJ mol ) (2) (8 314J K mol ) (583K) 17 7 kJ mol

H U RT
− − − −

∆ = ∆ + ,

= . + × . × = + .
  

In terms of enthalpies of formation  

  ∆ r H
O = (2) × ∆ f H O (benzene,583K) − ∆ f H O (metallocene,583K)   

or   ∆ r H
O (metallocene,583K) = 2∆ f H O (benzene,583K) −17.7 kJ mol−1  

The enthalpy of formation of benzene gas at 583 K is related to its value at 298 K by  

  

∆ f H O (benzene,583K) = ∆ f H O (benzene,298 K)

+(Tb − 298 K)Cp,m (l) + ∆vap H O + (583K − Tb )Cp,m (g)

−6 × (583K − 298 K)Cp,m (gr) − 3× (583K − 298 K)Cp,m (H2 ,g)

 

where Tb is the boiling temperature of benzene (353 K). We shall assume that the heat capacities of 
graphite and hydrogen are approximately constant in the range of interest and use their values from 
Tables 2B.1 and 2B.2. 
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∆ f H O (benzene,583K) = (49.0 kJ mol−1) + (353− 298) K × (136.1J K−1 mol−1)

+ (30.8kJ mol−1) + (583− 353) K × (81.67 J K−1 mol−1)
− (6) × (583− 298) K × (8.53J K−1 mol−1)
− (3) × (583− 298) K × (28.82 J K−1 mol−1)

= {(49.0) + (7.49) + (18.78) + (30.8) − (14.59) − (24.64)}kJ mol−1

= +66.8kJ mol−1

 

Therefore,  
  
∆ f H O (metallocene,583K) = (2 × 66.8 −17.7) kJ mol−1 = +116.0 kJ mol−1  

 
2C.4 The reaction is 

   C60 (s) + 60O2 (g)→ 60CO2 (g)  

 Because the reaction does not change the number of moles of gas,   ∆ r H = ∆ rU  [2B.4].  Therefore

 O 1 1 1
c ( 36.0334 kJ g ) (60 12.011 g mol ) 25968 kJ molH − − −∆ = − × × = −  

Now relate the enthalpy of combustion to enthalpies of formation and solve for that of C60. 

   ∆c H O = 60∆ f H O (CO2 ) − 60∆ f H O (O2 ) − ∆ f H O (C60 )  

 
  

∆ f H O (C60 ) = 60∆ f H O (CO2 ) − 60∆ f H O (O2 ) − ∆c H O

= [60(−393.51) − 60(0) − (−25968)] kJ mol−1 = 2357 kJ mol−1
 

 
 

2C.6 (a) 
  

∆ r H
O = ∆ f H O (SiH2 ) + ∆ f H O (H2 ) − ∆ f H O (SiH4 )

= (274 + 0 − 34.3) kJ mol−1 = 240 kJ mol−1
 

 (b) 
  

∆ r H
O = ∆ f H O (SiH2 ) + ∆ f H O (SiH4 ) − ∆ f H O (Si2H6 )

= (274 + 34.3− 80.3) kJ mol−1 = 228 kJ mol−1
 

 
 
2C.8  In order to calculate the enthalpy of the protein’s unfolding we need to determine the area under the 

plot of  Cp,ex against T, from the baseline value of Cp,ex at T1, the start of the process, to the baseline 
value of Cp,ex at T2, the end of the process. We are provided with an illustration that shows the plot, but 
no numerical values are provided. Approximate numerical values can be extracted from the plot and 

then the value of the integral 
2

1
,exd  

T

pT
H C T∆ = ∫ can be obtained by numerical evaluation of the area 

under the curve. The first two columns in the table below show the data estimated from the curve, the 
last column gives the approximate area under the curve from the beginning of the process to the end. 
The final value, 1889 kJ mol-1, is the enthalpy of unfolding of the protein. The four significant figures 
shown are not really justified because of the imprecise estimation process involved. 
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θ /˚C C p, ex/kJ K-1 mol-1 ΔH /kJ mol-1

30 20 0
40 23 215
50 26 460
54 28 567
56 33 626
57 40 663
58 46 706
59 52 755
60 58 810
61 63 870
62 70 937
63 80 1011
64 89 1096

64.5 90 1141
65 85 1185
66 80 1267
67 68 1342
68 60 1405
69 52 1461
70 47 1511
72 41 1598
74 37 1676
80 36 1889  

 
 
2C.10 (a)   qV = −n∆cU

O ; hence 

 (ii) 
  
∆cU

O =
−qV

n
=
−C∆T

n
=
−MC∆T

m
 where m is sample mass and M molar mass 

 so 
-1 1

O 1
c

(180 16g mol ) (641J K ) (7 793K) 2802 kJ mol
0 3212g

U
−

−. × × .
∆ = − = −

.
 

 (i) The complete aerobic oxidation is 

   C6H12O6 (s) + 6O2 (g)→ 6CO2 (g) + 6H2O(l)  

 Since there is no change in the number of moles of gas,   ∆ r H = ∆ rU  [2.21] and 

    ∆c H O = ∆cU
O = −2802 kJ mol−1  

 (iii)   ∆c H O = 6∆ f H O (CO2 ,g) + 6∆ f H O (H2O,l) − ∆ f H O (C6H12O6 ,s) − 6∆ f H O (O2 ,g)  

 so   ∆ f H O (C6H12O6 ,s) = 6∆ f H O (CO2 ,g) + 6∆ f H O (H2O,l) − 6∆ f H O (O2 ,g) − ∆c H O  

  
  

∆ f H O (C6H12O6 ,s) = [6(−393.51) + 6(−285.83) − 6(0) − (−2802)] kJ mol−1

= −1274 kJ mol−1
 

 (b) The anaerobic glycolysis to lactic acid is 

   C6H12O6 → 2CH3CH(OH)COOH  

 
  

∆ r H
O = 2∆ f H O (lactic acid) − ∆ f H O (glucose)

={(2) × (−694.0) − (−1274)} kJ mol-1 = −114 kJ mol−1
 

 Therefore, aerobic oxidation is more exothermic by  2688  kJ mol–1 than glycolysis. 
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2D  State functions and exact differentials 
 

Answers to discussion questions 
 
2D.2 An inversion temperature is the temperature at which the Joule-Thomson coefficient, µ, changes sign from 

negative to positive or vice-versa. For a perfect gas µ is always zero, thus it cannot have an inversion 
temperature. As explained in detail in Section 2D.3, the existence of the Joule-Thomson effect depends 
upon intermolecular attractions and repulsions. A perfect gas has by definition no intermolecular 
attractions and repulsions, so it cannot exhibit the Joule-Thomson effect. 

 
  

Solutions to exercises 
 
 
2D.1(b) Also see exercises E2D.1(a) and E2D.2(a) and their solutions. The internal pressure of a van der  

   Waals gas is 2
m/ .T a Vπ =  The molar volume can be estimated from the perfect gas equation: 

   
3 1 1

3 1
m

0.08206 dm  atm K  mol 298 K 24.76 dm  mol
1.000 atm1.00 bar 
1.013 bar

RTV
p

− −
−×

= = =
 × 
 

 

   
6 2

2
2 3 1 2

m

6.775 atm dm  mol 1.11 10  atm 11.2 mbar
(24.76 dm  mol )T

a
V

π
−

−
−= = = × =  

 
2D.2(b) The internal energy is a function of temperature and volume, Um = Um(T,Vm), so 

  

  

dUm =
∂Um

∂T





Vm

dT +
T

∂Um

∂Vm







dVm [πT = (∂Um / ∂V )T ]  

For an isothermal expansion dT = 0; hence 

 
  
dUm =

T

∂Um

∂Vm







dVm = πT dVm =

a
Vm

2 dVm  

  

3 1 3 1m,2 m,2

3 1 3 1m,1 m,2

30.00dm mol
m

m m m2 21 00dm molm m

3
1 1 1

30.00dm mol

1.00 dm molm

3 3 3

d
d d

29.00 0 9667 dm mol
30.00dm mol 1 00dm mol 30.00dm mol

V

V V

V

Va aU U V
VV V

a a a a

a
− −

− −.

−
− − −

∆

= − + = .
.

= = = = −

=

∫ ∫ ∫
 

 
From Table 1C.3, a = 1.337 dm6 atm mol–1 

 

3 6 2
m

3
1 5 1

3 3

3 1 1

3

(0 9667 moldm ) (1 337atm dm mol )

1m(1 2924atm mol ) (1 01325 10 Pa atm )
10 dm

131.0Pa m mol 131.0 J mol

dm

U −

− −

− −

∆ = . .

 
= . × . × × 

 

= =

×

 

 
  
w = − p dVm∫  where 

  
p =

RT
Vm − b

−
a

Vm
2  for a van der Waals gas.  Hence, 

 
  
w = −

RT
Vm − b






dVm +

a
Vm

2 dVm∫∫ = −q + ∆Um  

Thus 
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3 13 1

3 13 1

30.00dm mol30.00dm mol

m m 1.00dm mol1.00dm mol
m

2
1 1 1

2

d ln( )

30.00 3 20 10(8 314J K mol ) (298K) ln 8.505kJ mol
1 00 3 20 10

RTq V RT V b
V b

−−

−−

− 
 − − −
 

−  
 

 
= = − | − 

− . ×
= . × × = +

. − . ×

∫
 

and 1 1 1 1
m (8505J mol ) (131J mol ) 8374 J mol 8.37 kJ molw q U − − − −= − + ∆ = − + = − = −  

 
2D.3(b) The expansion coefficient is 

 

  

α =
1
V

∂V
∂T





 p

=
′V (3.7 ×10−4 K−1 + 2 ×1.52 ×10−6 T K−2 )

V

=
′V [3.7 ×10−4 + 2 ×1.52 ×10−6 (T / K)]K−1

′V [0.77 + 3.7 ×10−4 (T / K) +1.52 ×10−6 (T / K)2 ]

=
[3.7 ×10−4 + 2 ×1.52 ×10−6 (310)]K−1

0.77 + 3.7 ×10−4 (310) +1.52 ×10−6 (310)2 = 1.27 ×10−3 K−1

 

 
2D.4(b) Isothermal compressibility is 

  
  
κT = −

1
V

∂V
∂p





 T

≈ −
∆V

V∆p
 so 

 
∆p = −

∆V
VκT

 

A density increase of 0.10 per cent means 0 0010V V∆ / = − . . So the additional pressure that must 
be applied is 

  2
6 1

0 0010 4.5 10 atm
2 21 10 atm

p − −

.
∆ = = ×

. ×
 

 
2D.5(b) The isothermal Joule-Thomson coefficient is 

  1 1 1 1 1m
,m (1 11K atm ) (37 11J K mol ) 41.2 J atm molp

T

H C
p

µ − − − − −∂  = − = − . × . = − ∂ 
 

If this coefficient is constant in an isothermal Joule-Thomson experiment, then the heat which 
must be supplied to maintain constant temperature is  ∆H  in the following relationship 

  
1 1 1 1

1 1 3

41 2J atm mol so (41 2J atm mol )

(41 2J atm mol ) (10 0mol) ( 75atm) 30.9 10 J

H n H n p
p

H

− − − −

− −

∆ /
= − . ∆ = − . ∆

∆

∆ = − . × . × − = ×

 

 
 

Solutions to problems 
 

2D.2  
  
cs =

γ RT
M







1 2

, γ =
Cp,m

CV ,m

, Cp,m = CV ,m + R  

(a) 
  
CV ,m = 1

2 R(3+νR
∗ + 2νV

∗ ) = 1
2 R(3+ 2) = 5

2 R  

 
  
Cp,m = 5

2 R + R = 7
2 R  

 
  
γ =

7
5
= 1.40; hence cs =

1.40RT
M







1 2

 

(b) 
  
CV ,m =

1
2

R(3+ 2) = 5
2

R, γ = 1.40, cs =
1.40RT

M






1 2

 

2:15 



(c) 
  
CV ,m = 1

2 R(3+ 3) = 3R  

 
  
Cp,m = 3R + R = 4R, γ =

4
3
, cs =

4RT
3M







1 2

 

For air,   M ≈ 29 g mol−1, T ≈ 298 K, γ = 1.40  

  
1 21

1
s 3 1

(1 40) (2 48kJ mol ) 350ms
29 10 kg mol

c
−

−
− −

 . × .
= = × 

 

 
 

2D.4 (a) V = V(p,T); hence, 

  

dV =
T

∂V
∂p







dp +
p

∂V
∂T







dT  

 Likewise p = p(V,T), so 

  

dp =
∂p
∂V






 T

dV +
∂p
∂T






V

dT  

(b) We use 
  
α =

1
V




 p

∂V
∂T







 [2D.6] and 
  
κT = −

1
V




 T

∂V
∂p







 [2D.7] and obtain 

 
  
d lnV =

1
V

dV =
1
V




 T

∂V
∂p







dp + 1
V




 p

∂V
∂T







dT = −κT dp +α dT . 

Likewise 
  
d ln p =

dp
p
=

1
p

∂p
∂V






 T

dV +
1
p

∂p
∂T






V

dT  

We express 
 

∂p
∂V






 T

 in terms of κT: 

 
  
κT = −

1
V

∂V
∂p






 T

= − V ∂p
∂V






 T













−1

so ∂p
∂V






 T

= −
1

κTV
 

We express 
 

∂p
∂T





V

 in terms of κT and α 

 
( )

1 so
( ) T

p

V p V TT

V Tp T V p
T V p T V p

α
κ

∂ / ∂      ∂ ∂ ∂ ∂
= − = − =       ∂ ∂ ∂ ∂ ∂ / ∂      

 

so d  d 1 dd ln d
T T T

V T Vp T
p V p p V

α α
κ κ κ

 
= − + = − 

 
 

 
 
 
2D.6 ( ) ( )

1 1
p

p

V
V T TV V

α ∂= =
∂ ∂

∂

 [reciprocal identity, Mathematical Background 2] 

 
( ) 3

2

3 2

11 [Problem 2D.5]
2 ( )

( ) ( )
( ) (2 ) ( )

V naT V nbV nb RV

RV V nb
RTV na V nb

α = ×
 − × − −  

× −
=

− × −
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κT = − 1
V T

∂V
∂p







= −1

V
T

∂p
∂V







 [reciprocal identity] 

2

2 3

2 2

3 2 2

1 1 [Problem 2D.5]
2

( )

( )
2 ( )

T V nRT n a
V nb V

V V nb
nRTV n a V nb

κ = − ×
   − +   −   

−
=

− −

 

Then 
 

κT

α
=

V − nb
nR

, implying that κTR = α(Vm – b) 

Alternatively, from the definitions of α and κT above 

( ) ( )
1 [reciprocal identity]

[Euler chain relation]

[Problem 2D.5],

T T

p pT

V

V
p

V p V
T V T

T
p

V nb
nR

κ
α

 ∂− ∂ − = =
∂ ∂  ∂

 ∂ ∂ ∂ 

 ∂
=  ∂ 

−
=

 

  
κT R =

α(V − nb)
n

 

Hence, κTR = α(Vm – b) 
 
 

2D.8 
  
µ =

H

∂T
∂p







= − 1
Cp T

∂H
∂p







 [Justification 2D.2] 

  
µ =

1
Cp

T
p

∂V
∂T







−V











 [See the section below for a derivation of this result] 

But 
 
V = nRT

p + nb  or ( )
p

nRV pT
∂ =∂  

Therefore, 

  
µ =

1
Cp

nRT
p

−V







=

1
Cp

nRT
p

−
nRT

p
− nb








=
−nb
Cp

 

Since b > 0 and Cp > 0, we conclude that for this gas µ < 0 or 
  H

∂T
∂p







< 0 . This says that when the 

pressure drops during a Joule–Thomson expansion the temperature must increase. 
 

 Derivation of expression for 
T

H
p

 ∂
 ∂ 

follows: 
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[change of variable]

( ) [definition of ]

( )

( ) equation f

TT T

T T

T TT T

V T T

H H V
p V p

U pV V H
V p

U V pV V
V p V p

p V pVT p
T p p

   ∂ ∂ ∂ =     ∂ ∂ ∂    

 ∂ + ∂ =    ∂ ∂   

   ∂ ∂ ∂ ∂   = +      ∂ ∂ ∂ ∂      

    ∂ ∂ ∂ = − +      ∂ ∂ ∂      

( )
( )  

or

[chain relation]

[reciprocal identity]

T

V T T T

V T
p

p

U
V

p V V VT p V p
T p p p

p V TT V V
TT p
V

VT V
T

 ∂ 
  ∂  

     ∂ ∂ ∂ ∂ = − + +       ∂ ∂ ∂ ∂       

 ∂ ∂ − = + = +    ∂∂ ∂   
∂

∂= − +
∂

 

 
 
2D.10 (a) The Joule–Thomson coefficient is related to the given data by 

 

  

µ = −(1 /Cp )(∂H / ∂p)T = −(−3.29 ×103 J mol−1 MPa−1) / (110.0 J K−1 mol−1)

= 29.9 K MPa−1
 

(b) The Joule–Thomson coefficient is defined as 
    µ = (∂T / ∂p)H ≈ (∆T / ∆p)H  

 Assuming that the expansion is a Joule–Thomson constant-enthalpy process, we have  

 
  
∆T = µ∆p = (29.9 K MPa−1) × [(0.5−1.5) ×10−1 MPa] = −2.99 K  

 
 

2E   Adiabatic changes 
 

Answers to discussion questions 
 
2E.2 See Figure 2E.2 of the text and the Interactivity associated with that figure. For an adiabatic change,

exd d d d dT VU V C T w p Vπ= + = = − [2A.6, 2D.5]. Thus we see that the heat capacity enters into the 
calculation of the change in energy of the system that occurs during an adiabatic expansion. For a perfect 

gas Eqn 2E.3 of the text can be written as i
f i

f

Vp p
V

γ
 

=  
 

 with p

V

C
C

γ = . Again the heat capacity plays a 

role. 
 

Solutions to exercises 
 

2E.1(b) The equipartition theorem would predict a contribution to molar heat capacity of   
1
2 R  for every 

translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas, Cp,m 
= R + CV,m. So for CO2 
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With vibrations  ( ) ( )1 1
,m 2 2

7.5/ 3 2 (3 4 5) 6.5 and 1.15
6.5VC R γ= + + × − = = =  

Without vibrations ( ) ( )1 1
,m 2 2

3.5/ 3 2 2.5 and 1.40
2.5VC R γ= + = = =  

Experimental 
1 1

1 1

37.11 J mol K 1.29
(37.11 8.3145) J mol K

γ
− −

− −= =
−

 

 
The experimental result is closer to that obtained by neglecting vibrations, but not so close that 
vibrations can be neglected entirely. 

 


34 10 1 1

R 23 1

(6 626 10 J s) (2 998 10 cms ) (0.39cm ) 0.56K 298 K
1 381 10 J K

hcB
k

θ
− − −

− −

. × × . × ×
= = = <<

. ×
 

 and therefore rotational contributions cannot be neglected. 
 
 
2E.2(b) For reversible adiabatic expansion 

 ( )i

f

1

f i [2E.2a]
cV

VT T
/

=  

where ( ) 1 1
,mm

1 1

37.11 8.3145 J K  mol
3.463

8.3145 J K  mol
pV C RC

c
R R

− −
,

− −

− −
= = = = ; 

therefore, the final temperature is 

  
Tf = (298.15K) ×

1/3.463
500 ×10−3 dm3

2.00dm3







= 200 K  

 
2E.3(b) In an adiabatic process, the initial and final pressures are related by (eqn. 2E.3) 

  pfVf
γ
 = piVi

γ where 
  
γ =

Cp,m

CV ,m

=
Cp,m

Cp,m − R
=

20.8 J K−1  mol−1

(20.8 − 8.31) J K−1  mol−1 = 1.67  

 Find Vi from the perfect gas law: 

  
-1 -1

3i
i 3

i

(2.5 mol) (8.31 J K  mol ) (325 K) 0.0281 m
240 10  Pa

nRTV
p

× ×
= = =

×  

 so 
1/ 1/1.67

3 3i
f i

f

240 kPa(0.0281 m ) 0.0372 m
150 kPa

pV V
p

γ
   = = × =   

  
 

 Find the final temperature from the perfect gas law: 

  
3 3

f f
f -1 -1

(150 10  Pa) (0.0372 m ) 269 K
(2.5 mol) (8.31 J K  mol )

p VT
nR

× ×
= = =

×
  

 Adiabatic work is (eqn. 2E.1) 

  1 1 3(20.8 8.31) J K  mol 2.5 mol (269 325) K 1.7 10  JVw C T − −= ∆ = − × × − = − ×  

 
 
2E.4(b) Reversible adiabatic work is 
 m f i [2E.1] ( ) ( )V pw C T n C R T T,= ∆ = − × −  

where the temperatures are related by  

 
  
Tf = Ti

1/c
Vi

Vf







 [2E.2a] where 

  
c =

CV ,m

R
=

Cp,m − R
R

= 2.503  
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So 
  
Tf = 23.0 + 273.15( )K  ×

400 ×10−3dm3

2.00 dm3








1 2.503

= 156 K  

 and 
  
w =

3.12 g
28.0 g mol−1







× 29.125− 8.3145( )J K−1  mol−1 × 156 − 296( )K= −325 J  

 
2E.5(b) For reversible adiabatic expansion 

   pfVf
γ = piVi

γ  [2E.3] so ( )
1.33 3

i
f i 3

f

400 10  dm97.3 Torr 3.6 Torr
5.0 dm

Vp p
V

γ −   ×
= = × =   

  
 

 

Integrated activities 
 
 
2.2 (a) and (b). The table below displays computed enthalpies of formation (semi-empirical, PM3 level, PC 

Spartan ProTM), enthalpies of combustion based on them (and on experimental enthalpies of formation 
of H2O(l) and CO2(g), –285.83 and –393.51 kJ mol–1 respectively), experimental enthalpies of 
combustion (Table 2.6), and the relative error in enthalpy of combustion. 

Compound 
  ∆ f H O / kJ mol−1    ∆c H O / kJ mol−1(calc.)    ∆c H O / kJ mol−1(expt.)  % 

error 

CH4(g) –54.45 –910.72 –890 2.33 

C2H6(g) –75.88 –1568.63 –1560 0.55 

C3H8(g) –98.84 –2225.01 –2220 0.23 

C4H10(g) –121.60 –2881.59 –2878 0.12 

C5H12(g) –142.11 –3540.42 –3537 0.10 

The combustion reactions can be expressed as:  

  
CnH2n+2 (g) + 3n +1

2






O2 (g)→ nCO2 (g) + (n +1) H2O(1).  

The enthalpy of combustion, in terms of enthalpies of reaction, is 

  ∆c H O = n∆ f H O (CO2 ) + (n+1)∆ f H O (H2O) − ∆ f H O (CnH2n+2 ),  

Where we have left out   ∆ f H O (O2 ) = 0. The  % error is defined as: 

% error 
  
=
∆c H O (calc) − ∆c H O (expt.)

∆c H O (expt.)
×100%  

The agreement is quite good. 
(c) If the enthalpy of combustion is related to the molar mass by  

  ∆c H O = k[M / (g mol−1)]n  

then one can take the natural log of both sides to obtain: 

  
ln ∆c H O = ln k + n ln M / (g mol−1).  

Thus, if one plots ln 
  
∆c H O  vs. ln [M / (g mol–1)], one ought to obtain a straight line with slope n and 

y-intercept ln |k|.  Draw up the following table:  
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Compound M/(g mol–1)   ∆c H / kJ mol−1  ln M/(g mol–1) 
  
ln ∆c H O / kJ mol−1   

CH4(g) 16.04 –910.72 2.775 6.814 

C2H6(g) 30.07 –1568.63 3.404 7.358 

C3H8(g) 44.10 –2225.01 3.786 7.708 

C4H10(g) 58.12 –2881.59 4.063 7.966 

C5H12(g) 72.15 –3540.42 4.279 8.172 

The plot is shown below in Fig I2.1. 
 

  Figure I2.1 

  
The linear least-squares fit equation is: 

  ln | ∆c H O / kJ mol−1 |= 4.30 + 0.903ln M / (g mol−1) R2 = 1.00  

These compounds support the proposed relationships, with 
 n = 0.903 and  k = –e4.30 kJ mol–1 = –73.7 kJ mol–1. 
The agreement of these theoretical values of  k  and  n  with the experimental values obtained in 
Problem 2C.3 is rather good. 
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Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated. 

3 The Second and Third Laws 

3A   Entropy 
 

Answers to discussion questions 
    
3A.2 Everyday experience indicates that the direction of spontaneous change in an isolated system is 

accompanied by the dispersal of the total energy of the system. For example, for a gas expanding freely 
and spontaneously into a vacuum, the process is accompanied by a dispersal of energy and matter. It is 
easy to calculate the increase in the thermodynamic entropy that accompanies this process. For a 

perfect gas this entropy change is given by the formula f

i
ln

V
S nR

V
∆ = [eqn. 3A.14], which is clearly 

positive if Vf  is greater than Vi. The molecular interpretation of this thermodynamic result is based on 
the identification of entropy with molecular disorder. An increase in disorder results from the chaotic 
dispersal of matter and energy and the only changes that can take place within an isolated system (the 
universe) are those in which this kind of dispersal occurs. This interpretation of entropy in terms of 
dispersal and disorder allows for a direct connection of the thermodynamic entropy to the statistical 
entropy through the Boltzmann formula lnS k W= , where W is the number of microstates, the 
number of ways in which the molecules of the system can be arranged while keeping the total energy 
constant. The concept of the number of microstates makes quantitative the more ill-defined qualitative 
concepts of “disorder” and “the dispersal of matter and energy” used above to give a physical feel for 
the concept of entropy. A more “disorderly” distribution of energy and matter corresponds to a greater 
number of microstates associated with the same total energy. 

 

3A.4   The explanation of Trouton’s rule is that 
O

vap

b

H
T

∆
is the standard entropy of vaporization, and we 

expect a comparable change in volume (with an accompanying comparable change in the number of 
accessible microstates) whenever an unstructured liquid forms a vapor. Hence, all unstructured liquids 
can be expected to have similar entropies of vaporization. Liquids that show significant deviations from 
Trouton’s rule do so on account of strong molecular interactions that restrict molecular motion. As a 
result there is a greater dispersal of matter and energy when such liquids vaporize. Water is an example 
of a liquid with strong intermolecular interactions (hydrogen bonding) which tend to organize the 
molecules in the liquid, hence we expect its entropy of vaporization to be greater than 1 185 J K  mol− − . 

 
 

Solutions to exercises 
 
3A.1(b) All spontaneous processes are irreversible processes, which implies through eqn. 3A.12, the 

Clausius inequality, that tot sys surr 0S S S∆ = ∆ + ∆ > , for all spontaneous processes. In this case,  
1

tot 10 J K 0S −∆ = > , so the process may be spontaneous. 
 

3A.2(b) Efficiency, η, is 
h

work performed 0.71 kJ 0.262
heat absorbed 2.71 kJ

w
q

= = = . For an ideal  

 Heat engine we have c c
rev

h

1  [3A.10] 0.262 1
273.16 K

T T
T

η = − = = − . Solving for Tc, we 

  obtain Tc = 201.6 K as the temperature of the organic liquid. 
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3A.3(b) Assume that the block is so large that its temperature does not change significantly as a result of the 

heat transfer. Then  
f frev rev

revi
i

d 1 [3A.2] d [constant ]
q q

S q T
T T T

∆ = = =∫∫  

(a)
3 3

1 1250 10 J 250 10 J853 J K (b) 670J K
293 15K 373 15K

S S− −× ×
∆ = = ∆ = =

. .
 

 
3A.4(b) CO2(g) will have the higher standard molar entropy, primarily because fus vap and S S∆ ∆ are   greater for 
CO2(g). 
 
3A.5(b) We use 

  

f

i

1 1 1

ln  [3A.14]

4.00 g 750    8.314 J K  mol ln 0.482 J K
28.0 g/mol 500

VS nR
V

− − −

 
∆ =  

 
   = × × =   

  

 

  
3A.6(b) Trouton’s rule in the form O 1 1

vap b J K mol85  H T − −∆ = × can be used to obtain  
 approximate enthalpies of vaporization. For cyclohexane  

  O 1
vap

1 1(273.2 80.7)K 85 J K  mol 30.1 kJ/molH −− −∆ = + × =  
 
3A.7(b) At 250 K, the entropy is equal to its entropy at 298 K plus  ∆S  where  

  
  
∆S =

dqrev

T∫ =
CV ,m dT

T∫ = CV ,m ln
Tf

Ti

 

so 
  
S = 154.84 J K−1  mol−1 + [(20.786 − 8.3145) J K−1  mol−1]× ln 250 K

298 K
 

   S  = 152.65 J K−1  mol−1  
 
3A.8(b) No matter how the change occurred, ∆S  has the same value as if the change happened by reversible 

heating at constant pressure (step 1) followed by reversible isothermal compression (step 2)  
   ∆S = ∆S1 + ∆S2  
For the first step 

 
  
∆S1 =

dqrev

T∫ =
Cp,m dT

T∫ = Cp,m ln
Tf

Ti

 

 ( ) 1 1 1
1

(135 273) K7(2 00mol) (8 3145 J K  mol ) ln 18 3 J K
2 (25 273) K

S − − −+
∆ = . × × . × = .

+
 

and for the second 

 
  
∆S2 =

dqrev

T∫ =
qrev

T
 

where 
  
qrev = −w = p dV∫ = nRT ln

Vf

Vi

= nRT  ln
pi

pf

  

so 
  
∆S2 = nR ln

pi

pf

= (2.00 mol) × (8.3145 J K−1  mol−1) × ln 1.50 atm
7.00 atm

= −25.6 J K−1   

   ∆S = (18.3− 25.6) J K−1 = −7.3 J K−1  
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The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy. Or 
the ordering represented by confining the sample to a smaller volume in step 2 overcame the 
disordering represented by the temperature rise in step 1. A negative entropy change is allowed for a 
system as long as an increase in entropy elsewhere results in   ∆Stotal > 0 . 
  

3A.9(b) Since the masses are equal and the heat capacity is assumed constant, the final temperature will be the 
average of the two initial temperatures, 

 f
1 (100 C 25 C) 62 5 C
2

T = + = .    

The heat capacity of each block is C = mCs where Cs is the specific heat capacity. 
So,  
 3 1 1

s(individual) 10 0 10 g 0 449J K g ( 37.5K) 168kJH mC T − −∆ = ∆ = . × × . × ± = ±  

These two enthalpy changes add up to zero:  
  
∆H tot = 0  

 f
s

i

ln ; 100 C 373 2K 25 C 298 2K 62 5 C 335 7 K
TS mC
T

 
∆ = = . ; = . ; . = . 

 



   

 3 1 1 1
1

335 7(10 0 10 g) (0 449J K g ) ln 532J K
298 2

S − − −. ∆ = . × × . × = . 
 

 3 1 1 1
2

335 7(10 0 10 g) (0 449J K g ) ln 475J K
373 2

S − − −. ∆ = . × × . × = − . 
 

 1
total 1 2 57 J KS S S −∆ = ∆ + ∆ =  

   

3A.10(b)  (i) 

3
1 1f

1 3
i

1 1

21g 4.60 dm(gas)  ln [3A.14] (8 314J K mol ) ln
39 95g mol 1.20 dm

5.873 J K 5.9 J K

VS nR
V

− −
−

− −

   
∆ = = × .   .  

= =

  

 1(surroundings) (gas) 5.9 J K  [reversible] S S −∆ = −∆ = −  

   ∆S(total) = 0  

(ii) 1(gas) 5.9 J K  [  is a state function] S S−∆ = +  

   ∆S(surroundings) = 0  [no change in surroundings]  

 1(total)= 5.9 J KS −∆ +  

(iii)   qrev = 0  so  ∆S(gas) = 0  

   ∆S(surroundings) = 0 [No heat is transfered to the surroundings]  

   ∆S(total) = 0  
           

3A.11(b) (i) 
  
∆vapS =

∆vap H
Tb

= 35.27 ×103 J mol−1

(64.1+ 273.15) K
= +104.58J K−1 = 104.6 J K−1  

(ii) If vaporization occurs reversibly, as is generally assumed  

  
  
∆Ssys + ∆Ssur = 0 so ∆Ssur = −104.6 J K−1  

 
 Comment. This calculation has been based on the assumption that the heat capacities remain 
 constant over the range of temperatures involved and that the enthalpy of vaporization at  298.15 K 
  given in Table 3A.2 can be applied to the vaporization at 373.15 K. Neither one of these  assumptions 
 are strictly valid. Therefore, the calculated value is only approximate. 
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3A.12(b) vapfusf f f
p 2 p 2 p 2

i fus i vap i

(H O,s)ln (H O,l)ln (H O,g)ln
HHT T T

S nC n nC n nC
T T T T T

∆∆
∆ = + + + +  

                    

 1

15.0 g 0.832 mol
18.02 g mol

n −= =  

 

 

1

1

6.008 kJ/mol1 10.832 mol 38.02 J K  mol ln 0.832 mol
273.15 K

1 1       0.832 mol 75.291 J K  mol ln

40.657 kJ/mol 1 1       0.832 mol 0.832 mol 33.58 J K  mol l
373.15 K

273.15
261.15

373.15
273.15

S
−

−

− −∆ = × × + ×

− −+ × ×

− −+ × + × × n
378.15
373.15

 

 
  1130.3 J KS −∆ =  
 
 Comment. This calculation was based on the assumption that heat capacities were constant over  the 
 range of temperatures involved. This assumption is not strictly valid.  Therefore the calculated value 
 is only approximate. 
 
 
Problems 
 
3A.2 The Otto cycle is represented in Fig. 3.1. Assume one mole of air.  
 

Figure 3A.1 

 
 

 cycle

2

w
q

η
| |

=
| |

 [3A.8] 

 
  
wcycle = w1 + w3 = ∆U1 + ∆U3 [q1 = q3 = 0] = CV (TB − TA ) + CV (TD − TC )  

   q2 = ∆U2 = CV (TC − TB )  

 B A D C D A

C B C B
1

T T T T T T
T T T T

η
| − + − | − = = −  | − | − 

 

We know that 

 
  

TA

TB

=
1/c

VB

VA







and

TD

TC

=
1/c

VC

VD







 [2E.2a] 

Since VB = VC and VA = VD, 
  

TA

TB

=
TD

TC

,  or 
  
TD =

TATC

TB

  

 
3:4 



 

Then 

A C
A

B A

C B B
1 1

T T TT T
T T T

η
−

= − = −
−

 or 
1

B

A
1

cV
V

η
/

 = −  
 

 

Given that Cp,m = 7/2R, we have CV,m = 5/2R [2D.11] and 
  
c = 2

5
 

For ( )2 5
A

B

110,  1 0.47
10

V
V η

/

= = − =  

 
  
∆S1 = ∆S3 = ∆Ssur,1 = ∆Ssur,3 = 0 [adiabatic reversible steps]  

 
  
∆S2 = CV ,m ln

TC

TB







 

At constant volume 
  

TC

TB







=

pC

pB







= 5.0   

 ( ) 1 1 1
2

5 (8 314J K mol ) (ln 5 0) +33J K
2

S − − −∆ = × . × . =  

 
  
∆Ssur,2 = −∆S2 = −33J K−1  

 
  
∆S4 = −∆S2

TC

TD

=
TB

TA









 = −33J K−1  

 
  
∆Ssur,4 = −∆S4 = +33J K−1  

 
 
 
3A.4 (a) As suggested, relate the work to the temperature-dependent coefficient of performance : 

  

  

dw =
dqc

c
=

CpdT

T
Th − T








= Cp

ThdT
T

− dT  

Integrating yields 

 
  
w = Cp Th

dT
TTi

Tf

∫ + dT
Ti

Tf

∫ = Cp Th ln
Tf

Ti

− (Tf − Ti ) = Cp Th ln
Ti

Tf

− Ti + Tf







 

(b) The heat capacity is Cp = (4.184 J K–1 g–1) × (250 g) = 1046 J K–1, so the work associated with 
cooling the water from 293 K to the freezing temperature is 

 
  
w

cooling
= 1046 J K−1 × 293 K × ln 293 K

273 K
− 293 K + 273 K






= 748 J  

The refrigerator must also remove the heat of fusion at the freezing temperature.  For this isothermal 
process, the coefficient of performance does not change, so 

 

  

w
freeze

=
qc

c
=

∆ fus H
Tc

Th − Tc








= ∆ fus H
Th − Tc

Tc








= 6.008 ×103  J mol−1 ×
250 g

18.0 g mol−1 ×
293− 273

273





= 6113 J

 

The total work is 

 
  
w

total
= w

cooling
+ w

freeze
= (748 + 6113) J = 6.86 ×103  J = 6.86 kJ  

At the rate of 100 W = 100 J s–1, the refrigerator would freeze the water in 

 
  
t = 6.86 ×103  J

100 J s−1 = 68.6 s  
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3A.6 (a) Because entropy is a state function trs (l s 5 C)S∆ → ,−   may be determined indirectly from the 
following cycle  

 

trs

trs

(l s,0 C)
2 2

1 s
(l s, 5 C)

2 2

  H O(1 0 C)    H O(s 0 C)

                                           

H O(1 5 C) H O(s 5 C)

S

S

S S

∆ → °

∆ → − °

, → ,

∆ ↑ ↓ ∆

,− → ,−

 

 

 

Thus trstrs l s(l s 5 C) (l s 0 C)S S S S∆ → ,− = ∆ + ∆ → , + ∆  , 

where f
l m f(l) ln [3A.20;  0 C  5 C]p

TS C
T

θ θ,∆ = = , = −   

and 
  
∆Ss = Cp,m (s) ln T

Tf

 

 
  
∆Sl + ∆Ss = −∆Cp ln T

Tf

with ∆Cp = Cp,m (l) − Cp,m (s) = +37.3J K−1  mol−1  

 
  
∆ trsS(l→ s,Tf ) =

−∆ fus H
Tf

 [3A.17] 

Thus, 
  
∆ trsS(l→ s,T ) =

−∆ fus H
Tf

− ∆Cp ln T
Tf

 

 

3 1
1 1

trs

-1 -1

6 01 10 J mol 268(l s 5 C) (37 3J K  mol ) ln
273 K 273

21.3J K  mol

S
−

− −− . ×
∆ → ,− ° = − . ×

= −
 

 
  
∆Ssur =

∆ fus H (T )
T

 

   ∆ fus H (T ) = −∆H l + ∆ fus H (Tf ) − ∆Hs  

 
  
∆H l + ∆Hs = Cp,m (l)(Tf − T ) + Cp,m (s)(T − Tf ) = ∆Cp (Tf − T )  

 
  
∆ fus H (T ) = ∆ fus H (Tf ) − ∆Cp (Tf − T )  

Thus, 
  
∆Ssur =

∆ fus H (T )
T

=
∆ fus H (Tf )

T
+ ∆Cp

(T − Tf )
T

 

 

  

∆Ssur =
6.01kJ mol−1

268 K
+ (37.3J K−1  mol−1) × 268 − 273

268






= +21.7 J K-1  mol-1

  

  
∆Stotal = ∆Ssur + ∆S = (21.7 − 21.3) J K−1  mol−1 = +0.4 J K−1 mol−1   

Because   ∆Stotal > 0 , the transition  l→ s  is spontaneous at –5°C. 

(b) A similar cycle and analysis can be set up for the transition  liquid → vapour at 95 C . However, 
since the transformation here is to the high temperature state (vapour) from the low temperature state 
(liquid), which is the opposite of part (a), we can expect that the analogous equations will occur with a 
change of sign.  

 

  

∆ trsS(1→ g, T ) = ∆ trsS(1→ g, Tb ) + ∆Cp ln T
Tb

=
∆vap H

Tb

+ ∆Cp ln T
Tb

, ∆Cp = − 41.9 J K-1  mol-1

 

 

  

∆ trsS(1→ g, T ) = 40.7 kJ mol−1

373 K
− (41.9 J K−1  mol−1) × ln 368

373






= +109.7 J K-1  mol-1
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∆Ssur =
−∆vap H (T )

T
= −

∆vap H (Tb )
T

−
∆Cp (T − Tb )

T

=
−40.7 kJ mol−1

368 K






− (−41.9 J K−1  mol−1) × 368 − 373

368






= −111.2 J K-1  mol-1

 

 
  
∆Stotal = (109.7 −111.2) J K−1  mol−1 = −1.5J K−1 mol−1  

 Since   ∆Stotal < 0 , the reverse transition,  g → l , is spontaneous at 95°C.  

 

3A.8 (a)   q(total) = q(H2O) + q(Cu) = 0,hence − q(H2O) = q(Cu)   

 
  
q(H2O) = n(−∆vap H ) + nCp,m (H2O, l) × (θ −100°C)  

where θ is the final temperature of the water  and copper. 
   q(Cu) = mCs (θ − 0) = mCsθ, Cs = 0.385J K−1g−1 [Cs = Cp,m/M] 
Setting –q(H2O) = q(Cu) allows us to solve for θ. 
 

  
n(∆vap H ) − nCp,m (H2O, l) × (θ −100°C) = mCsθ  

Solving for θ  yields: 

 

vap m 2

s m 2

3 1 1 1

3 1 1 1 1

{ (H O l) 100 C}
(H O l)

(1.00 mol) (40.656 10  J mol 75.3 J C  mol 100 C)
2.00 10  g 0.385 J C  g 1.00 mol 75.3 J C  mol

57.0 C 330.2 K

p

p

n H C
mC nC

θ ,

,

− − −

− − − −

∆ + , × °
=

+ ,

× × + ° × °
=

× × ° + × °
= ° =

 

   q(Cu) = (2.00 ×103 g) × (0.385J K−1 g−1) × (57.0 K) = 4.39 ×104 J = 43.9 kJ  

 ( )2H O 43.9 kJq = −  

   ∆S(total) = ∆S(H2O) + ∆S(Cu)  

 

vap f
2 m

b i

3 1

1 1

1 1 1

(H O)  [3A.17] ln  [3A.20]

(1 00mol) (40 656 10 J mol )
373 2K

330 2K(1 00mol) (75 3J K mol ) ln  
373 2K

108 9J K 9 22J K 118.1J K

p

n H TS nC
T T,

−

− −

− − −

− ∆  ∆ = +  
 

. × . ×
= −

.

. + . × . ×  . 

= − . − . = −

 

  

∆S(Cu) = mCs ln
Tf

Ti

= (2.00 ×103 g) × (0.385J K−1 g−1) × ln 330.2 K
273.2 K







= 145.9 J K−1

 
  
∆S(total) = −118.1J K−1 +145.9 J K−1 = 28 J K−1  

This process is spontaneous since   ∆S(surroundings)  (surroundings) is zero and, hence,   
    ∆S(universe) = ∆S(total) > 0  
(b) The volume of the container may be calculated from the perfect gas law.  

 
  
V = nRT

p
=

(1.00 mol) × (0.08206 dm3 atm K−1 mol−1) × (373.2 K)
1.00 atm

= 30.6  dm3  

At 57°C the vapor pressure of water is 130 Torr (Handbook of Chemistry and Physics, 81st edition).  
The amount of water vapor present at equilibrium is then 
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3

3 1 1

1atm(130Torr) (30 6dm )760Torr
0 193mol

(0 08206dm atm K mol ) (330 2K)
pVn
RT − −

 × × . 
 = = = .

. × .
 

This is a substantial fraction of the original amount of water and cannot be ignored.  Consequently the 
calculation needs to be redone taking into account the fact that only a part, nl, of the vapor condenses 
into a liquid while the remainder (1.00 mol – nl) remains gaseous. The heat flow involving water, then, 
becomes 

  
  

q(H2O) = −n1∆vap H + n1Cp,m (H2O, l)∆T (H2O)

+(1.00 mol − n1)Cp,m (H2O,g)∆T (H2O)
 

Because nl depends on the equilibrium temperature through  

  
n1 = 1.00 mol − pV

RT
, where p is the vapor pressure of water, we will have two unknowns (p and T) in 

the equation  −q(H2O) = q(Cu) . There are two ways out of this dilemma: (1) p may be expressed as a 
function of T by use of the Clapeyron equation, or (2) by use of successive approximations. Redoing 
the calculation yields: 
 

 
  
θ =

nl∆vap H + nlCp,m (H2O, l) ×100°C + (1.00 − nl )Cp,m (H2O,g) ×100°C
mCs + nCp,m (H2O, l) + (1.00 − nl )Cp,m (H2O,g)

 

With 
    n1 = (1.00 mol) − (0.193mol) = 0.807 mol  
(noting that Cp,m(H2O,g) = 33.6 J mol–1 K–1 [Table 2C.2]) θ = 47.2°C. At this temperature, the vapor 
pressure of water is 80.41 Torr, corresponding to 
    n1 = (1.00 mol) − (0.123mol) = 0.877 mol  
This leads to θ = 50.8°C. The successive approximations eventually converge to yield a value of θ =

49.9 C 323 1K= .  for the final temperature.  (At this temperature, the vapor pressure is 0.123 bar.) 
Using this value of the final temperature, the heat transferred and the various entropies are calculated as 
in part (a). 

   q(Cu) = (2.00 ×103 g) × (0.385J K−1 g−1) × (49.9 K) = 38.4 kJ = −q(H2O)  

 
  
∆S(H2O) =

−n∆vap H
Tb

+ nCp,m ln
Tf

Ti







= −119.8J K−1  

 
  
∆S(Cu) = mCs ln

Tf

Ti

= 129.2 J K−1  

 
  
∆S(total) = −119.8  J K−1 +129.2  J K−1 = 9 J K−1  

 

3A.10  ∆S  depends on only the initial and final states, so we can use f
m

i

ln  [3A.20]p
TS nC
T,∆ =   

Since 
  
q = nCp,m (Tf − Ti ), Tf = Ti +

q
nCp,m

= Ti +
I 2 Rt

nCp,m

[q = ItV = I 2 Rt]  

That is, 
  
∆S = nCp,m ln 1+ I 2 Rt

nCp,mTi









   

Since 
  
n = 500 g

63.5 g mol−1 = 7.87 mol  

 

2
1 1

1

1 1

(1 00 A) (1000 ) (15 0 s)(7 87 mol) (24 4 J K  mol ) ln 1
(7 87) (24 4 J K ) (293 K)

(192 J K ) (ln1 27) 45.4 J K

S − −
−

− −

 . × Ω × .
∆ = . × . × + . × . × 

= × . = +
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  [1 J = 1 AVs = 1 A2Ω s]  
For the second experiment, no change in state occurs for the copper, hence,  ∆S(copper) = 0 . However, 
for the water, considered as a large heat sink 

 
2 2

1(1 00 A) (1000 ) (15 0 s)(water) 51.2 J K
293 K

q I RtS
T T

−. × Ω × .
∆ = = = = +  

 
 
3A.12 Let us write Newton’s law of cooling as follows: 

  
d ( )
d s
T A T T
t
= − −  

 Where A is a constant characteristic of the system and TS is the temperature of the surroundings.  The 
 negative sign appears because we assume T > TS. Separating variables 

  
S

d dT A t
T T

= −
−

, and integrating, we obtain 

  Sln( )T T At K− = − + , where K is a constant of integration.  
 Let Ti be the initial temperature of the system when t = 0, then 
  Siln( )K T T−=  
  Introducing this expression for K gives 

  S
S S

S
i

i
ln  or ( )e AtT T At T T T T

T T
−−

−

 −
= − = +  

 
 

  
i

d d dln ( ln )
d d d
S TC C T
t t T t

 
= = 

 
 

 From the above expression for T, we obtain S Siln ln ln( )T T At T T−= − . Substituting ln t we 

 obtain Si
d ln( )
d
S CA T T
t

−= − , where now Ti can be interpreted as any temperature T  during the 

  course of the cooling process.  

3B   The measurement of entropy 
 

Solutions to exercises 
 
3B.1(b)  Use Sm = R ln s, where s is the number of  orientations of about equal energy that the molecule can 

adopt. 

 Draw up the following table: 
 

n: 0 1 2  3  4 5 6 

   o m p  a b c  o m p   

s 1 6 6 6 3  6 6 2  6 6 3 6 1 

Sm/R 0 1.8 1.8 1.8 1.1  1.8 1.8 0.7  1.8 1.8 1.1 1.8 0 
 
where a is the 1,2,3 isomer, b the 1,2,4 isomer, and c the 1,3,5 isomer. 
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3B.2(b)  (i) 
  

∆ rS
O = Sm

O (Zn2+ ,aq) + Sm
O (Cu,s) − Sm

O (Zn,s) − Sm
O (Cu2+ ,aq)

= −112.1+ 33.15− 41.63+ 99.6  J K−1  mol−1 = −21.0 J K−1  mol−1
  

 

(ii) 

  

∆ rS
O = 12Sm

O (CO2 ,g) +11Sm
O (H2O, l) − Sm

O (C12H22O11,s) −12Sm
O (O2 ,g)

= (12 × 213.74) + (11× 69.91) − 360.2 − (12 × 205.14)  J K−1 mol−1

= +512.0 J K−1 mol−1

 

 
 
 
 

Solutions to problems 
 

3B.2  ,m
m m

0

d
( ) (0) [3A.19]

T pC T
S T S

T
= + ∫  

From the data, draw up the following table  
 

T / K 10 15 20 25 30 50 

  
Cp ,m

T / (J K–2 mol–1) 0.28 0.47 0.540 0.564 0.550 0.428 

T / K 70 100 150 200 250 298 

  
Cp ,m

T / (J K–2 mol–1) 0.333 0.245 0.169 0.129 0.105 0.089 

 
Plot Cp,m / T against T (Fig. 3B.1). This has been done on two scales. The region 0 to 10 K has been 
constructed using Cp,m = aT3, fitted to the point at T = 10 K, at which Cp,m = 2.8 J K–1 mol–1, so 

  a = 2.8 ×10−3 J K−4 mol−1 . The area can be determined (primitively) by counting squares.  Area A = 
38.28 J K–1 mol–1.  Area B up to 0°C = 25.60 J K–1 mol–1; area B up to 25°C =  27.80 J K–1 mol–1.  
Hence  
 

 
Figure 3B.1 

 
(a) 

  
Sm (273K) = Sm (0) + 63.88J K−1 mol−1  

 

(b) 
  
Sm (298 K) = Sm (0) + 66.08J K−1 mol−1  

 
 

3B.4  
  
Sm (T ) = Sm (0) +

0

T

∫
Cp,m dT

T
[3A.19] 
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Perform a graphical integration by plotting 
  
Cp,m /T  against  T  and determining the area under the 

curve.  Draw up the following table.  (The last two columns come from determining areas under the 
curves described below.)  
 

T / K 

  

Cp,m

J K−1 mol−1  
  

Cp,m T

J K−2 mol−1  
  

Sm
O − Sm

O (0)
J K−1 mol−1  

  

Hm
O − Hm

O (0)
kJ mol−1  

0.00 0.00 0.00 0.00 0.00 
10.00 2.09 0.21 0.80 0.01 
20.00 14.43 0.72 5.61 0.09 
30.00 36.44 1.21 15.60 0.34 
40.00 62.55 1.56 29.83 0.85 
50.00 87.03 1.74 46.56 1.61 
60.00 111.00 1.85 64.62 2.62 
70.00 131.40 1.88 83.29 3.84 
80.00 149.40 1.87 102.07 5.26 
90.00 165.30 1.84 120.60 6.84 

100.00 179.60 1.80 138.72 8.57 
110.00 192.80 1.75 156.42 10.44 
150.00 237.60 1.58 222.91 19.09 
160.00 247.30 1.55 238.54 21.52 
170.00 256.50 1.51 253.79 24.05 
180.00 265.10 1.47 268.68 26.66 
190.00 273.00 1.44 283.21 29.35 
200.00 280.30 1.40 297.38 32.13 

 
Plot Cp,m against T (Fig. 3B.2(a)). Extrapolate to   T = 0  using Cp,m = aT3 fitted to the point at T = 10 K, 
which gives a = 2.09 mJ K–2 mol–1. Determine the area under the graph up to each T and plot Sm against 
T (Fig. 3B.2(b)). 
 
Figure 3B.2 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0
0.2
0.4
0.6
0.8
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T)
(J

/K
^2

·m
ol

) 

T/K 

Fig. 3.3(a) 
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(b)  

 
 
The molar enthalpy is determined in a similar manner from a plot of Cp,m against T by determining the 
area under the curve (Fig. 3.4)  

 
  
Hm

O (200 K) − Hm
O (0) =

0

200 K

∫ Cp,m dT = 32.1 kJ mol-1  

 
 
 Figure 3B.3 
 

 
 
 
 
3B.6 The entropy at 200 K is calculated from 

 
  
Sm

O (200 K) = Sm
O (100 K) +

100 K

200 K

∫
Cp,m dT

T
 

The integrand may be evaluated at each of the data points; the transformed data appear below.  The 
numerical integration can be carried out by a standard procedure such as the trapezoid rule (taking the 
integral within any interval as the mean value of the integrand times the length of the interval). 
Programs for performing this integration are readily available for personal computers. Many graphing 
calculators will also perform this numerical integration.  
 

T / K 100 120 140 150 160 180 200 

  
Cp,m / (J K−1 mol−1)  23.00 23.74 24.25 24.44 24.61 24.89 25.11 

  

Cp,m

T
(J K−2 mol−1)  

0.230 0.1978 0.1732 0.1629 0.1538 0.1383 0.1256 

 
Integration by the trapezoid rule yields 

   Sm
O (200 K) = (29.79 +16.81) J K−1  mol−1 = 46.60 J K−1  mol−1  

0

50

100

150

200

250

300

0 50 100 150 200

[S
(T

)-S
(0

)]/
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/K
·m

ol
) 

T/K 

Fig. 3.3(b) 
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Taking Cp,m constant yields 

 
  

Sm
O (200 K) =  Sm

O (100 K) +  Cp,m  ln (200 K / 100 K)

=  [29.79 + 24.44 ln(200 / 100 K)] J K−1  mol−1 = 46.60 J K−1  mol−1
 

The difference is slight. 
 
3B.8  S = k ln W [also see Exercises 3B.1(a) and (b)] 

so 
  

S = k ln 4N = Nk ln 4

= (5×108 ) × (1.38×10−23J K−1)× ln 4 = 9.57×10−15J K−1
 

Question. Is this a large residual entropy?  The answer depends on what comparison is made.  Multiply 
the answer by Avogadro’s number to obtain the molar residual entropy, 5.76×109 J K–1 mol–1, surely a 
large number—but then DNA is a macromolecule.  The residual entropy per mole of base pairs may be 
a more reasonable quantity to compare to molar residual entropies of small molecules.  To obtain that 
answer, divide the molecule’s entropy by the number of base pairs before multiplying by NA.  The 
result is 11.5 J K–1 mol–1, a quantity more in line with examples discussed in Exercises 3B.1(a) and (b). 

3C   Concentrating on the system 
 

Answers to discussion questions 
 
3C.2  All of the thermodynamic properties of a system that we have encountered, U, H, S, A, and G can be 
 used as the criteria for the spontaneity of a process under specific conditions. The criteria are derived 
 directly from the fundamental relation of thermodynamics which is a  combination of the first and 
 second laws, namely 
  ext non-pVd d d d 0U p V w T S− − + + ≥  
 The inequality sign gives the criteria for the spontaneity of a process, the equality gives the 
 criteria for equilibrium. 
  
 The specific conditions we are interested in and the criteria that follow from inserting these 
 conditions into the fundamental relation are the following: 
 

(1) Constant U and V, no work at all 
 ,d 0U VS ≥  
(2) Constant S and V, no work at all 
 ,d 0S VU ≤  
(3) Constant S and p, no work at all 
 ,d 0S pH ≤  
(4) Constant T 
 d dTA w≤  
(5) Constant T and V, only non-pV work 
 , non-pVd dT VA w≤  
(6) Constant T and V, no work at all 
 ,d 0T VA ≤  
(7) Constant T and p, p = pext 
 , non-pVd dT pG w≤  
(8) Constant T and p, no non-pV work 
 ,d 0T pG ≤  

 
 
Exercises 
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3C.1(b) (i) 
  

∆ r H
O = ∆ f H O (Zn2+ ,aq) − ∆ f H O (Cu2+ ,aq)

= −153.89 − 64.77 kJ mol−1 = −218.66 kJ mol−1
  

 
  
∆ rG

O = −218.66 kJ mol−1 − (298.15K) × (−21.0 J K−1 mol−1) = −212.40 kJ mol−1  

(ii)   ∆ r H
O = ∆c H O = −5645kJ mol−1  

    ∆ rG
O = −5645kJ mol−1 − (298.15K) × (512.0 J K−1 mol−1) = −5798 kJ mol−1  

 
 
3C.2(b) 3 2 3 2CO(g) CH CH OH(l) CH CH COOH(l)+ →   

 

O O O
r f f

Products Reactants
1 1 1

1

 [2C.5]

510.7 kJ mol ( 277.69kJ mol ) ( 110 53kJ mol )
122.5kJ mol

H H Hν ν

− − −

−

∆ = ∆ − ∆

= − − − − − .

= −

∑ ∑
 

 

O O O
r m m

Products Reactants
1 1 -1 1 1 1

1 1

[3B.2]

191.0 J K mol 160.7 J K mol 197 67 J K mol
167.4 J K mol

S S Sν ν

− − − − −

− −

∆ = −

= − − .

= −

∑ ∑
 

  

O O O
r r r

1 1 1

1

122.5kJ mol (298K) ( 167.4 J K mol )

72.6 kJ mol

G H T S
− − −

−

∆ = ∆ − ∆

= − − × −

= −

 

 
 

3C.3(b)  C3H8(g) + 5O2 (g)→ 3CO2 (g) + 4H2O(l)   

  

∆ rG
O = 3∆ f G

O (CO2 ,g) + 4∆ f G
O (H2O, l) − ∆ f G

O (C3H8 ,g) − 0

= 3(−394.36 kJ mol−1) + 4(−237.13kJ mol−1) −1(−23.49 kJ mol−1)
= −2108.11kJ mol−1

  

The maximum non-expansion work is 
 
2108.11kJ mol−1  since

  
wadd = ∆G  

 

3C.4(b) (a) 
  

∆ rG
O = ∆ f G

O (Zn2+ ,aq) − ∆ f G
O (Cu2+ ,aq)

= −147.06 − 65.49 kJ mol-1 = −212.55 kJ mol−1
 

 

(b)
  

∆ rG
O = 12∆ f G

O (CO2 ,g) +11∆ f G
O (H2O, l) − ∆ f G

O (C12H22O11,s) −12∆ f G
O (O2 ,g)

= 12 × (−394.36) +11× (−237.13) − (−1543) −12 × 0 kJ mol−1 = −5798 kJ mol−1
  

 
Comment. In each case these values of   ∆ rG

O  agree closely with the calculated values in Exercise 
3C.1(b). 

 
3C.5(b) The formation reaction of glycine is 

 2 2 2 2 2
1 5
2 2

2C(gr) O (g) N (g) H (g) NH CH COOH(s)+ + + →  

 
The combustion reaction is 
 7

2 2 2 2 2 22
5 1
2 2

NH CH COOH(s) O (g) 2CO (g) H O(1) N (g)+ → + +  
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 O O O
c f 2 f 2 f 2 2

5
2

2 (CO ,g) (H O,1) (NH CH COOH(s))H H H H∆ = ∆ + ∆ −∆  

O O O
f 2 2 f 2 f 2 c 2 2

1 1 1

1

5
2

5
2

(NH CH COOH(s)) 2 (CO ,g) (H O,1) (NH CH COOH(s))

2 393.51 kJ mol ( ) ( 285.83 kJ mol ) ( 969 kJ mol )

532.6 kJ mol

H H H H

− − −

−

∆ = ∆ + ∆ −∆

= − × + × − − −

= −
O O O O O O

f m 2 2 m m 2 m 2 m 2

1 1 1 1 1 1

1 1 1 1

1 1

1 5
2 2

1 5
2 2

(NH CH COOH(s)) 2 (C,gr) (O ,g) (N ,g) (H ,g)

103.5J K  mol 2 5.740J K  mol (205.138J K  mol )

191.61J K  mol (130.684J K  mol )

535.63J K  mol

S S S S S S
− − − − − −

− − − −

− −

× ×

× ×

∆ = − × − − −

= − × −

− −

= −

 

 

O O O
f f f

1 1 1

1

 

532.6 kJ mol (298.15 K) ( 535.63 J K  mol )

373kJ mol

G H T S
− − −

−

∆ = ∆ − ∆

= − − × −

= −

 

 
 
 
 

Solutions to problems 
 
3C.2 Begin with the partition function of an oscillator [See Chapter 15]. 

 V1 ,
1 e xq x hcv

T
θ

β ωβ−= = = =
−




 

The molar internal energy, molar entropy, and molar Helmholtz energy are obtained from the partition 
function as follows: 

 
   
U −U (0) = − N

q
∂q
∂β





 V

= −N (1− e− x ) d
dβ

(1− e− x )−1 =
Nωe− x

1− e− x =
Nω
ex −1

 

  

 

  

S =
U −U (0)

T
+ nR ln q =

Nkxe− x

1− e− x − Nk ln(1− e− x )

= Nk x
ex −1

− ln(1− e− x )






 

 
  
 A− A(0) = G − G(0) = −nRT ln q= NkT  ln(1− e− x )  

The functions are plotted in Fig. 3C.1. 
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Figure 3C.1 
 

 

3D   Combining the First and Second Laws 
 

Answers to discussion questions 
 

3D.2 The relation   (∂G / ∂p)T = V , eqn 3D.8, shows that the Gibbs function of a system increases with p at 
constant T in proportion to the magnitude of its volume. This makes good sense when one considers the 
definition of G, which is  G =U + pV − TS . Hence, G is expected to increase with p in proportion to V 
when T is constant. 

 
 

Solutions to exercises 
 

3D.1(b) f i

i f
 ln [3D.14] ln

p VG nRT nRT
p V

   ∆ = =   
   

 [Boyle’s law] 

 ( ) ( ) ( )3 1 1 526.0 10 mol 8 314J K mol 298K ln 13 J
122

G − − −  ∆ = × × . × × = − 
 

 

 

3D.2(b)  f i
f i[3D.8] hence and

p p p

G GG S S S
T T T

∂ ∂∂      = − ; = − , = −     ∂ ∂ ∂     
 

 ( ) ( )

f i f i
f i

1

( )

73.1J 42.8J K

42.8J K

p p p

p

G G G GS S S
T T T

G T
T T

−=

∂ ∂ ∂ −     ∆ = − = − + = −     ∂ ∂ ∂     

∂∆ ∂= − = − − + ×
∂ ∂

−

 

 
3D.3(b)  We will assume that the volume and molar volume of water changes little over the range of pressures 

given and that, therefore, equation 3D.13 which applies to incompressible substances can be used to 
solve this exercise. The change in Gibbs energy for this sample is then given by 

 m [3D.13]G nV p V p∆ = ∆ = ∆  
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3
3 3

6 3

1m(100 cm ) 400 kPa 40 Pa m 40J
10  cm

G
 

∆ = × × = = + 
 

 

In order to calculate the change in Gibbs energy per mole we calculate the molar volume 
 

1 6 3
3 1

m 3 3

18.02 g mol 10 m
1.81 10  m mol

(density) 0.997 g cm cm
 M

V
ρ

− −
−5 −

−
= = × = × ,then 

 
3

3 1 1
m m

10 Pa[3D.13] 1.81 10  m mol 400 kPa 7.2 J mol
kPa

G V p −5 − −∆ = ∆ = × × × =  

 
 
3D.4(b)   
 
 
 
 
 

Solutions to problems 
 
3D.2 The Gibbs–Helmholtz equation [3D.9] may be recast into an analogous equation involving  ∆G  and 

 ∆H , since 

 
  p

∂∆G
∂T







=
p

∂Gf

∂T






−
p

∂Gi

∂T






 

and   ∆H = Hf − H i  

Thus, 

  p

∂
∂T

∆ rG
O

T








 = −

∆ r H
O

T 2
 

 

  

d
∆ rG

O

T








 =

p

∂
∂T

∆ rG
O

T








 dT[constant pressure] = −

∆r H
O

T 2 dT  

 

  

∆
∆ rG

O

T








 = −

∆ r H
O dT

T 2Tc

T

∫

≈ −∆ r H
O dT

T 2Tc

T

∫ = ∆ r H
O 1

T
− 1

Tc







[∆ r H

O  assumed constant]

 

Therefore, 
  

∆ rG
O (T )

T
−
∆ rG

O (Tc )
Tc

≈ ∆ r H
O 1

T
− 1

Tc







 

and so 

  

∆ rG
O (T ) = T

Tc

∆ rG
O (Tc ) + 1− T

Tc







∆ r H

O (Tc )

= τ∆ rG
O (Tc ) + (1− τ )∆ r H

O (Tc ) where τ = T
Tc

 

For the reaction 
   N2 (g) + 3H2 (g)→ 2NH3(g) ∆ rG

Ο = 2∆ f G
Ο (NH3,g)  

(a) At 500 K, 
 
τ = 500

298
= 1.678 , 

so 

  

∆ rG
O (500 K) = {(1.678) × 2 × (−16.45) + (1−1.678) × 2 × (−46.11)}kJ mol−1

= −7 kJ mol−1
 

( ) ( )1 1f
m

i

1

100.0 kPaln 8 314J K mol 500K ln
50.0 kPa

2.88kJ mol

pG RT
p

− −

−

   ∆ = = . × ×   
  

= +
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(b) At 1000 K, 
 
τ = 1000

298
= 3.356 , 

so 

  

∆ rG
O (1000 K) = {(3.356) × 2 × (−16.45) + (1− 3.356) × 2 × (−46.11)}kJ mol−1

= +107 kJ mol−1
 

 
 

3D.4  
 T

∂S
∂V





 =

V

∂p
∂T







[Table 3D.1] 

(a) For a van der Waals gas 

 
  
p =

nRT
V − nb

−
n2a
V 2 =

RT
Vm − b

−
a

Vm
2

 

Hence, 
  

T

∂S
∂V





 =

V

∂p
∂T







=
R

Vm − b
 

(b) For a Dieterici gas 

  
  
p =

RTe−a/RTVm

Vm −b
 

  
  

T

∂S
∂V





 =

∂p
∂T





V

=

R 1+ a
RVmT







e−a/ RVmT

Vm − b
 

For an isothermal expansion, 

  
  
∆S = dS

Vi

Vf

∫ =
T

∂S
∂V





 dV

Vi

Vf

∫  

so we can simply compare 
 T

∂S
∂V





  expressions for the three gases.  For a perfect gas, 

  
  
p =

nRT
V

=
RT
Vm

 so 
  T

∂S
∂V





 =

V

∂p
∂T







=
R

Vm

 

 T

∂S
∂V





  is certainly greater for a van der Waals gas than for a perfect gas, for the denominator is 

smaller for the van der Waals gas.  To compare the van der Waals gas to the Dieterici gas, we assume 
that both have the same parameter b.  (That is reasonable, for b is an excluded volume in both 
equations of state.)  In that case, 

  
  T ,Die

∂S
∂V





 =

R 1+ a
RVmT







e−a/ RVmT

Vm − b
=

T ,vdW

∂S
∂V





 1+ a

RVmT






e−a/ RVmT  

Now notice that the additional factor in 
  T ,Die

∂S
∂V





  has the form (1+x)e–x, where x > 0.  This factor is 

always less than 1.  Clearly (1+x)e–x < 1 for large x, for then the exponential dominates.  But (1+x)e–x < 
1 even for small x, as can be seen by using the power series expansion for the exponential:  (1+x)(1–

x+x2/2+...) = 1 – x2/2 + ...  So 
  T ,Die

∂S
∂V





 <

T ,vdW

∂S
∂V





   To summarize, for isothermal expansions: 

  
  
∆SvdW > ∆SDie  and 

  
∆SvdW > ∆Sperfect  

The comparison between a perfect gas and a Dieterici gas depends on particular values of the constants 
a and b and on the physical conditions. 

 

3D.6 (a) ( ) ( ) ( )1 1   
p T

T
V V

V T V p
α κ  ∂ ∂= × ; = − × ∂ ∂ 
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(1) 
 T

∂S
∂V







=
V

∂p
∂T







 [Maxwell relation] 

 

( )
( )

( ) ( )
( )

[Euler chain relation  2]

[reciprocal identity   2]

1  

1  

p TV

p

T

p

T

T

p pV Mathematical Background
T VT
V
T Mathematical Background
V
p

V
V T

V
V p

α
κ

∂ ∂   ∂= − ,   ∂ ∂∂   
∂
∂

= − ,
 ∂
 ∂ 

∂
∂

= − = +
 ∂
 ∂ 

 

 ( )
p S

V T
S p

 ∂ ∂=  ∂ ∂ 
 [Maxwell relation] 

 ( ) [Euler chain] [reciprocal]T

p TS
p

S
pT T S

S p Sp
T

 
 
  
 
 
 
  
 

∂
∂ ∂  ∂ ∂= − = −   ∂ ∂ ∂∂   
∂

 

First treat the numerator: 

 ( ) [Maxwell relation]
pT

S V V
Tp

α ∂ ∂= − = −  ∂∂ 
 

As for the denominator, at constant p 

 
  
dS =

p

∂S
∂T







dT  and 
  
dS =

dqrev

T
=

dH
T

=
Cp dT

T
[dqp = dH ]  

Therefore, ( ) p

p

CS
T T
∂ =
∂

 and ( ) Cp p

TVV
S

α∂ =
∂

 

(2) 

 V

∂p
∂S







= −
S

∂T
∂V







 [Maxwell relation] 

  

( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

( )

1 [Euler chain]  [reciprocal]

 [Maxwell relation] [Euler chain relation]

 [recipr

T

S
V

V T

pTV

VV V V

p V

VT

S
VT
SS VV
TT S

p Vp
TVT

S U S U
U T U T

V U
T S

V U
p T

∂
∂∂ − = =  ∂∂ ∂∂     

    ∂∂ ∂   
∂  ∂∂  −   ∂∂∂   

= =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂−
∂ ∂

=
 ∂ ∂
 ∂ ∂ 

ocal identity, twice]
T V V

T U T
C S

α
κ

 ∂  = = ∂   

 

 (b)  ( ) ( )J V
U V

T UC
V T

µ ∂ ∂= =
∂ ∂

 

 

( ) ( ) ( )
( )

J
1 [Euler chain relation]

[reciprocal identity] [3D.6]

V
U V

T

T V

T UC
V T V

U
pU p T

V T

µ ∂ ∂ −= =
∂ ∂ ∂

∂
∂ ∂= − = −  ∂ ∂ 
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V

∂p
∂T







= −1

p

∂T
∂V







T

∂V
∂p







[Euler chain] =
−

p

∂V
∂T







T

∂V
∂p







= α
κT

 

Therefore, 
  
µJCV = p − αT

κT

 

      
3D.8   [3D.6]T

V

pT p
T

π ∂ = − ∂ 
 

 ln ln  [Chapter 15]        
T T

A QA kT Q p kT
V V
∂ ∂   = − = − =   ∂ ∂   

 

  then  
!

N

T

q NkT qQ p
N q V

∂ = =  ∂ 
 

 Substitute this expression for p into eqn. 3D.6. We obtain after differentiating p with respect to T at 
constant V 

 

  
2

T
T

NkT q
q T V

π ∂ ∂ =  ∂ ∂ 
 

 
 
3D.10 The Gibbs–Helmholtz equation is 

 
  

∂
∂T

∆G
T






= −

∆H
T 2  

so for a small temperature change 

 
O O

r
2 2

O O O
r r 2 r 1 r

2 1

   and   
G H G G HT T

T T TT T
 ∆ ∆ ∆ ∆ ∆

∆ = ∆ = − ∆  
 

 

so 
  

d
∆ rG
T

O

∫ = −
∆rH Od T

T 2∫  and  
∆ rG190

O

T190

=
∆ rG220

O

T220

+ ∆ r H
O 1

T190

−
1

T220







 

 
  
∆ rG190

Ο = ∆ rG220
Ο T190

T220

+ ∆ r H
O 1−

T190

T220







 

For the monohydrate 

 

  

∆rG190
O = (46.2 kJ mol−1) × 190 K

220 K





+ (127 kJ mol−1) × 1− 190 K

220 K





,

∆rG190
O = 57.2 kJ mol−1

 

For the dihydrate 

 

  

∆rG190
Ο = (69.4 kJ mol−1) × 190 K

220 K





+ (188kJ mol−1) × 1− 190 K

220 K





,

∆rG190
Ο = 85.6 kJ mol−1

 

For the trihydrate 

 

  

∆rG190
O = (93.2 kJ mol−1) × 190 K

220 K





+ (237 kJ mol−1) × 1− 190 K

220 K





,

∆rG190
O = 112.8kJ mol−1
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Integrated activities 
 
3.2  For a thorough discussion of the relationship between the thermodynamic and statistical definitions of 

entropy, see Section 3A. We will not repeat all of that discussion here and will merely summarize the 
main points.  

The thermodynamic entropy is defined in terms of the quantity revd
d

q
S

T
= where revdq is  the 

infinitesimal quantity of energy supplied as heat to the system reversibly at a temperature  T.  
 
The statistical entropy is defined in terms of the Boltzmann formula for the entropy: lnS k W= where 
k is the Boltzmann constant and W is the number of microstates, the total number of ways in which the 
molecules of the system can be arranged to achieve the same total energy of the system. These two 
definitions turn out to be equivalent provided the thermodynamic entropy is taken to be zero at T = 0.  

  
The concept of the number of microstates makes quantitative the ill-defined qualitative concepts of  
‘disorder’ and ‘dispersal of matter and energy’ that are used widely to introduce  the concept of  
entropy:  a more ‘disorderly’ distribution of energy and matter corresponds to a greater number of 
microstates associated with the same total energy. The more molecules that can participate in the 
distribution of energy, the more microstates there are for a given total energy and the greater the 
entropy than when the energy is confined to a smaller number of molecules. 

 
The molecular interpretation of entropy given by the Boltzmann formula also suggests the 
thermodynamic definition. At high temperatures where the molecules of a system can occupy a large 
number of available energy levels, a small additional transfer of energy as heat will cause only a small 
change in the number of accessible energy levels, whereas at low temperatures the transfer of the same 
quantity of heat will increase the number of accessible energy levels and microstates significantly. 
Hence, the change in entropy upon heating will be greater when the energy is transferred to a cold body 
than when it is transferred to a hot body. This argument suggests that the change in entropy should be 
inversely proportional to the temperature at which the transfer takes place as in indicated in the 
thermodynamic definition.  
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4 Physical transformations of pure substances 

4A Phase diagrams of pure substances 

Answers to discussion questions 
4A.2 Mathematically we can trace the change in chemical potential when pressure is changed to 

the pV term within the Gibbs energy (part of the definition of enthalpy); the product 
changes when the pressure changes. Physically, an incompressible system does not store 
energy like a spring (or like a highly compressible gas); however, it can transmit energy is it 
does in a hydraulic cylinder. Furthermore, an incompressible system under pressure is under 
stress at a molecular level. Its bonds or intermolecular repulsive forces resist external forces 
without contraction. Finally, one can observe changes in phases in equilibrium with 
incompressible liquids (the pressure of their vapours, for example) when pressure is applied 
to the liquid; see Topic 4B.1(c). 

4A.4  
Figure 4A.1 

 
Refer to Figure 4A.1. Starting at point A and continuing clockwise on path p(T) toward 
point B, we see a gaseous phase only within the container with water at pressures and 
temperatures p(T). Upon reaching point B on the vapour pressure curve, liquid appears on 
the bottom of the container and a phase boundary or meniscus is evident between the liquid 
and less dense gas above it. The liquid and gaseous phases are at equilibrium at this point. 
Proceeding clockwise away from the vapour pressure curve the meniscus disappears and the 
system becomes wholly liquid. Continuing along p(T) to point C at the critical temperature 
no abrupt changes are observed in the isotropic fluid. Before point C is reached, it is 
possible to return to the vapour pressure curve and a liquid-gas equilibrium by reducing the 
pressure isothermally. Continuing clockwise from point C along path p(T) back to point A, 
no phase boundary is observed even though we now consider the water to have returned to 
the gaseous state. Additionally, if the pressure is isothermally reduced at any point after 
point C, it is impossible to return to a liquid-gas equilibrium.  
When the path p(T) is chosen to be very close to the critical point, the water appears 
opaque. At near critical conditions, densities and refractive indices of both the liquid and 
gas phases are nearly identical. Furthermore, molecular fluctuations cause spatial variations 
of densities and refractive indices on a scale large enough to strongly scatter visible light. 
This is called critical opalescence. 

 
Solutions to Exercises 

4A.1(b) The phase rule (eqn 4A.1) relates the number of phases (P), components (C), and degrees of 
freedom (F) of a thermodynamic system: 

 
 
 

1 



 F = C – P + 2 . 
Restricting to pure substances (C=1) and rearranging for phases gives 
 P = 3 – F . 
Areas in the phase diagram have two degrees of freedom; one can vary pressure and 
temperature independently (within limits) and stay within the area. Thus, F = 2 and P = 1 in 
areas. Lines have one degree of freedom; one can vary pressure or temperature, but to stay 
on the line the value of the other is determined by the line. Thus, F = 1 and P = 2 on lines. 
Points on the phase diagram have zero degrees of freedom; one can vary neither pressure 
nor temperature and on a given point. Thus, F = 0 and P = 3 on points. 
(a) is in an area, so there is a single phase. (b) and (c) are points, so there are three phases 
present. (d) is on a line, so there are two phases present.  

4A.2(b) For pure substances (one-component systems), the chemical potential is the molar Gibbs 
energy: 
 dG = (µ2 – µ1)dn  
so ∆G = (µ2 – µ1)n = (–8.3 kJ mol–1)(0.15×10–3 mol) = +1.2×10–3 kJ = 1.2 J. 

4A.3(b) Use the phase rule (eqn 4A.1) 
 F = C – P + 2 
to solve for the number of phases: 
 P = C – F + 2 = 4 – F + 2 = 6 – F ≤ 6 . 
The maximum number of phases in equilibrium occurs when the number of degrees of 
freedom is at a minimum, namely zero; that number is six. 

 

4B Phase diagrams of pure substances 

Answers to discussion questions 
4B.2 See Topic 4B.1(b). The mathematical reason can be seen in eqn 4B.2, 

 
  

∂µ
∂p





 T

= Vm  

Because Vm > 0 for all pure substances, the slope of the change in chemical potential with 
respect to change in pressure is positive: chemical potential increases with increasing 
pressure. See also the answer to Discussion question 4A.2, which addresses why the 
chemical potential changes even in incompressible substances. 

4B.4 See Topic 4B.3 for classification of phase transitions. First-order phase transitions show 
discontinuities in the first derivative of the Gibbs energy with respect to temperature. They 
are recognized by finite discontinuities in plots of H, U, S, and V against temperature and by 
an infinite discontinuity in Cp. Second-order phase transitions show discontinuities in the 
second derivatives of the Gibbs energy with respect to temperature, but the first derivatives 
are continuous. The second-order transitions are recognized by kinks in plots of H, U, S, 
and V against temperature, but most easily by a finite discontinuity in a plot of Cp against 
temperature. A λ-transition shows characteristics of both first and second-order transitions 
and, hence, is difficult to classify by the Ehrenfest scheme. It resembles a first-order 
transition in a plot of Cp against T, but appears to be a higher-order transition with respect to 
other properties.  
At the molecular level first-order transitions are associated with discontinuous changes in 
the interaction energies between the atoms or molecules constituting the system and in the 
volume they occupy. One kind of second-order transition may involve only a continuous 
change in the arrangement of the atoms from one crystal structure (symmetry) to another 
while preserving their orderly arrangement. In one kind of λ-transition, called an order-
disorder transition, randomness is introduced into the atomic arrangement. See Figures 4B.9 
through 4B.12 of the text. 

Solutions to Exercises 

4B.1(b) The difference between the definition of normal and standard transition temperatures is the 
pressure at which the transition takes place: normal refers to exactly 1 atm (101325 Pa), 

 
 
 

2 



while standard refers to exactly 1 bar (exactly 105 Pa). At the standard boiling temperature 
and pressure, the liquid and gas phases are in equilibrium, so their chemical potentials are 
equal: 
 µliquid(Tstd,pstd) = µgas(Tstd,pstd) 
The same can be said at the normal boiling temperature and pressure: 
 µliquid(Tnorm,pnorm) = µgas(Tnorm,pnorm) 
Equations 4B.1 and 4B.2 show how the chemical potential changes with temperature and 
pressure, so for small changes we can write 

 
  
dµ =

∂µ
∂T





 p

dT +
∂µ
∂p





 T

dp = −SmdT +Vmdp  

Assuming that the differences between standard and normal boiling point are small enough, 
we can equate the differences in the chemical potentials of the two phases: 
 ∆µgas = –Sm,gas∆T + Vm,gas∆p = –Sm,liquid∆T + Vm,liquid∆p = ∆µliquid , 
where ∆p is defined as pnorm–pstd. Rearrange to isolate ∆T: 
 (Sm,liquid–Sm,gas)∆T = (Vm,liquid–Vm,gas)∆p , 
 (–∆vapS)∆T = (Vm,liquid–Vm,gas)∆p ≈ –Vm,gas∆p 
Use the ideal gas law to find the molar volume of the gas. Also, we need to find ∆vapS or to 
use Trouton’s rule (eqn 3A.17): 

 

  

∆T ≈
Vm,gas∆p
∆vapS

=
RT∆p
p∆vapS

=
RTb

2∆p
p∆vap H

=
(8.3145 J K−1  mol−1)(373 K)2 (1325 Pa)

(105  Pa)(40.656 ×103  J)

= 0.38 K

 

That is, the normal boiling temperature is 0.38 K higher than the standard boiling 
temperature. 

4B.2(b) Equation 4B.1 shows how the chemical potential changes with temperature  

 
  
dµ =

∂µ
∂T





 p

dT = −SmdT  

so 

  

∆µ = − Sm dT∫ = −Sm∆T = −53 J K−1  mol−1 × (1000 −100) K

= 4.8 ×104  J mol−1 = 48 kJ mol−1

 

4B.3(b) Equation 4B.2 shows how the chemical potential changes with pressure  

 
  
dµ =

∂µ
∂p





 T

dp = Vmdp =
M
ρ

dp  

so 

  

∆µ =
M
ρ

d p∫ =
M
ρ
∆p =

78.11 g mol−1

0.879 g cm−3 × (10 ×106 −100 ×103) Pa × 1 m3

106  cm3

= 8.8 ×102  J mol−1 = 0.088 kJ mol−1

 

Note: we assumed that the sample is incompressible. 

4B.4(b) The effect on vapour pressure of a change in applied external pressure on a liquid is given 
by eqn 4B.3: 
   p = p * eVm (l)∆P/ RT . 
For liquid naphthalene, the molar volume is 

 
  
Vm =

M
ρ

=
118.16 g mol−1

0.962 g cm−3 = 122.8 cm3  mol−1  

so 
  

Vm (l)∆P
RT

=
122.8 cm3  mol−1 × (15×106 −1.0 ×105 ) Pa

8.3145 J K−1  mol−1 × 368 K
×

1 m3

106  cm3 = 0.598  

and   p = p * eVm (l)∆P/ RT = (2.0 kPa)e0.598 = 3.6 kPa . 

4B.5(b) Use the Clapeyron equation (eqn 4B.5a) 

 
  

dp
dT

=
∆ trsS
∆ trsV
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Assume that ∆fusS and ∆fusT are independent of temperature: 

 
  
∆ fusS = ∆ fusV × dp

dT





≈ ∆ fusV × ∆p

∆T
 

 

  

∆ fusS = (152.6cm3 mol−1 −142.0cm3 mol−1) × (1.2 ×106 Pa −1.01×105 Pa)
429.26 K − 427.15K

= (10.6cm3 mol−1) × 1m3

106 cm3







× (5.21×105 Pa K−1)

= 5.52 Pa m3 K−1 mol−1 = +5.5J K−1 mol−1

 

At the melting temperature 

 
  
∆ fus H = Tf∆ fusS = (427.15K) × (5.52 J K−1 mol−1) = +2.4 kJ mol−1  

4B.6(b) On the assumption that the vapour is a perfect gas and that ∆vapH is independent of 
temperature, we may write [4B.11] 

 
  
p = p∗e−χ , χ =

∆vap H
R









 ×

1
T
−

1
T ∗






, ln p∗

p
= χ  

 

  

1
T
=

1
T ∗

+
R

∆vap H
ln p∗

p

=
1

293.2 K
+

8.3145J K−1 mol−1

32.7 ×103 J mol−1 × ln 58.0
66.0






= 3.378 ×10−3 K−1

 

Hence 
  
T =

1
3.378 ×10−3 K−1 = 296 K = 23°C  

4B.7(b) Integrating the Clausius-Clapeyron eqation (4B.10) yields an expression for ln p: 

 
  

d ln p∫ =
∆vap H

RT 2∫ dT  

so 
  
ln p = constant −

∆vap H
RT

 

Therefore, 
  
∆vap H = 3036.8 K × R = 8.3145 J K−1  mol−1 × (3036.8 K) = +25.25kJ mol−1  

4B.8(b) (i) The indefinitely integrated form of eqn 4B.10 is used as in Exercise 4B.7(b). 

 
  
ln p = constant −

∆vap H
RT

, or log p = constant −
∆vap H

2.303 RT
 

Thus 

  

∆vap H = 1625K × R × 2.303 = 1625K × 8.3145 J K−1  mol−1 × 2.303

= 31.11kJ mol−1

 

(ii) The normal boiling point corresponds to p = 1.000 atm = 760 Torr, 

so 
  
log 760 = 8.750 − 1625 K

T
 

and 
  
T =

1625 K
8.750 − log 760

= 276.9 K  

4B.9(b)  

  

∆T ≈
∆ fusV
∆ fusS

× ∆p [4B.5a and Exercise 4B.5(a)]

≈
Tf∆ fusV
∆ fus H

× ∆p =
Tf M∆p
∆ fus H

× ∆ 1
ρ







[Vm = M / ρ]

 

Normal freezing point is Tf = (273.15 – 3.65) K = 269.50 K at a pressure of 1 atm, which is 
about 0.1 MPa. Thus, to the nearest MPa, ∆p = 100 MPa = 1.00×108 Pa 

 
 
 

4 



 

  

∆T ≈
269.50 K × 46.1 g mol−1 × (1.00 ×108  Pa)

8.68 ×103 J mol−1 ×
1

0.789 g cm−3 −
1

0.801g cm−3








≈ 2.7 K

 

Therefore, at 100 MPa, Tf = (269.50+2.7) K = 272.2 K or –1.0°C. 

4B.10(b) The rate of loss of mass of water may be expressed as 

 
  

dm
dt

=
d
dt

(nM ) where n = q
∆vap H

 

Thus 
  

dn
dt

=
dq dt
∆vap H

=
(0.87 ×103 W m−2 ) × (104  m2 )

44.0 ×103 J mol−1 = 200 mols−1  

and 
  
dm
dt

= (200 mol s−1) × (18.02 g mol−1) = 3.6 kg s−1  

4B.11(b) The equilibrium vapour pressure of ice at –5°C is 0.40 kPa Therefore, the frost would 
sublime. A partial pressure of  0.40 kPa  or more would ensure that the frost remains. 

4B.12(b) (i) According to Trouton’s rule (eqn 3A.17) 

 
  
∆vap H ≈ 85J K−1 mol−1 × Tb = 85J K−1 mol−1 × 342.2 K = 29.1 kJ mol−1  

(ii) Use the integrated form of the Clausius–Clapeyron equation (eqn 4B.11) rearranged to 

 
  
ln

p2

p1







=
∆vap H

R
×

1
T1

−
1
T2







 

At T1 = 342.2 K, p1 = 1.000 atm [normal boiling point]; thus at 25°C 

 
  
ln

p2

1.000 atm






=

2.91×104 J mol−1

8.3145 J K−1  mol−1







×

1
342.2 K

−
1

298.2 K





= −1.51  

and p2 = e–1.51 atm = 0.22 atm . 

At 60°C, 
  
ln

p2

1.000 atm






=

2.91×104 J mol−1

8.3145 J K−1  mol−1







×

1
342.2 K

−
1

333.2 K





= −0.276  

and p2 = e–0.276 atm = 0.76 atm . 

4B.13(b)  
  
∆T = Tf (10 MPa) − Tf (0.1MPa) =

Tf∆pM
∆ fus H

∆
1
ρ







 [Exercise 4B.9(b)] 

 

  

∆T =
(273.15K) × 9.9 ×106 Pa ×18.0 g mol−1

6.01×103 J mol−1








×
1

0.998 g cm−3 −
1

0.915 g cm−3







= −0.74 K

 

 Tf(10 MPa) = (273.15 – 0.74) K = 272.41 K. 

4B.14(b)  ∆vapH = ∆vapU + ∆vap(pV) = 43.5 kJ mol–1 
 ∆vap(pV) = p∆vapV = p(Vgas – Vliq) ≈ pVgas = RT [perfect gas] 
 ∆vap(pV) ≈ (8.3145 J K–1 mol–1) × (352 K) = 2.93×103 J mol–1  

 
  
Fraction =

∆vap ( pV )
∆vap H

=
2.93kJ mol−1

43.5kJ mol−1 = 0.0673 = 6.73per cent  

Solutions to problems 
4B.2 Use the definite integral form of the Clausius–Clapeyron equation [Exercise 4B.12(b)]. 

 
  
ln

p2

p1







=
∆vap H

R
×

1
T1

−
1
T2







 

At T1 = (273.15 – 29.2) K = 244.0 K (normal boiling point), p1 = 1.000 atm; thus at 40°C 
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ln

p2

1.000 atm






=

20.25×103 J mol−1

8.3145 J K−1  mol−1







× 1

244.0 K
− 1

313.2 K





= 2.205 

and p2 = 1.000 atm × e2.205 = 9.07 atm 
Comment. Three significant figures are not really warranted in this answer because of the 
approximations employed. 

4B.4 (a) 

  

p

∂µ(l)
∂T







−
p

∂µ(s)
∂T







= −Sm (l) + Sm (s) = −∆ fusS =
−∆ fus H

Tf

 [4B.12]

= −6.01×103 J mol−1

273.15K
= −22.0 J K−1mol−1

 

(b) 

  

p

∂µ(g)
∂T







−
p

∂µ(l)
∂T







= −Sm (g) + Sm (l) = −∆vapS =
−∆vap H

Tb

= −40.6 ×103 J mol−1

373.15K
=  −108.8 J K−1  mol−1

 

(c) µ(l,–5°C) – µ(s,–5°C) = µ(l,–5°C) – µ(l,0°C) – {µ(s,–5°C) – µ(s,0°C)} 
because µ(l,0°C) = µ(s,0°C) 
Thus µ(l,–5°C) – µ(s,–5°C) = ∆µ(l) – ∆µ(s) 
where ∆µ is the difference in chemical potential of a given phase at –5°C compared to that at 
normal freezing temperature. 

 
  
∆µ ≈

p

∂µ
∂T






∆T = −Sm∆T  [4B.1] 

so {µ(l,–5°C) – µ(l,0°C)} –{ µ(s,–5°C)– µ(s,0°C)} = –∆fusS ∆T 

  µ(l,−5°C) − µ(s,−5°C) = −(+22.0 J K−1 mol−1) × (−5K) = +110 J mol−1  
Since µ(l,–5°C) > µ(s,–5°C), there is a thermodynamic tendency to freeze. 

4B.6  
  

dp
dT

=
∆ fusS
∆ fusV

[4B.5a] =
∆ fus H

T∆ fusV
 [4B.6] 

Thus 
  
dT =

T∆ fusV
∆ fus H

dp . 

Integrate both sides: 

 
  
∆T = dT

Tf,top

Tf,bot∫ =
Tm∆ fusV
∆ fus H

d p
ptop

pbot∫ =
Tm∆ fusV
∆ fus H

∆p  [assuming the integrand is constant] 

Now ∆p = pbot – ptop = ρgh ; 

so 

  

∆T =
Tmρgh∆ fusV

∆ fus H

=
(234.3K) × (13.6 g cm−3 ) × (9.81m s−2 ) × (10.0 m) × (0.517 cm3 mol−1)

2.292 ×103  J mol-1 ×
1 kg
103  g

= 0.071 K

 

Therefore, the freezing point changes to  234.4 K  

4B.8 Integrating the Clausius-Clapeyron eqation [4B.10] yields an expression for ln p: 

 
  
ln p = constant −

∆vap H
RT

 

Therefore, plot ln p against 1/T and identify –∆vapH/R as the slope of the plot. Construct the 
following table 

θ /°C 0 20 40 50 70 80 90 100 
T / K 273 293 313 323 343 353 363 373 
1000 K / T 3.66 3.41 3.19 3.10 2.92 2.83 2.75 2.68 
ln (p / kPa) 0.652 1.85 2.87 3.32 4.13 4.49 4.83 5.14 
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Figure 4B.1 
 

 
 
 
 

The points are plotted in Figure 4B.1. The slope is –4569 K, so 

 
  

−∆vap H
R

= −4569 K, or ∆vap H = +38.0 kJ mol-1  

The normal boiling point occurs at p = 1 atm = 101.3 kPa, or at ln(p/kPa) = 4.618, which from 
the figure corresponds to 1000 K/T = 2.80. Therefore, Tb = 357 K (84°C) The accepted value 
is 83°C. 

4B.10 The slope of the solid–vapour coexistence curve is given by 

 
  

dp
dT

=
∆sub H

T∆subV
 [analogous to 4B.9] so ∆sub H = T∆subV

dp
dT

 

 
Figure 4B.2 

 
The slope can be obtained by differentiating an equation fit to the coexistence curve (Figure 
4B.2). Fit the data to an exponential function or take natural logarithms of the pressures and 
make a linear fit to the transformed data. The fit equation is 
  p/Pa = 2.659×10–10 e0.1687T/K 
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so 
  
dp
dT

= (2.659 ×10−10  Pa) × (0.1687 K−1) × e0.1687T /K = 4.41Pa K−1  at 150 K. 

The change in volume is essentially the volume of the vapour 

 
  
Vm = RT

p
=

(8.3145 J K−1  mol−1) × (150 K)
(2.659 ×10−10  Pa) × e0.1687×150 = 47.7 m3  

So 
  
∆sub H Ο = (150 K) × (47.7 m3) × 4.41Pa K−1 = 3.16 ×104 J mol−1 = 31.6 kJ mol−1  

4B.12  dH = CpdT + V dp implies d∆H = ∆CpdT + ∆V dp , 
where ∆ signifies a difference between phases. Along a phase boundary dp and dT are related 
by 

 
  
dp
dT

= ∆H
T∆V

 [4B.6 or 4B.9] 

Therefore, 

 
  
d∆H = ∆Cp + ∆V ×

∆H
T∆V







dT = ∆Cp +
∆H
T







dT and d∆H
dT

= ∆Cp +
∆H
T

 

Then, since 

 
  

d
dT

∆H
T






=

1
T

d∆H
dT

−
∆H
T 2 =

1
T

d∆H
dT

−
∆H
T







 

substituting the first result gives 

 
  

d
dT

∆H
T






=
∆Cp

T
 

Therefore, 

 ( ) d
d  d In p

p

C TH C T
T T

∆∆ = = ∆  

4B.14 Equation 4B.3 gives the vapour pressure of a liquid under an additional applied pressure ∆P: 
   p = p*eVm (l)∆P/ RT  
The applied pressure is the hydrostatic pressure of the liquid overlying the depth d: 
 ∆P = ρgd 
The molar volume of the liquid is 
 Vm(l) = M / ρ 
Substituting into eqn. 4B.3 yields 
 p = p*eMgd/RT 
For a 10-m column of water at 25°C, 

 
  

Mgd
RT

=
(18.02 ×10−3  kg mol−1) × (9.81 m s−2 ) × (10 m)

(8.3145 J K−1  mol−1) × (298 K)
= 7.1×10−4  

so 
  

p
p* = e7.1×10−4

≈ 1+ 7.1×10−4  

That is, the fractional increase in vapor pressure is 7.1×10–4 or 0.071 per cent. 

4B.16 In each phase the slopes of curves of chemical potential plotted against temperature are 

 
  p

∂µ
∂T







= −Sm  [4.1] 

The curvatures of the graphs are given by 

 
  p

∂2µ
∂T 2







= −

p

∂Sm

∂T






 

To evaluate this derivative, consider dS at constant p: 

 
  
dS =

dqrev

T
=

dH
T

=
CpdT

T
 so 

  p

∂2µ
∂T 2







= −

p

∂Sm

∂T






= −

Cp,m

T
 

Since Cp,m is necessarily positive, the curvatures in all states of matter are necessarily 
negative. Cp,m is often largest for the liquid state, though not always. In any event, it is the 
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ratio Cp,m/T that determines the magnitude of the curvature, so no general answer can be given 
for the state with the greatest curvature. It depends upon the substance. 

4B.18  S = S(T,p) 

 
  
dS =

p

∂S
∂T







dT +
T

∂S
∂p







dp  

 
  p

∂S
∂T







=
Cp

T
 [Problem 4B.16]

T

∂S
∂p







= −
p

∂V
∂T







 [Table 3D.1] = −αVm  

 
  
dqrev = T  dS = Cp dT − T

p

∂V
∂T





 dp  

 
  
CS =

S

∂q
∂T







= Cp − TVα
S

∂p
∂T







= Cp −αV ×
∆ trs H
∆ trsV

[4B.6] 

Integrated activities 

4.2 (a) The phase diagram is shown in Figure I4.1. 
 
Figure I4.1 
 

 
 

(b) The standard melting point is the temperature at which solid and liquid are in equilibrium 
at 1 bar. That temperature can be found by solving the equation of the solid–liquid coexistence 
curve for the temperature: 
 1 = p3/bar + 1000(5.60+11.727x)x . 
Put the equation into standard form: 
 11727x2 + 5600x + (4.362×10–7 –1) = 0 
The quadratic formula yields 

 
{ } ( )

( )
2

1/21/22

11727

4 11727
5600

5600

1 15600 (5600) 4 11727 (–1)

2 11727 2
x

×− ± +− ± − × ×
= =

× ×
 

The square root is rewritten to make it clear that the square root is of the form 
  

1+ a{ }1 2
, with 

  a = 1 ; thus the numerator is approximately 
  
−1+ 1+ 1

2 a( )= 1
2 a , and the whole expression 

reduces to 
 x ≈ 1/5600 = 1.79×10–4 . 
Thus, the melting point is 
 T = (1+x)T3 = (1.000179) × (178.15 K) = 178.18 K. 
(c) The standard boiling point is the temperature at which the liquid and vapour are in 
equilibrium at 1 bar. That temperature can be found by solving the equation of the liquid–
vapour coexistence curve for the temperature. This equation is too complicated to solve 
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analytically, but not difficult to solve numerically with a spreadsheet. The calculated answer is 
y = 0.6459, 
so T = 0.6459 × 593.95 K = 383.6 K . 
(d) The slope of the liquid–vapour coexistence curve is given by 

 
  

dp
dT

=
∆vap H

T∆vapV
 [4B.9] so ∆vap H = T∆vapV

dp
dT

 

The slope can be obtained by differentiating the equation for the coexistence curve. 

 
  

dp
dT

= p d ln p
dT

= p d ln p
dy

dy
dT

 

 

  

dp
dT

=
10.413

y2 −15.996 + 2(14.015)y − 3(5.0120)y2 − (1.70) × (4.7224) × (1− y)0.70






×
p

Tc








 

Substituting the value of y at the boiling point yields, 

 
  
dp
dT

= 2.848 ×10−2 bar K−1 = 2.848kPa K−1  

and 
  
∆vap H = (383.6 K) × (30.3− 0.12)dm3 mol−1

1000dm3 m−3







× (2.848kPa K−1) = 33.0 kJ mol−1  

4.4 (a) The phase boundary is plotted in Figure I4.2. 
 
Figure I4.2 
 
 

 
(b) The standard boiling point is the temperature at which the liquid is in equilibrium with the 
standard pressure of 1 bar (0.1 MPa). Interpolation of the plotted points gives Tb = 112 K. 
(c) The slope of the liquid–vapor coexistence curve is given by 

 
  

dp
dT

=
∆vap H

T∆vapV
 [4B.9] so ∆vap H = (T∆vapV ) dp

dT
 

The slope can be obtained graphically or by fitting the points nearest the boiling point. Then 

 
  
dp
dT

= 8.14 ×10−3 MPa K−1  

so 
  
∆vap H = (112 K) × (8.89 − 0.0380)dm3 mol−1

1000dm3 m−3







× (8.14 kPa K−1) = 8.07 kJ mol−1  
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5 Simple mixtures 

5A The thermodynamic description of mixtures 

Answers to discussion questions 
5A.2 As noted in Topic 5A.1(b), dG = dwadd,max (where wadd stands for additional (non-expansion) 

work) for systems at constant temperature and pressure. Therefore [5A.8] 
 dwadd,max = μAdnA + μBdnB + ... 
Thus non-expansion work can arise from the changing composition of a system. Physically, 
it should not be surprising that at least energy can be changed by changing composition, by 
a chemical reaction transforming a species into one that is more or less favored 
energetically. In an electrochemical cell, where the reaction takes place at two distinct sites, 
the electrical work of transporting charge between the electrodes can be traced to changes in 
composition as products are formed from reactants. 

5A.4 See Topic 5A.3(a). In both cases, the vapor pressure of a component in a solution is 
proportional to its concentration (mole fraction) in the solution, at least in the limit of low 
concentration: 
 pJ ∝ xJ  
If the proportionality constant is the component’s vapor pressure as a pure substance, then 
Raoult’s law is a good approximation [5A.21]. Substitution of Raoult’s law into eqn 5A.20 
for the chemical potential yields eqn 5A.22: 
 µA = µA* + RT ln xA 
If Raoult’s law applies to both or all components of a mixture over a large range of 
composition, then we call the solution ideal. If, on the other hand, only the solvent obeys 
Raoult’s law, and it may only obey it in the limit of mole fractions close to 1, we call the 
solution ideal-dilute if the solutes obey Henry’s law [5A.23]. Substitution of Henry’s law 
into eqn 5A.20 for solutes yields eqn 5E.8: 

   µB = µB
O + RT ln xB  where 

  
µB

O = µB
* + RT ln

KB

pB
*  [5E.7] 

Solutions to exercises 

5A.1(b) The partial molar volume is 

 
  
VJ =

∂V
∂nJ






 p,T , ′n

 [5A.1] = dv
dx







dV
dv







dx
dnJ







 

Right away we see that VA = 0 because V is independent of nA [dx/dnA = 0] 

 

3

B

2 3 1

2 3

3

cm( )
mol

–22.5749 2 0.56892 3 0.01023 4 0.00234

–22.5749 1.13784 0.03069 0.00936( ) cm  mol

x x x

x x x

V

−

 
=  


+ × + × + ×

+



= + +

 

5A.2(b) Let A stand for water and B for MgSO4(aq) 

 
  
VJ =

∂V
∂nJ






 p,T , ′n

 [5A.1] = dv
dx







dV
dv







∂x
∂nJ






 ′n

 

Now 
  
x = b

bO =
nB

nA MAbO  so 
A

O
B A A

1

n

x
n n M b

 ∂
= ∂ 

 

and 
  
VB = 2× 34.69× (x − 0.070) cm3

nA MAbO  

Evaluate this expression for b = 0.050 mol kg–1 (x = 0.050), recalling that the original 
expression for v applies for 1.000 kg of water (i.e., for nAMA = 1.000 kg). The result is VB = 
–1.4 cm3 mol–1 . 
The total volume consisting of 0.050 mol of MgSO4 and 1.000 kg (55.49 mol) water is 
 V = 1001.21 + 34.69 × (0.050–0.070)2 = 1001.23 cm3 . 
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The total volume is also equal to 
 V = VAnA + VBnB [5A.3] . 

Therefore, 
  
VA =

V −VBnB

nA

= 1001.21 cm3 − (−1.4 cm3)× (0.050 mol)
55.49 mol

= 18.04 cm3 mol−1  

Question. VA is essentially the same as the molar volume of pure water, but clearly VB is 
not even approximately the molar volume of pure solid MgSO4. What meaning can be 
ascribed to a negative partial molar volume? 

5A.3(b) Use the Gibbs-Duhem equation [5A.13], replacing infinitesimal changes in chemical 
potential (dµJ) with small finite changes (δµJ) 

 
  
δµB ≈ −

nA

nB

δµA = −
0.22nB

nB

× (−15 J mol−1) = +3.3 J mol−1  

5A.4(b) The Gibbs energy of mixing perfect gases is 
 ∆mixG = nRT(xA ln xA + xB ln xB) [5A.16] = pV(xA ln xA + xB ln xB) [perfect gas law] 
Because the compartments are of equal size, each contains half of the gas; therefore, 

 
( )mix

3
3 3 3

6 3

1 1 1 1( ) ln ln ln 2
2 2 2 2

1m(100 10 Pa) (250cm ) ln 2 17.3 Pa m = 17.3 J
10  cm

G pV pV∆ = × + = −

 
= − × × × = − − 

 

 

 
  
∆mixS = −nR(xA ln xA + xB ln xB ) [5A.17] =

−∆mixG
T

= +17.3 J
273 K

= +0.635 J K−1  

5A.5(b)  
  
∆mixS = −nR xJ

J
∑ ln xJ  [5A.17] 

We need mole fractions: 

 

  

xJ =
nJ

nJ
J
∑

 

Since we have mass percentages, 100.0 g is a convenient sample size. The amounts of each 
component are 

 
  
nN2

= 75.52 g × 1 mol
2×14.007 g

= 2.696 mol  

 
  
nO2

= 23.15 g × 1 mol
2×15.999 g

= 0.7235 mol  

 
  
nAr = 1.28 g × 1 mol

39.95 g
= 0.0320 mol  

 
  
nCO2

= 0.046 g × 1 mol
(12.011+ 2×15.999) g

= 0.00105 mol  

The mole fractions are 

 
  
xN2

=
nN2

nN2
+ nO2

+ nAr + nCO2

=
2.696 mol

(2.696+ 0.7235+ 0.0320+ 0.00105) mol
= 0.7809  

Similarly, 
  
xO2

= 0.2096 , xAr = 0.00928, and 
  
xCO2

= 0.00030 . 

Once we have mole fractions, the convenient sample size is for a total of one mole of gas: 
 

  

∆mixS = −R xJ ln xJ
J
∑ = −R{(0.7809ln0.7809)+ (0.2096ln0.2096)

+(0.00928ln0.00928)+ (0.00030ln0.00030)}
= 0.5665R = +4.710 J K−1  mol−1

 

From the data in Exercise 5A.5(a), the entropy of mixing was 
 

  

∆mixS = −R xJ ln xJ
J
∑

= −R{(0.781ln0.781)+ (0.210ln0.210)+ (0.0094ln0.0094)}
= 0.565R = +4.70 J K−1  mol−1

 

 
 
 

2 



So the difference is 

 1 1
mix mixΔ (b) – Δ (a) 0.0015 0.012 J K  molS S R − −= = +  

Comment. We can readily see that the data in this exercise (b) includes the CO2 term, 
which contributes –R(0.00030 ln 0.00030) = 0.0025R to the entropy of mixing—more than 
the total difference. The fact that the mole fractions of the other components are slightly 
smaller in part (b) to make room for the small amount of CO2 partly offsets the direct CO2 
term itself. 

5A.6(b) Let 12 refer to 1,2-dimethylbenzene and 13 to 1,3-dimethylbenzene. Because the two 
components are structurally similar, we assume Raoult’s Law [5A.21] applies. 
 ptotal = p12 + p13 = x12p12* + x13p13* = (0.500)(20 + 18) kPa = 19 kPa. 
The mole fractions in the vapor phase are the ratios of partial to total pressure: 

 
  
x12,vap =

p12

ptotal

=
xliq,12 p12

*

ptotal

=
(0.500)(20 kPa)

19 kPa
= 0.53  and xvap,13 = 0.47 

5A.7(b) Total volume V = nAVA + nBVB = n(xAVA + xBVB), where n = nA + nB 
Total mass m = nAMA + nBMB = n{xAMA + (1–xA)MB} 

So 

  

n = m
xA MA + (1− xA )MB

= 1.000 ×103 g
(0.3713) × (241.1g mol−1) + (1− 0.3713) × (198.2 g mol−1)

= 4.670 mol

 

and 

  

V = n(xAVA + xBVB )

= (4.670 mol) ×{(0.3713) × (188.2) + (1− 0.3713) × (176.14)} cm3  mol−1

= 843.5 cm3

 

5A.8(b) Let W denote water and E ethanol. The total volume of the solution is 
 V = nWVW + nEVE 
We are given VE, we need to determine nW and nE in order to solve for VW, for 

 
  
VW =

V − nEVE

nW

 

Take 100 cm3 of solution as a convenient sample. The mass of this sample is 
 m = ρV = (0.9687 g cm–3) × (100 cm3) = 96.87 g . 
80 per cent of this mass water and 20 per cent ethanol, so the moles of each component are 

 
  
nW =

(0.80) × (96.87 g)
18.02 −1g mol

= 4.3 mol  and 
  
nE =

(0.20) × (96.87 g)
46.07 −1g mol

= 0.42 mol−1 . 

 
  
VW =

V − nEVE

nW

=
100 cm3 − (0.42 mol) × (52.2 cm3  mol−1)

4.3 mol
= 18 cm3  mol−1  

5A.9(b) Henry’s law is [5A.23] pB = xBKB, so check whether pB / xB is equal to a constant (KB)  
x  0.010 0.015 0.020 
p/kPa 82.0 122.0 166.1 
(p/kPa) / x 8.2×103 8.1×103 8.3×103 
Hence, KB = p / x = 8.2×103 kPa (average value). 

5A.10(b) Refer to Brief Illustration 5A.4 and use the Henry’s Law constant from Table 5A.1. Henry’s 
law in terms of molal concentration is pB = bBKB. So the molal solubility of methane in 
benzene at 25°C in equilibrium with 1.0 bar of methane is 

 
  
bCH4

=
pCH4

KCH4

=
100 kPa

44.4×103 kPa kg mol−1 = 2.25 ×10−3  mol kg−1  

To find the molar solubility, we assume that the density of the solution is the same as that of 
pure benzene, given at a nearby temperature (20°C) in Table 0.1: 

 
  
[CH4] = bCH4

ρbenzene = 2.25 ×10−3  mol kg−1 × 0.879 kg dm−3 = 2.0×10−3  mol dm−3  

5A.11(b) With concentrations expressed in molalities, Henry’s law [5A.23] becomes pB = bBKB. 
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Solving for bB, the molality, we have 
  
bB =

pB

K
=

xB ptotal

K
, 

where ptotal = 1 atm = 101.3 kPa 
For N2, K = 1.56×105 kPa kg mol–1 [Table 5A.1] 

 
  
b = 0.78 ×101.3 kPa

1.56 ×105  kPa kg mol−1 = 5.1×10−4  mol kg−1    

For O2, K = 7.92×104 kPa kg mol–1 [Table 5A.1] 

 
  
b = 0.21×101.3 kPa

7.92 ×104  kPa kg mol−1 = 2.7 ×10−4  mol kg−1  

5A.12(b) As in Exercise 5A.11(b), we have 

 
  
bB =

pB

K
=

2.0 ×101.3 kPa
3.01×103  kPa kg mol−1 = 0.067 mol kg−1  

Hence, the molality of the solution is about 0.067 mol kg–1. Since molalities and molar 
concentrations (molarities) for dilute aqueous solutions are numerically approximately 
equal, the molar concentration is about 0.067 mol dm–3. 

 
Solutions to problems 

5A.2 C = 1; hence, according to the phase rule (eqn 4A.1) F = C – P + 2 = 3 – P 
Since the tube is sealed there will always be some gaseous compound in equilibrium with the 
condensed phases. Thus when liquid begins to form upon melting, P = 3 (s, l, and g) and F = 
0, corresponding to a definite melting temperature. At the transition to a normal liquid, P = 3 
(l, l′, and g) as well, so again F = 0. 

5A.4 Letting B stand for CuSO4(aq), the partial molar volume of the dissolved salt is 

 

  

VB =
∂V
∂nB






 nA

 [5A.1] 

We will determine VB by plotting V against nB while holding nA constant. We can find the 
volume from the density: 

 
  
ρ =

mA + mB

V
 so 

  
V =

mA + mB

ρ
. 

The data include the composition of the solution expressed as mass percent. (That is, 
m(CuSO4)/g, the mass in grams of B dissolved in 100 g solution, is numerically equal to w, 
defined as mass of B over total solution mass expressed as a percent). For our plot, we need nB 
per fixed amount of A. Let us choose that fixed quantity to be mA = 1 kg exactly, so nB is 
numerically equal to the molal concentration. So 

 
  
nB =

mB

MB

 

such that 
  

mB

mA + mB

×100 = w . 

Solve for mB: 

 
  
mB =

wmA

100 − w
. 

Draw up the following table of values of mB, nB, and V at each data point, using mA = 1000 g. 
W 5 10 15 20 
ρ /(g cm–3) 1.051 1.107 1.167 1.23 
mB/g 52.6 111.1 176.5 250.0 
nB/mol 0.330 0.696 1.106 1.566 
V/cm3 1001.6 1003.7 1008.1 1016.3 
VB/(cm3 mol–1) 2.91 8.21 14.13 20.78 
A plot V against nB is shown in Figure 5A.1. 

 

 
 
 

4 



 
Figure 5A.1 

 
 
 

To find the partial molar volume, draw tangent lines to the curve at each of the data points and 
measure the slope of each tangent. Alternatively, fit the curve to a polynomial and 
differentiate the fit equation. A quadratic equation fits the data quite well 
 V/cm3 = 7.226(nB/mol)2 – 1.851(nB/mol) + 1001.4 , 

so 

  

VB / cm3 =
∂V / cm3

∂nB / mol





 nA

= 2 × 7.226 × (nB / mol) −1.851  

Comment. Selecting mA = 1000 g is arbitrary. If you chose a different value for mA, your 
table will have different values for mB, nB, and V; however, you should arrive at the same 
values for VB. 

5A.6 From Example 5A.1, we have 
 VE/(cm3 mol–1) = 54.6664 – 0.72788x + 0.084468x2 , 
where x = nE/mol mixed with 1.000 kg water. Thus, x is also equal to the numerical value of 
the molality. To find the minimum in VE, differentiate it and set the derivative equal to zero: 

 
  

dVE(cm3 mol−1)
dx

= −0.72788+ 2× 0.084468x = 0  

Thus 
  
x = 0.72788

2× 0.084468
= 4.3086  so b = 4.3086 mol kg–1 

This value is consistent with Figure 5A.3 of the main text. 

 

5B The properties of solutions 

Answers to discussion question 
5B.2 All of the colligative properties result from the lowering of the chemical potential of the 

solvent due to the presence of the solute. This reduction takes the form µA = µA
* + RT ln xA 

or µA = µA
* + RT ln aA, depending on whether or not the solution can be considered ideal. 

The lowering of the chemical potential results in a freezing point depression and a boiling 
point elevation as illustrated in Figure 5B.6 of the text. Both of these effects can be 
explained by the lowering of the vapour pressure of the solvent in solution due to the 
presence of the solute. The solute molecules get in the way of the solvent molecules, 
reducing their escaping tendency. 

Solutions to exercises 

5B.1(b) In Exercise 5A.10(b), the Henry’s law constant was determined for concentrations 
expressed in mole fractions; KB = 8.2×103 kPa. Thus the concentration must be converted 
from molality to mole fraction 
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 mA = 1000 g, corresponding to 
  
nA = 1000 g

74.1 −1g mol
= 13.50 mol  

Therefore 
  
xB = 0.25 mol

(0.25mol) + (13.50 mol)
= 0.018  

The pressure is 
 pB = KBxB [5A.23] = (0.018) × (8.2×103 kPa) = 1.5×102 kPa . 

5B.2(b) We assume that the solvent, 2-propanol, is ideal and obeys Raoult’s law [5A.21]. 

 
  
xA (solvent) = p

p* =
49.62
50.00

= 0.9924  

Since MA(C3H8O) = 60.096 g mol–1, 

 
  
nA =

250 g
60.096 g mol−1 = 4.16 mol  

 
  
xA =

nA

nA + nB

   so   nA + nB =
nA

xA

. 

Hence 
  
nB = nA

1
xA

−1






= 4.16 mol × 1

0.9924
−1






= 3.12 ×10−2  mol  

and 
  
MB =

mB

nB

=
8.69 g

3.12 ×10−2  mol
= 273 g mol−1  

5B.3(b) Let B denote the compound and A the solvent, naphthalene. Kf = 6.94 K kg mol–1 [Table 
5B.1] 

 
  
MB  = 

mB

nB

 

 nB = mA bB where 
  
bB =

∆T
Kf

 [5B.13] 

Thus 
  
MB =

mB Kf

mA∆T
=

(5.00 g) × (6.94 K kg mol−1)
(0.250 kg) × (0.780 K)

= 178 g mol−1   

5B.4(b) From the osmotic pressure, compute the concentration, and from the concentration the 
freezing point. According to the van’t Hoff equation [5B.16], the osmotic pressure is 

 Π = [B]RT so 
  
[B] = Π

RT
=

nB

Vsoln

 

The expression for freezing point depression [5B.13] includes the molality b rather than the 
molarity [B]. In dilute solutions, the two concentration measures are readily related: 

 
  
b =

nB

mA

≈
nB

Vsolnρsoln

=
[B]
ρsoln

=
Π

RTρsoln

 

The freezing point depression is 

 
  
∆T = Kf b ≈

KfΠ
RTρsoln

 where Kf = 1.86 K mol–1 kg [Table 5B.1] 

The density of a dilute aqueous solution is approximately that of water: 
 ρ ≈ 1.0 g cm–3 =1.0×103 kg m–3  

So 
  
∆T ≈

(1.86 −1K kg mol ) × (99 ×103 Pa)
(8.3145 J K−1  mol−1) × (288 K) × (103 −3kg m )

= 0.077 K  

Therefore, the solution will freeze at about –0.077°C. 

5B.5(b)  
  
∆mixG  = nRT  xJ

J
∑ ln xJ  [5A.16] and

 
  
∆mixS  = − nR xJ

J
∑ ln xJ  [5A.17] = 

−∆mixG
T
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 n = 2.00 mol and xhexane = xheptane = 0.500 
Therefore, 
 

  

∆mixG = (2.00 mol) × (8.3145 J K−1  mol−1) × (298 K) × 2 × (0.500 ln 0.500)

= −3.43×103  J = −3.43 kJ

 

and 
  
∆mixS  =

−∆mixG
T

= +3.43×103  
298 K

= +11.5 J K−1  

For an ideal solution, ∆mixH = 0, just as it is for a mixture of perfect gases [5A.18]. It can be 
demonstrated from 

 
  
∆mix H = ∆mixG +T∆mixS = ∆mixG +T

−∆mixG
T







= 0  

5B.6(b) (i) Benzene and ethylbenzene form nearly ideal solutions, so. 
 ∆mixS = –nRT(xA ln xA + xB ln xB) [5A.17] 
We need to differentiate eqn 5A.17 with respect to xA and look for the value of xA at which 
the derivative is zero. Since xB = 1 –xA, we need to differentiate  
 ∆mixS = –nRT{xA ln xA + (1–xA)ln(1–xA)} 

This gives 
  

using d ln x
dx

= 1
x





   

 
  

d∆mixS
dxA

= −nR{ln xA +1− ln(1− xA ) −1}= −nR ln
xA

1− xA

  

which is zero when 
  
xA = 1

2
. Hence, the maximum entropy of mixing occurs for the 

preparation of a mixture that contains equal mole fractions of the two components.  
 
(ii) Because entropy of mixing is maximized when nE = nB (changing to notation specific to 
Benzene and Ethylbenzene) 

 
  

mE

ME

=
mB

MB

 

This makes the mass ratio 

 
  

mB

mE

=
MB

ME

= 78.11 g mol−1

106.17 g mol−1 = 0.7357  

5B.7(b) The ideal solubility in terms of mole fraction is given by eqn 5B.15: 

 

  

ln xPb =
∆ fus H

R
× 1

Tf

− 1
T








= 5.2 ×103  J mol−1

8.3145 J K−1  mol−1







× 1

600.K
− 1

553K





= −0.089

 

Therefore, xPb = e–0.089 = 0.92 . 

 
  
xPb =

nPb

nBi + nPb

 implying that 
  
nPb =

nBixPb

1− xPb

=
mBi

MBi

×
xPb

1− xPb

  

Hence the amount of lead that dissolves in 1 kg of bismuth is 

 
  
nPb =

1000 g
209 g mol−1 ×

0.92
1− 0.92

= 52 mol  

or, in mass units, mPb = nPb×MPb = 52 mol × 207 g mol–1 = 1.1×104 g = 11 kg. 
Comment. A mixture of 11 kg of lead and 1 kg of bismuth would normally be regarded as a 
solution of bismuth in lead, not the other way around. It is unlikely that such a mixture 
could be regarded as an ideal dilute solution of lead in bismuth. Under such circumstances 
eqn 5B.15 ought to be considered suggestive at best, rather than quantitative. 

5B.8(b) The best value of the molar mass is obtained from values of the data extrapolated to zero 
concentration, since it is under this condition that the van’t Hoff equation (5B.16) applies. 
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 ΠV = nBRT so 
 
Π = mRT

MV
= cRT

M
 where c = m/V . 

But the osmotic pressure is also equal to the hydrostatic pressure 

 Π = ρgh [1A.1] so 
 
h = RT

ρgM






c  

 
Figure 5B.1 

 
Hence, plot h against c and identify the slope as 

 
RT
ρgM

. Figure 5B.1 shows the plot of the 

data. The slope of the line is 1.78 cm /(g dm–3), so 

 
  

RT
ρgM

=
1.78 cm
g dm−3 = 1.78 cm dm3  g−1 = 1.78 ×10−2  m4  kg−1  

Therefore, 

 

  

M = RT
(ρg) × (1.78 ×10−2  m4  kg−1)

=
(8.3145 J K−1  mol−1) × (293K)

(1.000 ×103 −3kg m ) × (9.81 m s−2 ) × (1.78 ×10−2  m4  kg−1)
= 14.0 kg mol-1

 

5B.9(b) In an ideal dilute solution the solvent (CCl4, A) obeys Raoult’s law [5A.21] and the solute 
(Br2, B) obeys Henry’s law [5A.23]; hence 

   pA = xA p* = (0.934)× (23 kPa) = 21.5 kPa  
 pB = xBKB = (0.066) × (73 kPa) = 4.8 kPa  

   ptotal = (21.5 + 4.8) kPa = 26.3 kPa  
The composition of the vapour in equilibrium with the liquid is 

 
  
yA =

pA

ptotal

= 21.5 kPa
23.3 kPa

= 0.82  and 
  
yB =

pB

ptotal

= 4.8 kPa
23.3 kPa

= 0.18  

5B.10(b) Let subscript 12 denote the 1,2 isomer and 13 the 1,3 isomer. Assume that the structurally 
similar liquids obey Raoult’s law [5A.21]. The partial pressures of the two liquids sum to 19 
kPa. 
 p13 + p12 = p = x13p13

* + x12p12
* = x13p13

* + (1–x13)p12
* 

Solve for x13: 

 
  
x13 =

p − p12
*

p13
* − p12

* =
(19− 20) kPa
(18− 20) kPa

= 0.5  

and x12 = 1 – 0.5 = 0.5 . 
The vapour phase mole fractions are given by eqn 1A.8: 
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y13 =

p13

p
=

x13 p13
*

p
=

(0.5)×18 kPa
19 kPa

= 0.47  

and 
  
y12 =

x12 p12
*

p
=

(0.5)× 20.0 kPa
50.7 kPa

= 0.53 . 

5B.11(b) The partial vapour pressures are given by Raoult’s law [5A.21]: 
 pA = xApA

* and pB = xBpB
* = (1–xB)pB

* . 
Eqn 1A.8 relates these vapour pressures to the vapour-phase mole fractions: 

 
  
yA =

pA

ptotal

=
xA pA

*

xA pA
* + (1− xA ) pB

*
 

Solve for xA: 

 

  

xA pA
* + (1− xA ) pB

* =
xA pA

*

yA

xA pA
* − pB

* −
pA

*

yA









 = − pB

*

xA =
pB

*

pB
* +

pA
*

yA

− pA
*

=
82.1 kPa

82.1+ 68.8
0.621

− 68.8






 kPa
= 0.662

 

and xB = 1 – xA = 1 – 0.662 = 0.338 . 
The total vapour pressure is 
 ptotal = xApA

* + xBpB
* = 0.662 × 68.8 kPa + 0.338 × 82.1 kPa = 73.3 kPa . 

5B.12(b) (i) If the solution is ideal, then the partial vapour pressures are given by Raoult’s law 
[5A.21]: 
 pA° = xApA

* = 0.4217 × 110.1 kPa = 46.4 kPa 
and pB° = xBpB

* = (1–xB)pB
* = (1–0.4217) × 76.5 kPa = 44.2 kPa . 

(Note the use of the symbol ° to emphasize that these are idealized quantities; we do not yet 
know if they are the actual partial vapour pressures.) At the normal boiling temperature, the 
partial vapour pressures must add up to 1 atm (101.3 kPa). These ideal partial vapour 
pressures add up to only 90.7 kPa, so the solution is not ideal. 
(ii) We actually do not have enough information to compute the initial composition of the 
vapour above the solution. The activities and activity coefficients are defined by the actual 
partial vapour pressures. We know only that the actual vapour pressures must sum to 101.3 
kPa. We can make a further assumption that the proportions of the vapours are the same as 
given by Raoult’s law. That is, we assume that 

 
  
yA = yA ° =

pA °
pA ° + pB°

=
46.4 kPa

(46.4 + 44.2) kPa
= 0.512  

and 
  
yB = yB° =

pB°
pA ° + pB°

=
44.2 kPa

(46.4 + 44.2) kPa
= 0.488 . 

By Eqn. 1A.8, the actual partial vapour pressures would then be 
 pA = yAptotal = 0.512 × 101.3 kPa = 51.9 kPa 
and pB = yBptotal = 0.488 × 101.3 kPa = 49.4 kPa . 
To find the activity coefficients, note that 

 
  
γ A =

pA

xA pA
* =

pA

pA °
=

51.9 kPa
46.4 kPa

= 1.117  and 
 
γ B =

49.4 kPa
44.2 kPa

= 1.117  

Comment. Assuming that the actual proportions of the vapours are the same as the ideal 
proportions begs the question (i.e., arrives at the answer by assumption rather than 
calculation). The assumption is not unreasonable, though. It is equivalent to assuming that 
the activity coefficients of the two components are equal (when in principle they could be 
different). The facts that the difference between ideal and actual total pressure is relatively 
small (on the order of 10%), that non-ideal behavior is due to the interaction of the two 
components, and that the two components are present in comparable quantities combine to 
suggest that the error we make in making this assumption is fairly small. 

 
 
 

9 



5B.13(b) (i) If the solution is ideal, then the partial vapour pressures are given by Raoult’s law 
[5A.21]: 
 pB = xBpB

* = 0.50 × 9.9 kPa = 4.95 kPa 
 pT = xTpT

* = 0.50 × 2.9 kPa = 1.45 kPa 
The total pressure is 
 ptotal = pB + pT = (4.95 + 1.45) kPa = 6.4 kPa . 
(ii) The composition of the vapour is given by 

 
  
yB =

pB

ptotal

=
4.95 kPa
6.4 kPa

= 0.77  

and 
  
yT =

pT

ptotal

=
1.45 kPa
6.4 kPa

= 0.23  

(iii) When only a few drops of liquid remain, the equimolar mixture is almost entirely 
vapour. Thus yB = yT = 0.50, which implies that 
 pB = xBpB

* = pT = xTpT
* = (1–xB)pT

* . 
Solving for xB yields 

 
  
xB =

pT
*

pB
* + pT

* =
2.9 kPa

(9.9 + 2.9) kPa
= 0.23  

The partial vapour pressures are 
 pB = xBpB

* = 0.23 × 9.9 kPa = 2.24 kPa = pT [vapour mixture is equimolar] = ptotal/2 . 
The total pressure is 
 ptotal = 2pB = 4.5 kPa . 
Comment. Notice that an equimolar liquid mixture yields a vapour composition directly 
proportional to the vapour pressures of the pure liquids. Conversely, an equimolar vapour 
mixture implies a liquid composition inversely proportional to those vapour pressures. 

Solutions to problems 
5B.2 The apparent molality is 

 
  
bapp =

∆T
Kf

 [5B.13] = 0.0703 K
1.86 K/(mol kg−1)

= 0.0378 mol kg−1  

Since the solution molality is nominally 0.0096 mol kg–1 in Th(NO3)4, each formula unit 

supplies 
 
0.0378
0.0096

≈ 4 ions . (More careful data, as described in the original reference gives 5 

to 6 ions.) 

5B.4 (a) Let V1
* be the molar volume of pure propionic acid and V1 be its partial molar volume in 

the mixture (and V2
* and V2 the analogous quantities for oxane). The volume of an ideal 

mixture is additive 
 Videal = n1V1

* + n2V2
*, 

so the volume of a real mixture is 
 V = Videal + VE . 
We have an expression for excess molar volume in terms of mole fractions. To compute 
partial molar volumes, we need an expression for the excess volume as a function of moles 

 
  
V E = (n1 + n2 )Vm

E =
n1n2

n1 + n2

a0 +
a1(n1 − n2 )

n1 + n2







 

so 
  
V = n1V1

* + n2V2
* +

n1n2

n1 + n2

a0 +
a1(n1 − n2 )

n1 + n2







 

The partial molar volume of propionic acid is 

 

  

V1 =
n2

∂V
∂n1







= V1

* +
a0n2

2

(n1 + n2 )2 +
a1(3n1 − n2 )n2

2

(n1 + n2 )3 = V1
* + a0x2

2 + a1(3x1 − x2 )x2
2  

That of oxane is 

 

  

V2 =
n1

∂V
∂n2







= V2

* +
a0n1

2

(n1 + n2 )2 +
a1(n1

3 − 3n1
2n2

2 )
(n1 + n2 )3 = V2

* + a0x1
2 + a1(x1 − 3x2 )x1

2  
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(b) We need the molar volumes of the pure liquids 

 
  
V1

* =
M1

ρ1

=
74.08 g mol−1

0.97174 g cm−3 = 76.23 cm3  mol−1  

and 
  
V2

* =
M2

ρ2

=
86.13 g mol−1

0.86398 g cm−3 = 99.69 cm3  mol−1  

In an equimolar mixture, the partial molar volume of propionic acid is 
 

  

V1 = 76.23+ (−2.4697) × (0.5)2 + (0.0608) ×{3(0.5) − 0.5}× (0.5)2  cm3  mol−1

= 75.63 cm3  mol−1

 

and that of oxane is 
 

  

V2 = 99.69 + (−2.4697) × (0.5)2 + (0.0608) ×{0.5− 3(0.5)}× (0.5)2  cm3  mol−1

= 99.06 cm3  mol−1

 

5B.6 In this mixture, x = 0.250, so 
 GE = RT(0.250)(1–0.250){0.4857–0.1077(0.500–1)+0.0191(0.500–1)2} = 0.1021RT 
Therefore, since 
 ∆mixG = ∆mixGideal + nGE = nRT(xA ln xA + xB ln xB) + nGE [5B.5 and 5A.16] 
 ∆mixG = nRT(0.250 ln 0.250 + 0.750 ln 0.750) + 0.1021nRT = –0.460nRT 
 ∆mixG = –0.460 × 4.00 mol × 8.3145 J mol–1 K–1 × 303.15 K = –4.64 kJ mol–1 . 

5B.8 
  
µA =

nB

∂G
∂nA







 [5A.4] = µA
ideal +

nB

∂
∂nA

(nGE )






[5B.5] where µA
ideal = µA

* + RT ln xA  [5A.22]  

 

  nB

∂nGE

∂nA







= GE + n

nB

∂GE

∂nA







= G E + n

nB

∂xA

∂nA






 nB

∂GE

∂xA







 

where 

  nB

∂xA

∂nA







= ∂
∂nA

nA

nA + nB







=

1
nA + nB

−
nA

(nA + nB )2 =
nB

(nA + nB )2 =
xB

nA + nB

=
xB

n
 

Hence 

  nB

∂nGE

∂nA







= GE + xB

nB

∂GE

∂xA







= gRTxA (1− xA ) + (1− xA )gRT (1− 2xA )  

After expanding and collecting terms, we arrive at 

 

  nB

∂nGE

∂nA







= gRT (1− xA )2 = gRTxB

2  

Therefore, 
  
µA = µA

* + RT ln xA + gRTxB
2  

This function is plotted for several values of the parameter g in Figure 5B.2. 
 
Figure 5B.2 
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5B.10 By the van’t Hoff equation [5B.16] 

 
  
Π = [B]RT = cRT

M
 

Division by the standard acceleration of free fall, g, gives 

 
  
Π
g
=

c(R / g)T
M

 

(a) This expression may be written in the form 

 
 
′Π = c ′R T

M
 

which has the same form as the van’t Hoff equation, but the unit of osmotic pressure (Π′) is 
now 

 
 

force / area
length / time2 =

(mass length) / (area time2 )
length / time2 =

mass
area

 

This ratio can be specified in g cm–2. Likewise, the constant of proportionality (R′) would have 
the units of R/g. 

 
 

energy K−1 mol−1

length / time2 =
(mass length2 / 2time ) K−1 mol−1

length / time2 = mass length K−1  mol−1  

This result may be specified in g cm K–1 mol–1 . 

 

  

′R = R
g
= 8.314 47 J K−1 mol−1

9.80665m s−2

= 0.847840 kg m K−1 mol−1 103 g
kg







× 102 cm

m







= 84784.0 g cm K−1 mol−1

 

In the following we will drop the primes giving 

 
 
Π = cRT

M
 

and use the Π units of g cm–2 and the R units g cm K–1 mol–1. 
(b) By extrapolating the low concentration plot of Π / c versus c (Figure 5B.3(a)) to c = 0 we 
find the intercept 230 g cm–2/(g cm–3). In this limit the van’t Hoff equation is valid so 

 
Figure 5B.3(a) 

 
 

  
RT
M

= intercept  or 
  
M = RT

intercept
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M = RT

intercept
=

(84784.0 g cm K−1 mol−1) × (298.15K)
(230 g cm−2 ) / (g cm−3 )

= 1.1×105  g mol−1  

(c) The plot of Π / c versus c for the full concentration range (Figure 5B.3(b)) is very 
nonlinear. We may conclude that the solvent is good. This may be due to the nonpolar nature 
of both solvent and solute. 

 
Figure 5B.3(b) 

 

 
 

(d) The virial analogue to the van’t Hoff equation (eqn. 5B.18) rearranges to 
   Π / c = (RT / M )(1+ ′B c + ′C c2 )  
Since RT / M has been determined in part (b) by extrapolation to c = 0, it is best to determine 
the second and third virial coefficients with the linear regression fit 

 
  
(Π / c) / (RT / M )−1

c
= ′B + ′C c  

 R = 0.9791. 
 B′ = 21.4 cm3 g–1; standard deviation = 2.4 cm3 g–1 . 
 C′ = 211 cm6 g–2; standard deviation = 15 cm6 g–2 .  
(e) Using 1/4 for g and neglecting terms beyond the second power, we may write 

 ( ) ( ) ( )1 2 1 2 11
2

RT B c
c M
Π / /

′= +  

We can solve for B′ , then g(B′)2 = C′ . 

 
( )
( )

1 2

1 2
11
2

c B c
RT
M

Π /

/
′− =  

RT / M has been determined above as 230 g cm–2/(g cm–3). We may analytically solve for B′ 
from one of the data points, say,   Π / c = 430 g cm−2 / g cm−3  at c = 0.033 g cm–3. 

 
  

430 g cm−2 / g cm−3

230 g cm−2 / g cm−3








1/2

−1= 1
2

′B × (0.033 g cm−3 )  
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′B =

2 × (1.367 −1)
0.033 g cm−3 = 22 cm3  g−1  

   ′C = g( ′B )2 = 0.25× (22 cm3  g−1)2 = 123 cm6  g−2  

Better values of B′ and C′ can be obtained by plotting ( ) ( )1 2 1 2RT
c M
Π / //  against c. This plot is 

shown in Figure 5B.3(c). The slope is 14 cm3 g–1. B′ =2 × slope = 28 cm3 g–1. C′ is then 

 
196 cm6  g−2 . The intercept of this plot should theoretically be 1.00, but it is in fact 0.916 

with a standard deviation of 0.066. The overall consistency of the values of the parameters 
confirms that g is roughly 1/4 as assumed. 

 
 Figure 5B.3(c) 

 
5B.12 The Gibbs energy of mixing an ideal solution is [5A.16] 

 ∆mixG = nRT(xA ln xA + xB ln xB) 
The molar Gibbs energy of mixing is plotted against composition for several temperatures in 
Fig. 5B.4. The legend shows the temperature in kelvins. 

 
Figure 5B.4 
 

 
The composition at which the temperature dependence is strongest is the composition at which 
the function has its largest magnitude, namely xA = xB = 0.5. 

5B.14 The theoretical solubility [5B.15] is 
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 fus
B

f

Δ 1 1ln
H

x
R T T

 
= − 

 
 

so fus fus
B

f

Δ Δ
exp exp

H H
x

RT RT
   = −   

  
 

and fus fus fusB
2

f

Δ Δ Δd
exp exp

d
H H Hx

T RT RT RT
     = − ×     

    
 

This expression can be plotted as a function of temperature for various values of the enthalpy 
of fusion and the freezing temperature. The dependence on the freezing temperature is 
relatively uninteresting, though, since it enters into a factor that is independent of temperature, 

namely fus

f

Δ
exp

H
RT

 
 
 

 

So we will ignore the effect of the freezing temperature and simply plot dxB/dT with this factor 
divided out. That is, in Figure 5B.5, we plot f(T) vs. T for several values of ∆fusH between 1 
and 10 kJ mol–1, where 

 fus fus
2

Δ Δ
( ) exp

H H
f T

RT RT
   = − ×   
   

 

 
Figure 5B.5 

 
Note that the function does not appear to consistently as we increase ∆fusH. This apparent 
inconsistency would be removed, though, if we plotted over a temperature range that extended 
back to T = 0. The function has a maximum because the exponential factor increases toward a 
constant value of 1 with increasing temperature while the other factor decreases toward zero. 
The higher the value of ∆fusH. the higher the temperature at which f(T) is maximal and the 
lower the value of that maximum value. For ∆fusH = 1 or 2 kJ mol–1, the maximum occurs at 
temperatures lower than those shown and for ∆fusH = 10 kJ mol–1 it occurs at a higher 
temperature than those shown. 

 

5C Phase diagrams of binary systems 

Answers to discussion question 
5C.2 A low-boiling azeotrope has a boiling temperature lower than that of either component, so it 

is easier to get the molecules into the vapor phase than in a “normal” (non-azeotropic) 
mixture. Therefore, the liquid phase has less favorable intermolecular interactions than in a 
“normal” mixture, a sign that the components are less attracted to each other in the liquid 
phase than to molecules of their own kind. These intermolecular interactions are determined 
by factors such as dipole moment (polarity) and hydrogen bonding. Conversely, a high-
boiling azeotrope has a boiling temperature higher than that of either component, so it is 
more difficult to get the molecules into the vapor phase. This reflects the relatively unusual 
situation of components that have more favorable intermolecular interactions with each 
other in the liquid phase than with molecules of their own kind. The concepts of ideal 
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mixtures of liquids (in Topic 5A) and deviations from ideal behavior (in Topics 5B and 5E) 
will further define the behavior of “normal” (ideal) mixtures. 

Solutions to exercises 

5C.1(b) Add the boiling point of A to the table at xA = yA = 1 and the boiling point of B at xB = yB = 
0. Plot the boiling temperatures against liquid mole fractions and the same boiling 
temperatures against vapour mole fractions on the same plot. 
The phase diagram is shown in Figure 5C.1. The phase boundary curves are polynomial fits 
to the data points. 

 
Figure 5C.1 

 
 
 

(i) Find xA = 0.50 on the lower curve and draw a horizontal tie line to the upper curve. The 
mole fraction at that point is yA = 0.82. 
(ii) Find xA = 0.67 (i.e., xB = 0.33) on the lower curve and draw a horizontal tie line to the 
upper curve. The mole fraction at that point is yA = 0.91 (i.e., yB = 0.09). 

5C.2(b) The phase diagram is shown in Figure 5C.2. 
 
Figure 5C.2 
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5C.3(b) Refer to the figure given with the exercise. At the lowest temperature shown on the phase 
diagram, there are two liquid phases, a water-rich phase (xB = 0.07) and a methylpropanol-
rich phase (xB = 0.88); the latter phase is about 10 times as abundant as the former (lever 
rule). On heating, the compositions of the two phases change, the water-rich phase 
increasing significantly in methylpropanol and the methylpropanol-rich phase more 
gradually increasing in water. (Note how the composition of the left side of the diagram 
changes more with temperature than the right.) The relative proportions of the phases 
continue to be given by the lever rule. Just before the isopleth intersects the phase boundary, 
the methylpropanol-rich phase (xB = 0.84) is in equilibrium with a vanishingly small water-
rich phase (xB = 0.3). Then the phases merge, and the single-phase region is encountered 
with xB = 0.3. 

5C.4(b) The feature that indicates incongruent melting (Topic 5C.4(c)) is circled in Figure 5C.3. The 
incongruent melting point is marked as T1. The composition of the eutectic is xB ≈ 0.58 and 
its melting point is labeled T2 . 

 
Figure 5C.3 

 

 
5C.5(b) The cooling curves corresponding to the phase diagram in Figure 5C.4(a) are shown in 

Figure 5C.4(b). Note the breaks (abrupt change in slope) at temperatures corresponding to 
points a1, b1, and b2. Also note the eutectic halts at a2 and b3. 
 
Figure 5C.4 
 

 
 

5C.6(b) Refer to Figure 5C.5. Dotted horizontal lines have been drawn at the relevant temperatures. 
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Figure 5C.5 

 
 
 

 
(i) At 500°C, the phase diagram shows a single liquid phase at all compositions, so B is 
soluble in A in all proportions. 
(ii) At 390°C, solid B exists in equilibrium with a liquid whose composition is circled and 
labeled x1 on Figure 5.11. That composition is xB = x1 = 0.63. 
(iii) At point x2, two phases coexist: solid AB2 and a liquid mixture of A and B with mole 
fraction xB = x2 = 0.41. Although the liquid does not contain any AB2 units, we can think of 
the liquid as a mixture of dissociated AB2 in A. Call the amount (moles) of the compound nc 
and that of free A na. Thus, the amount of A (regardless of whether free or in the 
compound) is 
 nA = na + nc , 
and the amount of B is 
 nB = 2nc . 
The mole fraction of B is 

 
  
xB = x2 =

nB

nA + nB

=
2nc

(na + nc ) + 2nc

=
2nc

na + 3nc

 

Rearrange this relationship, collecting terms in nc on one side and na on the other: 
 nax2 = nc(2–3x2) . 
The mole ratio of compound to free A is given by 

 
  

nc

na

=
x2

2 − 3x2

=
0.41

2 − 3× 0.41
= 0.53 . 

5C.7(b) The phase diagram is shown in Figure 5C.6. Point symbols are plotted at the given data 
points. The lines are schematic at best. 
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Figure 5C.6 

 
At 860°C, a solid solution with x(ZrF4) = 0.27 appears. The solid solution continues to 
form, and its ZrF4 content increases until it reaches x(ZrF4) = 0.40 at 830°C. At that 
temperature and below, the entire sample is solid. 

5C.8(b) The phase diagram for this system (Figure 5C.7) is very similar to that for the system 
methyl ethyl ether and diborane of Exercise 5C.7(a). The regions of the diagram contain 
analogous substances. The mixture in this Exercise has a diborane mole fraction of 0.80. 
Follow this isopleth down to see that crystallization begins at about 123 K. The liquid in 
equilibrium with the solid becomes progressively richer in diborane until the liquid 
composition reaches 0.90 at 104 K. Below that temperature the system is a mixture of solid 
compound and solid diborane. 

 
Figure 5C.7 

 
5C.9(b) The cooling curves are sketched in Figure 5C.8. Note the breaks and halts. The breaks 

correspond to changes in the rate of cooling due to the freezing out of a solid which releases 
its heat of fusion and thus slows down the cooling process. The halts correspond to the 
existence of three phases and hence no variance until one of the phases disappears. 

 
Figure 5C.8 
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5C.10(b) The phase diagram is sketched in Figure 5C.9. 

 
 
Figure 5C.9 

 
(i) When xA falls to 0.47, a second liquid phase appears. The amount of new phase increases 
as xA falls and the amount of original phase decreases until, at xA = 0.314, only one liquid 
remains. 
(ii) The mixture has a single liquid phase at all compositions. 

Solutions to problems 
5C.2 (a) The phase diagram is shown in Figure 5C.10. 

 
Figure 5C.10 
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(b) We need not interpolate data, for 296.0 K is a temperature for which we have experimental 
data. The mole fraction of N, N-dimethylacetamide in the heptane-rich phase (call the point α, 
at the left of the tie line) is 0.168 and in the acetamide-rich phase (β, at right) 0.804. The 
proportions of the two phases are in an inverse ratio of the distance their mole fractions are 
from the composition point in question, according to the lever rule. That is 

 
  
nα / nβ = lβ / lα = (0.804 − 0.750) / (0.750 − 0.168) = 0.093  

The smooth curve through the data crosses x = 0.750 at 302.5 K, the temperature at which the 
heptane-rich phase will vanish. 

5C.4 Figure 5C.11 displays the phase diagram. A compound with probable formula A3B exists. It 
melts incongruently at 700 °C , undergoing the peritectic reaction 
  A3B(s)→ A(s) + (A + B,  l)  
The proportions of A and B in the product are dependent upon the overall composition and the 
temperature. A eutectic exists at 400°C and xB = 0.83. 

 
Figure 5C.11 

 
5C.6 The information has been used to construct the phase diagram in Figure 5C.12(a). In MgCu2 

the mass percentage of Mg is  
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(100) × 24.3

24.3+127
= 16  

and in Mg2Cu it is 

 
 
(100) × 48.6

48.6 + 63.5
= 43 .  

The initial point is a1, corresponding to a single-phase liquid system. At a2 (at 720°C) MgCu2 
begins to come out of solution and the liquid becomes richer in Mg, moving toward e2. At a3 
there is solid MgCu2 + liquid of composition e2 (33 per cent by mass of Mg). This solution 
freezes without further change. The cooling curve will resemble that shown in Figure 
5C.12(b). 

 
Figure 5C.12 
 

 
5C.8 The data are plotted in Figure 5C.13. At 360°C, K2FeCl4(s) appears. The solution becomes 

richer in FeCl2 until the temperature reaches 351°C, at which point KFeCl3(s) also appears. 
Below 351°C the system is a mixture of K2FeCl4(s) and KFeCl3(s). 

 
Figure 5C.13 

 
5C.10 Equation 5C.5 is 
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p =

pA
* pB

*

pA
* + ( pB

* − pA
* )yA

 

First divide both sides by   pA
*  to express the pressure in units of   pA

* . Next, divide both 

numerator and denominator by   pB
*  to see if the right hand side can be expressed as a function 

of the ratio   pA
* / pB

*  rather than of each vapor pressure separately: 

 
  
p / pA

* =
1

pA
* / pB

* + (1− pA
* / pB

* )yA

 

The plot of   p / pA
*  vs. yA at several values of the vapor pressure ratio is shown in Figure 5C.4 

of the main text. 
 

5C.12  Equation 5C.7 is 

  

The simplest way to construct a plot of ξ vs. xA is to isolate ξ: 

  

A plot based on this equation is shown in Figure 5C.14(a). 
 
Figure 5C.14(a) 

 
 (a) The graphical method described in section 5C.3(b) and illustrated in the main text’s 
Figure 5C.19 is also shown below in Figure 5C.14(b). Here the left-hand side of eqn 5C.7 is 
plotted as the bold curve, and the lighter lines are the right-hand side for ξ = 1, 2, 3, and 5. 
Small squares are placed where the curve intersects one of the lines. Note that the curve 
intersects every line at xA = ½, the composition at which HE is maximized. For values of ξ ≤ 
2, that is the only point of intersection; for values of ξ > 2, there are two additional points of 
intersection arranged at equal distance from xA = ½. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

23 



Figure 5C.14(b) 

 
 
The root xA = ½ is unlike the other roots of eqn 5C.7 in several respects. The graphical 
approach shows that it is a root for all values of ξ. That fact can be confirmed by inspection by 
substituting xA = ½ into eqn 5C.7, leading to 0 = 0 for any finite value of ξ. For ξ > 2, that root 
of eqn 5C.7 is a maximum in the Gibbs energy, not a minimum, as can be seen in Figure 
5C.18 of the main text.  However, in the equation obtained by isolating ξ, xA = ½ leads only to 
ξ = 2. That equation yields an indeterminate form for xA = ½, but application of L’Hospital’s 
rule yields 

 
1 1 1

2 2 2

A
1 1

A A A A A

A A

ln
1 ln ln(1 ) ( ) 2 2lim lim lim 2

2 1 2 1 2 2x x x

x
x x x x x

x x

− −

→ → →

− − − − − +
= = = =

− −
 

(b) One method of numerical solution is illustrated by the following cells from a spreadsheet. 
Set up one column to represent xA, one for the left-hand side of eqn 5C.7, and one for the 
right-hand side (with variable ). From the cells shown here, it is apparent that 

 when xA = 0.9980 or 0.9985, but  when xA = 

0.9990. Therefore, the value of xA when the two sides were equal lies somewhere between 
0.9985 and 0.9990, or, to three decimal places, at 0.999. Therefore, a root of eqn 5C.7 when ξ 
= 7 is xA = 0.999. 
x ln(x/(1-x)) 7(2x–1) 
0.998 6.213 6.972 
0.9985 6.501 6.979 
0.999 6.907 6.986 

 
 

5D Phase diagrams of ternary systems 

Answers to discussion question 
5D.2 The lever rule [5C.6] applies in a ternary system, but with an important caveat. The tie lines 

along which the rule applies are experimentally determined, not necessarily horizontal lines 
or lines parallel to any edge of the triangular diagram. Thus the lever rule applies, but as a 
practical matter it can be used only in the vicinity of plotted tie lines. (By contrast, recall 
that the lever rule in a binary phase diagram could be applied within a two-phase region 
simply by drawing a horizontal line to the appropriate phase boundaries.) See Topic 5D.2(a) 
and Figure 5D.4 of the main text. 

Solutions to exercises 

5D.1(b) The ordered triples (xA, xB, xC) are plotted in Figure 5D.1. The vertices of the triangular 
phase diagram are labeled for the component that is pure at that vertex. For example, the top 
of the diagram is pure A: (1, 0, 0). As a reminder, at the edge opposite a labeled vertex, that 
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component’s mole fraction is zero. For example, the base of the diagram represents 
compositions (0, xB, xC). 

 
 
Figure 5D.1 
 

 
5D.2(b) Note that the compositions are given in mass percentages, not mole percentages, so we 

simply convert to moles before plotting. Assume a convenient sample size, such as 100 g, 
making the numerical values of the mass percentages equal to masses in grams: 

(i) NaCl:  
 
33 g × 1 mol

58.44 g
= 0.565 mol  

Na2SO4⋅10H2O: 
 
33 g × 1 mol

322.21 g
= 0.102 mol  

H2O:   
 
34 g × 1 mol

18.016 g
= 1.89 mol  

To get mole fractions, divide these amounts by the total amount of 2.55 mol: 

 
  
x(NaCl) = 0.565 mol

2.55 mol
= 0.22  

 x (Na2SO4⋅10H2O) = 0.040  x(H2O) = 0.74 
This composition is point a in Figure 5D.2. 
(ii) We want to plot a line representing equal masses of salt with varying amounts of water. 
One point on that line has no water. Compute the mole fractions that correspond to the 
amounts of salt computed in part (a) with no water. In that case, the total amount is: 
   ntotal = (0.565 + 0.102) mol = 0.667 mol  

so 
  
x(NaCl) = 0.565 mol

0.667 mol
= 0.85  and x (Na2SO4⋅10H2O) = 0.15 

Plot this point on the edge opposite the vertex labeled H2O. The other extreme has the salts 
in the same proportions, but in amounts negligible compared to that of water, so the other 
end of this line lies at the vertex labeled H2O. The line is labeled b on Figure 5D.2, and note 
that it goes through point (a) as it must. 

 
Figure 5D.2 
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5D.3(b) First convert to moles and find composition by mole fraction. 

H2O (W):  
 
55.0 g × 1 mol

18.016 g
= 3.05 mol  

CHCl3 (C):  
 
8.8 g × 1 mol

119.4 g
= 0.074 mol  

CH3COOH (A): 
 
3.7 g × 1 mol

60.05 g
= 0.062 mol  

To get mole fractions, divide these amounts by the total amount of 3.19 mol: 

 
  
xW =

3.05 mol
3.19 mol

= 0.958  x C = 0.023  xA = 0.019 

This point is plotted in Figure 5D.3; it is very close to the label W in the original Figure 
5D.4 of the main text. One phase is present, since our point lies outside the phase-boundary 
arc (to the left of it). 
(i) If water is added to our mixture, the composition changes from our point along the very 
short line connecting it to the vertex labeled W. The system remains in a single phase. 
(ii) If acetic acid is added to our mixture, the composition changes from our point along the 
line connecting it to the vertex labeled A. The system remains in a single phase. 

Figure 5D.3 
 

 
5D.4(b) The phase diagram showing the four given compositions is shown in Figure 5D.4. 
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Figure 5D.4 

 
 
Point (a) is in a two-phase region and point (b) in a three-phase region. Point (c) is 
practically in a single-phase region; that is, it is on the border between a single-phase and a 
two-phase region, so there would be a vanishingly small amount of a second phase present. 
Finally, point (d), for which all three components are present in nearly equal amounts, is in 
a three-phase region (although very near the border with a two-phase region). 

5D.5(b) (i) Note the line in Figure 5D. 5 that runs from the water-NH4Cl edge near x(NH4Cl) = 0.2 
(the point that represents a saturated aqueous solution of NH4Cl) to the (NH4)2SO4 vertex. 
Traveling along that line from the edge to the vertex represents adding (NH4)2SO4 to a 
saturated aqueous solution of NH4Cl. Note that it traverses the single-phase region at first. 
That is, the added (NH4)2SO4 dissolves and does not cause NH4Cl to precipitate out. If one 
starts with saturated aqueous NH4Cl with solid NH4Cl in excess, then the starting point is a 
bit further down on the water-NH4Cl edge, for example at x(NH4Cl) = 0.3. Adding 
(NH4)2SO4 to such a solution would take one from that point to the (NH4)2SO4 vertex. 
Initially, the system remains in the two-phase region, but eventually a single-phase region is 
reached. Note that the line intersects the single-phase region at a higher NH4Cl-water ratio 
and even a higher overall x(NH4Cl) than that of saturated aqueous NH4Cl. (That is, there is 
not only more NH4Cl relative to water at that intersection point, but NH4Cl is a larger 
fraction of the saturated three-component solution than it was in the saturated two-
component system of water and NH4Cl.) So here too, the effect of adding (NH4)2SO4 is to 
make additional NH4Cl dissolve, at least at first. 
Figure 5D.5 
 

 
 
(ii) First convert to moles for a convenient sample size, such as 100 g, and find composition 
by mole fraction. 

NH4Cl:  
 
25 g × 1 mol

53.49 g
= 0.467 mol  

(NH4)2SO4:  
 
75 g × 1 mol

132.15 g
= 0.568 mol  

To get mole fractions, divide these amounts by the total amount of 1.03 mol: 

 
  
x(NH4Cl) = 0.467 mol

1.03 mol
= 0.45  x((NH4)2SO4) = 0.55 
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So the system’s starting point is on the baseline of the triangle, and the path it traverses 
joins the initial point on the baseline to the H2O vertex. As soon as water is introduced, a 
third (saturated aqueous) phase is formed in equilibrium with two solid phases. As more 
water is added, one of the solid phases disappears, and the two remaining phases consist of 
a saturated aqueous phase and a solid rich in (NH4)2SO4. Eventually, as still more water is 
added, that solid phase also disappears, leaving a single aqueous phase at x(H2O) ≥ 0.63. 

 
Solutions to problem 

5D.2 (i) The phase diagram is shown in Figure 5D.6. 
 
Figure 5D.6 

 
 
(ii) Lines from the baseline (the CO2-nitroethane edge) to the DEC vertex represent 
compositions obtained by adding DEC to a CO2-nitroethane mixture. Such lines that avoid 
two-phase regions represent compositions of CO2 and nitroethane to which addition of DEC 
can cause no phase separation. The range of such CO2-nitroethane compositions can be found 
by drawing lines from the DEC vertex to the baseline tangent to the two-phase arcs. On 
Figure 5.26, the dashed lines are tangent to the two two-phase regions, and they intersect the 
baseline at x = 0.2 and x = 0.4 (where x is mole fraction of nitroethane). So binary CO2-
nitroethane compositions between these would show no phase separation if DEC is added to 
them in any amount. (Keep in mind, though, that the phase boundaries here are sketched, not 
plotted, so the tangent lines are only approximate.) 

 

5E Activities 

Answers to discussion question 
5E.2 Raoult’s law [5A.21] assumes that the vapor pressure of a solvent in solution (or of a liquid 

in a mixture of liquids) is simply its pure-substance vapor pressure multiplied by its mole 
fraction in the mixture. That is, it assumes that the intermolecular interactions that produce 
equilibrium between pure liquid and vapor are unchanged except for the fact that only a 
fraction of the molecules in the liquid are molecules of the species of interest. In effect, 
Raoult’s law predicts vapor pressure based on pure-liquid vapor pressure and composition 
(mole fraction): 
 pA = pA*xA 
For real solutions, on the other hand, we modify Raoult’s law to say, in effect, whatever the 
vapor pressure really is, let us use that to define an “effective” mole fraction. Raoult’s law 
implies 

 
  

pA

pA
* = xA  

We modify this relationship to define activity: 
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pA

pA
* = aA  [5E.2] 

Solutions to exercises 

5E.1(b) Let A = water and B = solute. 

 
  
aA =

pA

pA
∗  [5E.2] = 0.02239 atm

0.02308 atm
= 0.9701  

 
  
γ A =

aA

xA

[5E.4] and xA =
nA

nA + nB

 

 
  
nA =

920 g
18.02 g mol−1 = 51.1 mol nB =

122 g
241 g mol−1 = 0.506 mol  

So 
  
xA =

51.1
51.1+ 0.506

= 0.990  and γ A =
0.9701
0.990

= 0.980  

5E.2(b) From eqn 1A.8 (partial pressures) and yA we can compute the partial pressures: 

 
  
yA =

pA

pA + pB

=
pA

101.3 kPa
= 0.314  

So pA = 101.3 kPa × 0.314 = 31.8 kPa 
and pB = 101.3 kPa – 31.8 kPa = 69.5 kPa 

 
  
aA =

pA

pA
∗  [5E.2]= 31.8 kPa

73.0 kPa
= 0.436 and aB =

pB

p*
B

= 69.5 kPa
92.1 kPa

= 0.755  

 
  
γ A =

aA

xA

 [5E.4] = 0.436
0.220

= 1.98 and γ B =
aB

xB

=
0.755
0.780

= 0.967  

5E.3(b) The biological standard state is defined as pH 7, which implies 
  
a

H+ = 10−7 . All other 
activities in the biological standard state are unity, just as in the chemical standard state; in 
the chemical standard state, 

  
a

H+ = 1= 100  as well (which implies pH 0). As a result, the 
biological standard molar Gibbs function for H+ is lower than that of the chemical standard 
by 7 RT ln 10 [5E.16], which is equal to 39.96 kJ mol–1 at 25°C [Brief illustration 5E.3]. 
For the given reaction, the standard Gibbs energy is 
 O O O O

f f fΔ Δ (B) 4Δ (H ) 2Δ (A)G G G G+= + −  
The biological standard is 

 f f f
O O 1 O

f f f

Δ Δ (B) 4Δ (H ) 2Δ (A)

Δ (B) 4{Δ (H ) 39.96 kJ mol } 2Δ (A)

G G G G
G G G

⊕ ⊕ ⊕ + ⊕

+ −

= + −

= + − −
 

Comparing the two, we have 

 O 1 1Δ Δ 4 39.96 kJ mol 159.84 kJ molG G⊕ − −− = − × = −  

5E.4(b) The partial pressures of both components are given by eqn 5E.19 

   pJ = pJ
*xJe

ξ (1−xJ )2

 
The total pressure is the sum of the two partial pressures. The vapor-pressure diagram is 
plotted in Figure 5E.1. 

 
Figure 5E.1 
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Comment. The figure shows that upon adding the other component to either pure 
component, the vapor pressure falls (as is evident from the fact that the total pressure 
decreases as one moves from either edge of the graph). This is consistent with the physical 
interpretation given in Topic 5E.3: negative ξ corresponds to exothermic mixing, reflecting 
favorable interactions between the components. 

Solutions to problems 

5E.2 
  
φ = −

xA

xB

ln aA = −
ln aA

r
        (a) 

Therefore,
  
dφ = − 1

r
d ln aA + 1

r 2 ln aAdr  

and 
  
d ln aA = 1

r
ln aAdr − rdφ .       (b) 

Now the Gibbs–Duhem equation [5A.12a], implies 
 xAdµA + xBdµB = 0 . 
Since µ = µ* + RT ln a, 
 xA d ln aA + xB d ln aB = 0 . 

Therefore 

  

d ln aB = −
xA

xB

d ln aA = −
d ln aA

r
= − 1

r 2 ln aA  dr + dφ  [from (b)]

= φ
r

dr + dφ  [from (a)] =φ  d ln r + dφ

 

Subtract d ln r from both sides, to obtain 

 
  
d ln

aB

r
= (φ −1)d ln r + dφ = (φ −1)

r
dr + dφ . 

Integrate both sides of the equality from pure A (where r = 0) to an arbitrary composition: 

 
  

dln
aB

r∫ =
(φ −1)

r
dr∫ + dφ∫  

The lower limit of the left-hand integral is: 

 
  
lim
r→0

ln
aB

r






= lim

r→0
ln

γ BxB

r






= lim

r→0
ln(γ BxA ) = ln1= 0 , 

leaving the desired expression 

  
  
ln

aB

r
= φ − φ(0) + φ −1

r






dr
0

r

∫  

5E.4 The partial pressure compared to its pure substance value, according to eqn 5E.19, is 

   pA / pA
* = xAeξ (1−xA )2

 
For small xA, this becomes approximately [5E.20] 
   pA / pA

* ≈ xAeξ  
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Certainly one would not expect this expression to hold over the entire range of compositions. 
In fact, the two equations differ pretty quickly, particularly for relatively large values of ξ. 
These two equations are plotted against xA in Figure 5E.2. 

 
Figure 5E.2 
 

 
At xA > 0.019, eqn 5E.20 exceeds 5E.19 by more than 10 per cent. 

 

5F The activities of ions 

Answers to discussion question 
5F.2 The Debye-Hückel theory of electrolyte solutions formulates deviations from ideal behavior 

(essentially, deviations due to electrostatic interactions) in terms of the work of charging the 
ions. The assumption is that the solute particles would behave ideally if they were not 
charged, and the difference in chemical potential between real and ideal behavior amounts 
to the work of putting electrical charges onto the ions. (Recall [Topic 3C.1(e)] that the 
Gibbs function is associated with maximum non-expansion work.) To find the work of 
charging, the distribution of ions must be found, and that is done using the shielded 
Coulomb potential [5F.15], which takes into account the ionic strength of the solution and 
the dielectric constant of the solvent. Details of the derivation are found in Topic 5F.2 
(particularly in the Justifications). The Debye-Hückel limiting law [5F.19b] (valid only for 
dilute solutions because of some truncated series expansions) gives a mean ionic activity 
coefficient that depends on the charges of the ions involved, the ionic strength of the 
solution, and on a constant [5F.20] that takes into account solvent properties and 
temperature. 

 
Solutions to exercises 

5F.1(b) The definition of ionic strength is 

 
  
I = 1

2
bi

bO







zi

2

i
∑  [5F.9] 

and if b is the molal concentration of an MpXq salt, the molal concentrations of the ions are 
 bM = p × b and bX = q × b . 

Hence  
  
I = 1

2
( pz+

2 + qz−
2 ) b

bO







 

For K3[Fe(CN)6] 
  
I = 1

2
(3×12 +1× 32 ) b

bO






= 6 b

bO







 

For KCl and NaBr (and any other compound of monovalent ions) 
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I = 1

2
(1×1+1×1) b

bO






=

b
bO







  

Thus, for this mixture 
 

  

I = I(K3[Fe(CN)6 ]) + I(KCl) + I(NaBr)

= 6
b(K3[Fe(CN)6 ])

bΟ







+

b(KCl)
bΟ

+
b(NaBr)

bΟ

= (6) × (0.040) + (0.030) + (0.050) = 0.320

 

Comment. Note that the strength of a solution of more than one electrolyte may be 
calculated by summing the ionic strengths of each electrolyte considered as a separate 

solution, as in the solution to this exercise, by summing the product 
  

1
2

bi

bO







zi

2  for each 

individual ion as in the definition of I [5F.9]. 
Question. Can you establish that the comment holds for this exercise? Note that the term 
for K+ in a sum over ions includes ions from two different salts. 

5F.2(b) The original KNO3 solution has an ionic strength of 0.110. (For compounds of monovalent 
ions, the ionic strength is numerically equal to the molal concentration, as shown in 
Exercise 5F.1(b).) Therefore, the ionic strengths of the added salts must be 0.890. 
(i) The salt to be added is monovalent, so an additional 0.890 mol kg–1 must be dissolved. 
The mass that must be added is therefore 
 (0.500 kg) × (0.890 mol kg–1) × (101.11 g mol–1) = 45.0 g . 

(ii) For Ba(NO3)2 
  
I = 1

2
(1× 22 + 2×12 ) b

bO







 [5F.9] = 3 b
bO







 

Therefore, the solution should be made 0.890 mol kg–1/3 = 0.297 mol kg–1 in Ba(NO3)2. The 
mass that should be added to 500 g of the solution is therefore 
 (0.500 kg) × (0.297 mol kg–1) × (261.32 g mol–1) = 38.8 g . 

5F.3(b) The solution is dilute, so use the Debye–Hückel limiting law. 
 log γ± = –|z+z–| AI1/2 [5F.8] 

 

  

I = 1
2

bi

bO







zi

2

i
∑ [5F.9] = 1

2
{(0.020×12 )+ (0.020×12 )+ (0.035× 22 )+ (2× 0.035×12 )}

= 0.125  
For NaCl: 
 log γ± = –1×1×0.509×(0.125)1/2 = –0.180 so γ± = 0.66 . 
The activities of the ions are 
 a(Na+) = a(Cl–) = γ±b/b° = 0.66 × 0.020 = 0.013 
Question: What are the activity coefficients and activities of Ca(NO3)2 in the same 
solution? 

5F.4(b) The extended Debye–Hückel law [5F.11a] is 

 
  
logγ ± = −

A | z+z− | I1/2

1+ BI1/2
 

Solving for B. 

 
  
B = −

1
I1/2 +

A | z+z− |
logγ ±







= −

1
(b / bΟ )1/2 +

0.509
logγ ±







 

Draw up the following table 
b / (mol kg–1) 5.0×10–3 10.0×10–3 50.0×10–3 

γ±  0.927 0.902 0.816 

B 1.32 1.36 1.29 
The values of B are reasonably constant, illustrating that the extended law fits these activity 
coefficients with B = 1.3 . 
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Solutions to problem 
5F.2 Specialized to 1,1 electrolytes, the Davies equation with C = 0 and Debye-Hückel limiting law 

are, respectively 

 
  
logγ ± = −

AI1/2

1+ BI1/2 [5F.11b] and

 
1/2

1/2
Olog 0.509 [5F.8] 0.509 [5F.9]bI

b
γ ±

 = − = −  
 

 

Figure 5F.1(a) shows a plot of log γ± vs. I1/2 for both equations. 
 
 
Figure 5F.1(a) 

 
It is clear that the values plotted differ by about 50% at the right side of the figure; however, 
note that the values plotted are log γ± and not γ±. Figure 5F.1(b) shows a plot of γ± vs. I1/2 for 
both equations. Toward the right side of this graph, one can see that the values plotted differ 
by about 10%. To be exact, for I < 0.086, the limiting law predicts activity coefficients within 
10% of those predicted by the extended law. 

 
Figure 5F.1(b) 

 
Integrated activities 

5.2 The data are plotted in Figure I5.1. The dotted lines correspond to Henry’s law vapour 
pressures and the dashed lines to Raoult’s law; the solid curves represent the experimental 
data. 

 
Figure I5.1 
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On a Raoult’s law basis, 
 
a = p

p∗
 [5E.2] and a = γx [5E.4], so 

 
γ = p

xp∗
. On a Henry’s law 

basis, 
 
a = p

K
 [5E.10], so 

 
γ = p

xK
. The vapour pressures of the pure components are not 

given in the table of data, so we extrapolate the experimental data to obtain p*
A = 7.3 kPa and 

p*
B = 35.6 kPa. The Henry’s law constant for benzene is determined by extrapolating the low-

B data to xB = 1, i.e., to xA = 0. (The Henry’s law constant for acetic acid can also be 
determined by extrapolating the low-A data to xA = 1) The values obtained are KB = 68.1 kPa 
and KA = 30.3 kPa. Then draw up the following table based on the partial pressures given in 
the data.  
xA 0.016 0.0439 0.0835 0.1138 0.1714 
pA/kPa 0.484 0.967 1.535 1.89 2.45 
pA/kPa 35.05 34.29 33.28 32.64 30.9 
aA(R) 0.066 0.132 0.210 0.259 0.336 [pA/p*

A] 
aB(R) 0.985 0.963 0.935 0.917 0.868 [pB/p*

B] 
γA(R) 4.144 3.017 2.518 2.275 1.958 [pA/xAp*

A] 
γB(R) 1.001 1.007 1.020 1.035 1.048 [pB/xBp*

B] 
aB(H) 0.515 0.504 0.489 0.479 0.454 [pB/KB] 
γB(H) 0.523 0.527 0.533 0.541 0.548 [pB/xBKB] 
 
xA 0.2973 0.3696 0.5834 0.6604 0.8437 0.9931 
pA/kPa 3.31 3.83 4.84 5.36 6.76 7.29 
pA/kPa 28.16 26.08 20.42 18.01 10 0.47 
aA(R) 0.453 0.525 0.663 0.734 0.926 0.999 
aB(R) 0.791 0.733 0.574 0.506 0.281 0.013 
γA(R) 1.525 1.420 1.136 1.112 1.098 1.006 
γB(R) 1.126 1.162 1.377 1.490 1.797 1.913 
aB(H) 0.414 0.383 0.300 0.264 0.147 0.007 
γB(H) 0.588 0.607 0.720 0.779 0.939 1.000 
 
GE is defined [5B.5] as 
   G

E = ∆mixG − ∆mixG
ideal = nRT (xA ln aA + xB ln aB ) − nRT (xA ln xA + xB ln xB )  

and with a = γx 
 GE = nRT(xA ln γA + xB ln γB) . 
For n = 1, we can draw up the following table from the information above and 
 RT = 8.3145 J mol–1 K–1 × 323 K = 2.69×103 J mol–1 = 2.69 kJ mol–1. 
xA 0.016 0.0439 0.0835 0.1138 0.1714 
xA ln γA 0.023 0.0485 0.077 0.094 0.115 
xb ln γB(R) 0.001 0.0071 0.018 0.030 0.038 
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GE / kJ mol–1 0.0626 0.1492 0.256 0.332 0.413 
 
xA 0.2973 0.3696 0.5834 0.6604 0.8437 0.9931 
xA ln γA 0.125 0.129 0.075 0.070 0.079 0.006 
xb ln γB(R) 0.083 0.095 0.133 0.135 0.092 0.004 
GE / kJ mol–1 0.560 0.602 0.558 0.551 0.457 0.027 
Question. In this problem both A and B were treated as solvents, but only B as a solute. 
Extend the table by including a row for γA(H). 

5.4 pA = aA pA
* [5E.2] = γAxApA

* [5E.4] 

so 
  
γ A =

pA

xA pA
* =

yA p
xA pA

*
 

Sample calculation at 80 K: 

 
 
γ (O2 ) = 0.11×100 kPa

0.34 × 225Torr
× 760 Torr

101.325kPa





= 1.079  

Summary 
T/K 77.3 78 80 82 84 86 88 90.2 
γ(O2) — 0.877 1.079 1.039 0.995 0.993 0.990 0.987 

To within the experimental uncertainties the solution appears to be ideal (γ = 1). The low 
value at 78 K may be caused by nonideality; however, the larger relative uncertainty in y(O2) 
is probably the origin of the low value. 
A temperature–composition diagram is shown in Figure I5.2(a). The near ideality of this 
solution is, however, best shown in the pressure–composition diagram of Figure I5.2(b). The 
liquid line is essentially a straight line as predicted for an ideal solution. 

 
 
Figure I5.2(a) 

 
 
Figure I5.2(b) 
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5.6 The Gibbs-Duhem equation applies to any partial molar quantity, so we start, as in Example 
5A.2, with 
 nA dVA + nB dVB = 0 

Hence 
  
dVB = −

nA

nB

dVA  

Therefore, by integration,  

 
  
VB (xA , xB ) −VB (0,1) = dVBVB (0,1)

VB ( xA ,xB )

∫ = −
nA

nB

dVAVA (0,1)

VA ( xA ,xB )

∫ = −
nxAdVA

n(1− xA )VA (0,1)

VA ( xA ,xB )

∫  

The notation VB
* means the molar volume of pure B, which is the same as the partial molar 

volume of B when xB = 1. Therefore,  

 
  
VB (xA , xB ) = VB

* −
xAdVA

1− xA
VA (0,1)

VA ( xA ,xB )

∫ . 

We must now plot xA/(1 – xA) against VA and estimate the integral. That means we must first 
find the partial molar volumes of chloroform (VA) that corresponds to various chloroform 
mole fractions (xA). At constant temperature and pressure, 

 
B B

m
A

A A

( )
[5A.1]

( )n n

nVVV
n nx

   ∂∂
= =   ∂ ∂   

 where n = nA + nB is the total number of moles. 

Thus, VA is the tangent line to the curve of a plot of V vs. nA for a constant value of nB. For 
convenience, let nB = 1 mol. Then we can draw up a table of V, n, and nA values using the Vm, 
xA data given and the relationship 

 
  
xA =

nA

n
=

nA

nA +1 mol
. 

Solving for nA yields 
  
nA =

xA

1− xA

×1 mol  

xA 0 0.194 0.385 0.559 0.788 0.889 1 
Vm/(cm3 mol–1) 73.99 75.29 76.5 77.55 79.08 79.82 80.67 
nA/mol 0 0.241 0.626 1.268 3.717 8.009  
n/mol 1 1.241 1.626 2.268 4.717 9.009  
V/cm3 73.99 93.41 124.4 175.9 373.0 719.1  

 
Figure I5.3(a) 
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In Figure I5.3(a), we plot V against nA. Both linear and quadratic fits to the data are shown. 
The data fit a straight line quite well; however, the slope of a straight line is constant, which 
would imply VA is constant (at 80.54 cm3 mol–1) over this range of compositions. We require 
some variation in VA, so we use the quadratic fit, 
 V/cm3 = 0.0252(nA/mol)2 + 80.34(nA/mol) + 74.03 , 
which leads to 

 

  

VA =
∂V
∂nA






 nB

= {2 × 0.0252(nA / mol) + 80.34} cm3  mol−1  

Finally, we can draw up the table, including xA = 0.500 
xA 0 0.194 0.385 0.500 0.559 0.788 0.889 
VA/(cm3 mol–1) 80.34 80.35 80.37 80.39 80.40 80.53 80.74 

For the present purpose we integrate up to VA(0.5,0.5) = 84.39 cm3 mol–1. 
 
Figure I5.3(b) 

 
The points are plotted in Figure I5.3(b), and the area required is 0.025 cm3 mol–1. Hence, 
 VB(0.5,0.5) = 73.99 cm3 mol–1 – 0.025 cm3 mol–1 = 73.96 cm3 mol–1. 
Comment. The integral derived at the start of this problem is most useful for computing the 
partial molar quantity of one component given that of the other. In this case, the data given 
were overall molar volumes, from which we had to compute VA before we could apply the 
integral to compute VB. In such a case, it would have been easier to compute VB directly in the 
same way we computed VA. 

5.8 In this case it is convenient to rewrite the Henry’s law expression as 
 

  
mass of N2 = pN2

×  mass of H2O × KN2
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(1) At pN2

= 0.78 × 4.0 atm = 3.1 atm  

 
 
mass of N2 = 3.1  atm ×100 g H2O × 0.18 µg N2 / (g H2O atm) = 56 µg N2  

  
(2) At pN2

=  0.78 atm, mass of N2  = 14 µg N2  

(3) In fatty tissue the increase in N2 concentration from 1 atm to 4 atm is 

  
 
     4 × (56 −14)µg N2 = 1.7×102  µg N2  

5.10 (a) The sum has just one term, so 

 
  

v
[A]out

=
NK

1+ K[A]out

=
4.0 ×107  dm3  mol−1

1+ (1.0 ×107  dm3  mol−1)[A]out

=
40 dm3  µmol−1

1+ (10 dm3  µmol−1)[A]out

 

The plot is shown in Figure I5.4(a). 
 
Figure I5.4(a) 

 
(b) There are two terms in the sum here 

 

 

ν
[A]out

=
4 × (1×105  dm3  mol−1)

1+ (1×105  dm3  mol−1) × [A]out

+
2 × (2 ×106  dm3  mol−1)

1+ (2 ×106  dm3  mol−1) × [A]out

=
0.4 dm3  µmol−1

1+ (0.1 dm3  µmol−1) × [A]out

+
4 dm3  µmol−1

1+ (2 dm3  µmol−1) × [A]out

 

 The plot is shown in Figure I5.4(b). 
 
Figure I5.4(b) 

 
5.12 Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and a planar, rigid 

structure. The amide group is expected to be like the peptide bond that connects amino acid 
residues within protein molecules. This group is also planar because resonance produces 
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partial double bond character between the carbon and nitrogen atoms. There is a substantial 
energy barrier preventing free rotation about the CN bond. The two bulky phenyl groups on 
the ends of an amide group are trans because steric hinderance makes the cis conformation 
unfavourable. See Figure I5.5(a). 

 
Figure I5.5(a) 

 
 

The flatness of the Kevlar polymeric molecule makes it possible to process the material so that 
many molecules with parallel alignment form highly ordered, untangled crystal bundles. The 
alignment makes possible both considerable van der Waals attractions between adjacent 
molecules and for strong hydrogen bonding between the polar amide groups on adjacent 
molecules. These bonding forces create the high thermal stability and mechanical strength 
observed in Kevlar. See Figure I5.5(b). 

 
Figure I5.5(b) 

 
Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a speeding 
bullet, through hydrogen bond breakage and the transition to the cis conformation. 
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6  Chemical Equilibrium 

6A  The equilibrium constant 
 
Answers to discussion questions 

 
6A.2  Eqn 5E.9, in the form of the following expression, provides the general definition of the activity for species J, 

aJ: O
J J Jln   [5E.9]RT aµ µ= +  where O

Jµ  is the value of the chemical potential of J in the standard state, 
i.e., the state for which aJ = 1. In fact, the standard state of a substance at a specified temperature is its 
pure form at 1 bar. This means that the activity of a substance that is a either a pure solid (e.g., copper, 
sodium chloride, naphthalene) or a pure liquid (e.g., bromine, water, methanol) equals 1 at, say, 25°C. 
Since the activity of a pure solid or liquid is equal to 1, it can be conveniently ignored when presenting an 
equilibrium constant expression. 

 
 Activities and activity coefficients are generally used to address questions that concern real, non-ideal 

mixtures. It is well worth remembering several useful activity forms. Of course, both activities, aJ, and 
activity coefficients, γJ, of non-ideal mixtures are dimensionless and related by eqns that have the general 
form aJ = γJ × (concentration of J). 

 Perfect Gas:    aJ = pJ/p O  ( O
Jµ  depends upon T alone; p O ≡ 1 bar.) 

 Real Gas:    aJ = γJ pJ /p O  ( O
Jµ  depends upon T alone.) 

 Ideal solutions:    aJ = xJ 
 Ideal-dilute solutions:   aB = [B]/ Oc  where O 31 mol dmc −≡  
 Solvent A of a non-ideal solution:  aA = γAxA  
 Solute B of a non-ideal solution:  aB = γB[B]/ Oc  
 
 

Solutions to exercises 
 
 
6A.1(b) 2 A → B 
 nJ = nJ(0) + vJΔξ where ξ is the extent of reaction; vJ is negative for reactants and positive for products. 
 nA = 1.75 mol − 2×(0.30 mol) = 1.15 mol 
 nB = 0.12 mol + 1×(0.30 mol) = 0.42 mol 
 
6A.2(b) 2 A → B     1

r 2.41 kJ molG −∆ = −  

 r
,

  [6A.1]
p T

GG
ξ

 ∂
∆ =  ∂ 

 

With the approximation that 
,p T

G G
ξ ξ

 ∂ ∆
 ∂ ∆ 

 , which is valid when Δξ is very small, we find that 

 ( ) ( )
r

1     2.41 kJ mol 0.051 mol 0.12 kJ

G G ξ
−

∆ ∆ × ∆

− × + = −





 

 
6A.3(b)  2 NO2(g)  → N2O4(g)     O 1

r 4.73 kJ molG −∆ = −  



 
( ) ( )

O
r r

1 1

ln   [6A.10]

      4.73 kJ mol 2.4790 kJ mol ln      at 298.15 K

G G RT Q

Q− −

∆ = ∆ +

= − + ×
 

The above equation is used to calculate ∆rG values at the given Q values in the following table. 
  

Part Q lnQ ΔrG / kJ mol−1 

(i) 0.10 −2.303 −10.44 
(ii) 1.0 0 −4.73 
(iii) 10 2.303 +0.979 
(iv) 100 4.605 +6.69 

 
The above equation also indicates that a plot of lnQ against ∆rG should be linear so points ii and iii, which straddle 
∆rG = 0, can be used to perform a linear interpolation to find K from our equilibrium knowledge that lnQ = 
lnQequilibrium = lnK when ∆rG = 0. Performing the linear interpolation: 
 

 

( )

( ) ( )

iii ii
ii r r ii

r iii r ii

r
1

r
1

ln ln
ln ln

2 303 00 4 73
0 979 4 73 kJ mol

0 4034 4 73
kJ mol

Q QQ Q G G
G G

G. .
. .

G. .

−

−

 −
= + × ∆ − ∆ ∆ − ∆ 

  ∆−  = + × − −    − −   
∆ = × + 

 

 

Thus, 

 ( )ln 0 4034 0 4 73
1 908

K . .
.

= × +

=
 

 1 908e 6 74  from a two-point interpolation.K .= =  
The two-point interpolation is in agreement with the result given by eqn 6A.8: 

 ( ) ( ) ( ){ }

O
r

3 1 1 14 73 10  J mol 8 3145 J mol  K 298 15 K

e  [6A.8]

e
6 74

G / RT

. / . .

K

.

− − −

∆−

− − × ×

=

=
=

 

  
6A.4(b)  2 4 2N O (g) 2NO (g)      T = 298.15 K, p = 1 bar = Op , α = 0.201 at equilibrium 
We draw up the following equilibrium table (Example 6A.2). 
 

 N2O4(g) NO2(g) 
Amount at 
equilibrium (1 )nα−  2 nα  

Mole fraction 
1
1

α
α

−
+

 2
1

α
α+

 

Partial pressure 
(1 )

1
pα

α
−
+

 2
1

pα
α+

 

 

 

( )

( )

JJ

2 2

2 4 2 4

O

O

O O
O

J J
J Jequilibrium equilibrium

2
2

2
NO NO

N O N O

[6A.13] / (perfect gas assumption)

2
/ 1   

(1 )/
1

vvK a p p

p
p p p

pp p p p p

α
α

α
α

   
= =   

   

 
 + = = =
− 

 + 

∏ ∏

 



 ( ) ( )
( )

( ) ( )O

22 0.2014   4
1 1 1 0.201 1 0.201

   0.168

p
p

α
α α

     = =   
− × + − × +      

=

 

 
6A.5(b) (i) 2Br (g) 2 Br(g)      T = 1600 K, p = 1 bar = Op , α = 0.24 at equilibrium 
We draw up the following equilibrium table (Example 6A.2). 
 

 Br2(g) Br(g) 
Amount at 
equilibrium (1 )nα−  2 nα  

Mole fraction 
1
1

α
α

−
+

 2
1

α
α+

 

Partial pressure 
(1 )

1
pα

α
−
+

 2
1

pα
α+

 

 

 

( )

( )

JJ

2 2

O

O

O O
O

J J
J Jequilibrium equilibrium

2

2
2

Br Br

Br Br

[6A.13] / (perfect gas assumption)

2
/ 1   

(1 )/
1

vvK a p p

p
p p p

pp p p p p

α
α

α
α

   
= =   

   

 
 + = = =
− 

 + 

∏ ∏

  

 ( ) ( )
( )

( ) ( )O

22 0.244   4
1 1 1 0.24 1 0.24

   0.244  at 1600 K

p
p

α
α α

     = =   
− × + − × +      

=

 

 

(ii)  
O

r
2 1

2 1

1 1ln ln   [6A.22]
HK K
R T T

 ∆
= − − 

 
 

 

( )

O
r

2000 K 1600 K

3 1

1 1

1 1ln ln
2000 K 1600 K

112 10  J mol 1 1           ln 0.244 0.273
2000 K 1600 K8.3145 J K  mol

HK K
R

−

− −

∆  = − − 
 

 + ×  = − × − =   
  

 

 0.273
2000 K e 1.3K = =  

As expected, the temperature increase causes a shift to the right when the reaction is endothermic. 
 
6A.6(b)  4 2 3CH (g) 3 Cl (g) CHCl (l) 3 HCl(g)+ +  
(i) Using data tables of the text Resource section at 25°C, we find 

 

O O O O
r f 3 f f 4

1 1 -1

1

(CHCl l) 3 (HCl g) (CH g)

        ( 73.66 KJ mol ) (3) ( 95.30 KJ mol ) ( 50.72 KJ mol )

        308.84kJ mol

G G G G
− −

−

∆ = ∆ , + ∆ , − ∆ ,

= − + × − − −

= −

 

 

O O O O
r f 3 f f 4

1 1 1

1

(CHCl l) 3 (HCl g) (CH g)

         ( 134.47 kJ mol ) (3) ( 92.31 kJ mol ) ( 74.81 kJ mol )
         336 59 kJ mol   [Used in part (ii)]

H H H H
− − −

−

∆ = ∆ , + ∆ , − ∆ ,

= − + × − − −

= − .

 



 
( )O 3 1

r
1 1

124.6 54

308.84 10 J mol
ln [6A.14] 124.6

(8 3145J K mol ) (298.15K)

e 1.30 10

GK
RT

K

−

− −

− − ×−∆
= = =

. ×

= = ×

 

(ii)  
O

r
2 1

2 1

1 1ln ln   [6A.22]
HK K
R T T

 ∆
= − − 

 
 

 

( )

O
r

50 C 25 C

3 1
54

1 1

1 1ln ln
323.15 K 298.15 K

336.59 10  J mol 1 1           ln 1.30 10 114.1
323.15 K 298.15 K8.3145 J K  mol

HK K
R° °

−

− −

∆  = − − 
 

 − ×  = × − × − =   
  

 

 114.1 49
50 C e 3.57 10K ° = = ×  

As expected, the temperature increase causes a shift to the left when the reaction is exothermic. 
 O

r ln   [6A.14]G RT K∆ = −  

 ( ) ( ) ( )O 1 1 49 1
r 50 C 8.3145 J K  mol 323.15 K ln 3.57 10 307 kJ molG − − −

°∆ = − × × = −  
 
6A.7(b)  3 N2(g) + H2(g) → 2 HN3(g)     For this gas phase reaction J

J
2 3 1 2v v∆ = = − − = −∑  

 
( ) ( )

( )

J JJ J

JJ

O O

O

J J J J J
J J J Jequilibrium equilibrium equilibrium equilibrium

J J
J Jequilibrium equilibrium

[6A.13] / /

       where      and /

v vv v

vv
p p

K a p p p p

K K K K p pγ γ

γ γ

γ

       
= = =       

       

   
= = =   

   

∏ ∏ ∏ ∏

∏ ∏
 

Let us assume that the gases are perfect gases. Then, the activity coefficients equal 1 and 1Kγ = . Additionally, 

[ ]J J / Jp n RT V RT= = . Substitution gives 

 

[ ]( ) [ ]( ) ( )

( ) [ ]( )

( )

J J J

J

O O O O

O O O

O O

J J Jequilibrium equilibrium equilibrium

J equilibrium

2

 J / J / /

  /      where     J /

/       because 2 for this reaction

v v v

p

v v

c c

c

K K RT p c c RT p

K c RT p K c

K K c RT p v

∆

−

     
= = =     

     

 
= =  

 

= × ∆ = −

∏ ∏ ∏

∏  

Since O O 1/ 0.0831451 Kc R p −= , this expression may be written in the form 

 ( )2 2144.653 K /cK K T= ×
 

Anhydrous hydrogen azide, HN3, boils at 36°C and decomposes explosively. A dilute solution can be handled 
safely.

 

 
6A.8(b) Draw up the following table for the reaction equation: A + B   C + 2 D. 

 A B C D Total 
Initial amounts / mol 2.00 1.00 0 3.00 6.00 
Stated change / mol   +0.79   

Implied change / mol –0.79 –0.79 +0.79 +1.58  
Equilibrium amounts / mol 1.21 0.21 0.79 4.58 6.79 

Mole fractions 0.1782  0.0309  0.1163  0.6745  0.9999  
  
(i) Mole fractions are given in the table.  
(ii) J

J
J

xK xν= ∏   



 
2(0 1163) (0 6745) 9 61

(0 1782) (0 0309)xK . × .
= = .

. × .
 

(iii) J Jp x p= . Assuming the gases are perfect, O
J J /a p p= , so  

 

O O

O O O

2
C D

A B

( ) ( )
when 1 00 bar

( ) ( )

9 61

x x

x

p p p p pK K K p
p p p p p

K K

/ × /  
= = = = . / × /  

= = .

 

(iv) O 1 1 1
r ln (8 3145 J K mol ) (298 K) ln(9 61) 5.61 kJ molG RT K − − −∆ = − = − . × × . = −  

 
6A.9(b) The formation reaction is: U(s) + 3/2 H2(g)   UH3(s). 

 
3 2 2

2H (g)2

O
O

3/ 2

U(s) UH (s) H (g) H3/2
H

3/ 25
4

1  ( 1 and, assuming perfect gas behavior, / .)

10  Pa   1.93 10
139 Pa

pK a a a p p
pa

 
= = = = =  

 

 
= = × 

 

 

 ( ) ( ) ( )
O

r

1 1 4

1

ln  [6A.14]

        8 3145 J K mol 500 K ln 1.93 10

        41.0 kJ mol

G RT K
− −

−

∆ = −

= − . × × ×

= −

 

 
6A.10(b) P(s,wh) + 3/2 H2(g) → PH3(g)     O 1

f 13.4 kJ molG −∆ = +  

 ( )
( ) ( ) ( )

J
J

3
3

2

2

3
2

O

O

O
f f

J

PHO
f

H

1 3 1 1

ln   [6A.10]     where      [6A.12b]

/
      ln   [Perfect gas assumption]

/

0.60      +13.4 kJ mol 8.3145 10  kJ K  mol 298.15 K ln
1

      +12.1 kJ m

G G RT Q Q a

p p
G RT

p p

ν

− − − −

∆ = ∆ + =

= ∆ +

 = + × × ×  
 

=

∏

1ol−

 

Since f 0G∆ > , the spontaneous direction of reaction is  toward the elements in their standard states. 
 
6A.11(b) 8

2 2 sPbI (s) PbI (aq) 1 4 10K −= . ×  

 ( )
O

O O

r s

1 1 8 1

f 2 f 2

 ln 

(8.3145 J K  mol ) (298.15 K) ln 1.4 10 44.8 kJ mol

(PbI ,aq) (PbI ,s)

G RT K

G G

− − − −

∆ = −

= − × × × = +

= ∆ − ∆

 

 
( )

O O O
f 2 r f 2

1 1

(PbI ,aq) (PbI ,s)

44.8 173.64  kJ mol 128.8 kJ mol

G G G
− −

∆ = ∆ + ∆

= − = −
 

 
Solutions to problems 

 
6A.2 O O O O 1

r 2 r 2 vap 2 r 2(H CO g) (H CO l) (H CO l)  where  (H CO l) 28.95 kJ molG G G G −∆ , = ∆ , + ∆ , ∆ , = +  

For  O

O2 2H CO(l) H CO(g)  (vap)        where 1500 Torr 2.000 bar and 1 barpK p p
p

, = = = =  



 

( )
O

O
vap

1 1 1

ln (vap) ln

2.000 bar(8 3145 J K  mol ) (298 K) ln 1 72 kJ mol
1 bar

pG RT K RT
p

− − −

∆ = − = −

= − . × × = − .
 

Therefore, for the reaction 2 2CO(g) H (g) H CO(g)+ ,  
 { }O 1 1

r ( 28 95) ( 1 72)  kJ mol 27 23 kJ molG − −∆ = + . + − . = + .  

Hence, 
3 1 1 1( 27 23 10  J mol ) (8 3145 J K  mol ) (298 K) 10 99 5e e 1 69 10 .K

− − −− . × / . × − . −= = = . ×  
 
6A.4‡ A reaction proceeds spontaneously if its reaction Gibbs function is negative. 
 O

r r ln   [6A.10]G G RT Q∆ = ∆ +  
Note that under the given conditions, 11.58 kJ molRT −=  
(i) ( ) ( ){ } ( )

2

O1 1 7
r r H O/ kJ mol i ln /kJ mol  = 23.6 1.58 ln 1.3 10

1.5

G G RT p− − −∆ = ∆ − − − ×

= +

 

(ii) ( ) ( ){ } ( )
( ) ( )

2 3

O1 1
r r H O HNO

7 10

/ kJ mol ii ln / kJ mol

57.2 1.58ln 1.3 10 4.1 10

2.0

G G RT p p− −

− −

∆ = ∆ −

 = − − × × × 
= +

 

(iii) ( ) ( ){ } ( )
2 3

O1 2 1
r r H O HNO

7 2 10

/ kJ mol iii ln / kJ mol

85.6 1.58ln[(1.3 10 ) (4.1 10 )]
1.3

G G RT p p− −

− −

∆ = ∆ −

= − − × × ×
= −

 

(iv) ( ) ( ){ } ( )
2 3

O1 3 1
r r H O HNO

7 3 10

/ kJ mol iv ln / kJ mol

112.8 1.58ln[(1.3 10 ) (4.1 10 )]
3.5

G G RT p p− −

− −

∆ = ∆ −

= − − × × ×
= −

 

So both the dihydrate and trihydrate form spontaneously from the vapour. Does one convert spontaneously into the 
other? Consider the reaction 
 3 2 2 3 2HNO 2H O(s) H O(g) HNO 3H O(s)⋅ + ⋅  
which may be considered as reaction(iv) – reaction(iii). rG∆  for this reaction is 
 1

r r r(iv) (iii) 2.2 kJ molG G G −∆ = ∆ − ∆ = − . 

We conclude that the dihydrate converts spontaneously to the trihydrate , the most stable solid (at least of the four 
we considered). 
 
 
 
6B  The response to equilibria to the conditions 
 

Answers to discussion questions 
 
6B.2 (1) Response to change in pressure. The equilibrium constant is independent of pressure, but the individual 
partial pressures of a gas phase reaction can change as the total pressure changes. This will happen when there is a 
difference, Δv, between the sums of the number of moles of gases on the product and reactant sides of the balanced 
chemical reaction equation. 
 J J J

J J product gases J reactant gases
v v v v

= =

∆ = = −∑ ∑ ∑  

 
 The requirement of an unchanged equilibrium constant implies that the side with the smaller number of moles of 



gas be favored as pressure increases. To see this, we examine the general reaction equation J
J

0 J  [6A.9]v= ∑ in the 

special case for which all reactants and products are perfect gases. In this case the activities equal the partial 
pressure of the gaseous species and, therefore, 
 aJ(gas) = pJ/p O  = xJp/p O  
where xJ is the mole fraction of gaseous species J. Substitution into eqn 6A.13 and simplification yields a useful 
equation. 

 

( )

( ) ( )

( )

JJ J

JJ J

J

O

O O

O

J J
J Jequilibrium equilibrium

J J
J J Jequilibrium equilibrium equilibrium

J
J equilibrium

/

   / /

   /      where     

vv v

v vv v

v v
x x

K a x p p

x p p x p p

K p p K x

∆

∆

   
= =   

   

     
= =     

     

 
= =  

 

∏ ∏

∏ ∏ ∏

∏

 

Kx is not an equilibrium constant. It is a ratio of product and reactant concentration factors that has a form analogous 
to the equilibrium constant K. However, whereas K depends upon temperature alone, the concentration ratio Kx 
depends upon both temperature and pressure. Solving for Kx provides an equation that directly indicates its pressure 
dependence. 
  

 ( )O/
v

xK K p p
−∆

=  
 
This equation indicates that, if Δv = 0 (an equal number of gas moles on both sides of the balanced reaction 
equation), Kx = K and the concentration ratio has no pressure dependence. An increase in pressure causes no change 
in Kx and no shift in the concentration equilibrium is observed upon a change in pressure. 
 
However this equation indicates that, if Δv < 0 (fewer moles of gas on the product side of the balanced reaction 

equation), ( )O/
v

xK K p p
∆

= . Because p is raised to a positive power in this case, an increase in pressure causes Kx 
to increase. This means that the numerator concentrations (products) must increase while the denominator 
concentrations (reactants) decrease. The concentrations shift to the product side to reestablish equilibrium when an 
increase in pressure has stressed the reaction equilibrium. Similarly,  if Δv > 0 (fewer moles of gas on the reactant 

side of the balanced reaction equation), ( )O/
v

xK K p p
− ∆

= . Because p is raised to a negative power in this case, the 
concentrations now shift to the reactant side to reestablish equilibrium when an increase in pressure has stressed the 
reaction equilibrium. 
 

(2) Response to change in temperature. The van ’t Hoff equation, 
O

r
2

d ln   [6B.2(a)]
d

HK
T RT

∆
= , shows that K 

decreases with increasing temperature when the reaction is exothermic (i.e., O
r H∆ < 0); thus the reaction shifts to 

the left. The opposite occurs in endothermic reactions (i.e., O
r H∆ > 0). See text Section 6B.2 for a more detailed 

discussion. 
 
 

Solutions to exercises 
 
    
6B.1(b) O 3 1

rAt  1120K, 22 10  J molG −∆ = + ×  



 

O

O

3 1
r

1 1 1

2.363 2

2 1
2 1

(22 10  J mol )ln (1120K)  [6A.14] 2.363
(8.3145 J K  mol ) (1120 K)

e 9.41 10

1 1ln ln  [6B.4]r

GK
RT

K

HK K
R T T

−

− −

− −

∆ ×
= − = − = −

×

= = ×

 ∆
= − − 

 

 

Solve for T2 at ln K2 = 0 (K2 = 1). 

 O

1 1
41

3 1
2 1r

3
2

 ln 1 1 (8.3145 J K  mol ) ( 2.363) 1 7.36 10
1120 K(125 10  J mol )

1.4 10  K

R K
T TH

T

− −
−

−

× −
= + = + = ×

∆ ×

= ×

 

 
6B.2(b) 7 3

3ln      where     2 04,  1176 K, and 2.1 10  KCBK A A B C
T T

= + + = − . = − = ×  

At 450 K: 

 ( )

O
r 3

7 3
1 1  

3

1

ln  [6A.14]

1176 K 2.1 10 K8 3145 J K mol (450 K) 2 04
450 K (450 K)

16.6 kJ mol

CBG RT K RT A
T T

− −

−

 ∆ = − = × + + 
 

 ×= − . × × − . − + 
 

= +

 

 

( ) ( )
( )

O
r

3 2

7 3
1 1 1

2

d ln   [6B.2(b)]
d(1 )

d 3          
d(1 )

2.1 10  K         8 3145 J K mol 1176 K 3 7.19 kJ mol
450 K

KH R
T

CCBR A R B
TT T T

− − −

∆ = −
/

  = − + + = − × +   /    
  ×= − . × − + × = + 
  

 

 

O O O

O O
O

r r r

1 1
1 1r r

r
7.19 kJ mol 16.6 kJ mol 20.9 J K  mol

450 K

G H T S
H GS

T
− −

− −

∆ = ∆ − ∆

∆ − ∆ −∆ = = = −
 

 
6B.3(b) CH3OH(g) + NOCl(g) → HCl(g) + CH3NO2(g)     For this gas phase reaction J

J
0v v∆ = =∑  

 
( ) ( )

( )

J JJ J

JJ

O O

O

J J J J J
J J J Jequilibrium equilibrium equilibrium equilibrium

J J
J Jequilibrium equilibrium

[6A.13] / /

       where      and /

v vv v

vv
p p

K a p p p p

K K K K p pγ γ

γ γ

γ

       
= = =       

       

   
= = =   

   

∏ ∏ ∏ ∏

∏ ∏
 

Let us assume that the gases are perfect gases. Then, the activity coefficients equal 1 and 1Kγ = . Additionally, 

J Jp x p= . Substitution gives 

 
( ) ( )

( )

J JJ

J

O O

O

J J
J J Jequilibrium equilibrium equilibrium

J
J equilibrium

 / /

  /      where     

v vv
p

v v
x x

K K x p p x p p

K p p K x
∆

     
= = =     

     

 
= =  

 

∏ ∏ ∏

∏
 

For this reaction: 

 ( )O 0
/       because 0x xK K p p K v= × = ∆ =  



K is independent of pressure so we conclude by the above eqn that for this reaction Kx is also independent of 
pressure. Thus, the percentage change in Kx upon changing the pressure equals zero for this reaction. 
         
6B.4(b) 3

2 2N (g) O (g) 2NO(g) 1.69 10 at 2300 KK −+ = ×  

Initial modes: 
2N 1

5.0 g 0.1785 mol
28.013 g mol

n −= =  

Initial moles: 
2

2
O 1

2.0 g 6.250 10  mol 
32.00 g mol

n −
−= = ×  

 N2 O2 NO Total 
Initial amount/mol 

2N 0.1785n =  
2O 0.0625n =  0 n = 0.2410 

Change/mol –z –z +2z 0 
Equilibrium amount/mol 2Nn z−  

2On z−  2z n = 0.2410 

Mole fractions ( )2N /n z n−  ( )2O /n z n−  2 /z n  1 

 
O J

J
  (Because 0 for this reaction. See Exercise 6B.3(a) or (b))

v

x x
pK K K v v

p

∆
 

= = ∆ = = 
 

∑  

 
( ) ( )2 2

2

N O

(2 )zK
n z n z

=
− × −

 

 

( )

( )
( )

2 2

2 2

24
N O

2 4
N O

4

1 0

4 1

2 1

K

K

K

z nz n n

n n n n
z

− − + =

± − −
=

−

 

 
( )( )( )

( )
3

3

2 4
1.69 10

4
1.69 10

0.2410 0.2410 4 1 0.1785 0.0625
 

2 1
−

−

×

×

± − −
=

−
 

 
3 3

3

 2.223 10  or 2.121 10
 2.121 10   because the negative value is non-physical.

− −

−

= − × ×

= ×
 

 
3

2
NO

2 2(2.121 10 )= 1.8 10
0.241

zx
n

−
−×

= = ×  

 

6B.5(b)  
O

2 r

1 2 1

1 1ln   [6B.4]
K H
K R T T

 ∆
= − − 

 
 

 ( )

( )

O

1

2
r

11 2

1
1 1 2

1

1 2

1

1 1 ln

1 1         8.3145 J K  mol ln
310 K 325 K

         55.85 kJ mol ln

KH R
KT T

K
K

K
K

−

−
− −

−

   ∆ = × − ×   
  

  = × − ×      
 = ×  
 

 

(a) K2/K1 = 2.00 

 ( ) ( )O 1 1
r 55.85 kJ mol ln 2.00 38.71 kJ molH − −∆ = × =  

(b) K2/K1 = 0.500 

 ( ) ( )O 1 1
r 55.85 kJ mol ln 0.500 38.71 kJ molH − −∆ = × = −  



 
6B.6(b) The reaction is 4 2 4 2CuSO 5H O(s) CuSO (s) 5 H O(g)⋅ + . 
For the purposes of this exercise we may assume that the required temperature is that temperature at which K = 1 at 
a pressure of 1 bar. For 1K = , ln 0K = , and O

r 0G∆ = . 
 O O O

r r r 0G H T S∆ = ∆ − ∆ =  

 
O

O
r

r

HT
S

∆
=

∆
 

We now estimate that the values of both O
r H∆  and O

r S∆  are not too different then the values at 25 °C and 
calculate each with standard values found in the text Resource section. 
 
 { }O O 1 1

r J f,J
J

( 771.36) (5) ( 241.82) ( 2279.7) J mol 299.2 kJ molH v H − −∆ = ∆ = − + × − − − = +∑  

 { }O O 1 1 1 1
r J J

J
(109) (5) (188.83) (300.4)  J K  mol 752.8 J K  molS v S − − − −∆ = = + × − =∑  

 
3 1

1 1

299.2 10  J mol 397 K
752.8 J K  mol

T
−

− −

×
=  

Question: What would the decomposition temperature be for decomposition defined as the state at which K = ½? 
 
6B.7(b) 4 3NH Cl(s) NH (g) HCl(g)+  Vapor pressures: p427°C = 608 kPa     and     p459°C = 1115 kPa 
The gases originate from the dissociation of the solid alone so 

3
1

2NH HClp p p= = . 
(i) Equilibrium constants 

 

( ) ( )
( ) ( )

( )

3

O O

O O

O

NH HCl

1 1
2 2

2
1

4

/ /   [Perfect gas assumption]

  / /

  /

K p p p p

p p p p

p p

= ×

= ×

=

 

 
( )
( )

21
4427

21
4459

608 kPa /100 kPa 9.24

1115 kPa /100 kPa 31.08
C

C

K

K
°

°

= =

= =
 

(ii) O ln   [6A.14]G RT K∆ = −  

 ( ) ( )O 1 1 1
r 427 C 8.3145 J K mol (700.15 K) ln 9.24 12.9 kJ molG − − −

°∆ = − × × = −  

(iii) 
O

2 r

1 2 1

1 1ln   [6B.4]
K H
K R T T

 ∆
= − − 

 
 

 ( ) ( )

O

1

2
r

11 2

1
1 1

1

1 1 ln

1 1 31.08         8.3145 J K  mol ln
9.24700.15 K 732.15 K

         162 kJ mol

KH R
KT T

−

−
− −

−

   ∆ = × − ×   
  

 = × − × 
 

=

 

(iv) 
O O

O
1 1

1 1r r
r

(162 kJ mol ) ( 12.9 kJ mol ) 250 J K mol
700.15 K

H GS
T

− −
− −∆ − ∆ − −

∆ = = = +  

  
 
 

Solutions to problems 
 
6B.2 3

2 2 3 U(s) +  H (g)  UH (s)  



 2 2

2

O

O

3/ 2 3/2
H H

3/2
H

( / )  [perfect gas]

   ( / )               [ ]

K a p p

p p p p

− −

−

= =

= =
 

 

( ) ( )

( )

( )( )

( )

O 3/22 2 O 2 O3
2f

23
2

2 23 3
2 2 2

43
2

d ln d d [6B.2(a)] ln / ln /Pa ln /Pa
d d d

d          ln /Pa
d
d          / ln / K

d

               where     1.464 10  K     a

KH RT RT p p RT p p
T T T

RT p
T

B CRT A B T C T RT
T TT

R B CT B

−
∆ = = = − −

= −

− = − + + = − × + 
 

= × − = − × nd     5.65C = −

 

 ( ) [ ]O O
f r pd d  from eqn 2B.6(a) applied to chemical reactions, 2C.7(a)H C T∆ = ∆  

or 
O

O 1 1f 3
2r =  70.5 J K  molp

p

HC CR
T

− − ∂∆
∆ = − = ∂ 

 

 

6B.4 O

O

1
2 3 2 3 rCaCl · NH (s)  CaCl (s) + NH (g)         and 78 kJ molpK H

p
−= ∆ = +  

 

O

O

O

r

1 1

1

ln  ln  

1.71 kPa         (8.3145 J K  mol ) × (400 K) × ln     [ 1 bar 100.0 kPa]
100.0 kPa

         +13.5 kJ mol  at  400 K

pG RT K RT
p

p− −

−

∆ = − = −

 = − = = 
 

=

 

 
( ) [ ]

OO
Or 1r 2

r
2 1 2 1

( ) 1 1  6B.4 and 6A.14
G TG T H

T T T T
∆  ∆

− = ∆ − 
 

 

Therefore, taking 1 400 KT =  and letting T = T2 be any temperature in the range 350 K to 470 K, 

 

O 1 1
r

1
1

( )  (13.5 kJ mol )  (78 kJ mol )  1
400K 400 K

(13.5 78) kJ mol(78 kJ mol )
400 K

T TG T

T

− −

−
−

   ∆ = × + × −   
   

 −  = + ×   
  

 

That is,  ( )O 1
r ( ) (kJ mol ) 78 0.161 KG T T−∆ = − × . 

 
6B.6 The equilibrium we need to consider is 2I (g) 2 I(g) (MI = 126.90 g mol−1). It is convenient to express the 
equilibrium constant in terms of α, the degree of dissociation of I2, which is the predominant species at low 
temperatures. Recognizing that the data 

2I
n  is related to the total iodine mass, mI, by 

2 2I I I/n m M= we draw the 
following table. 
 

 I I2 Total 
Equilibrium amounts 2I

2 nα  
2I

(1 )nα−  
2I

(1 )nα+  

Mole fraction 2
1

α
α+

 1
1

α
α

−
+

 1 

Partial pressure 
2
1

pα
α+

 
1
1

pα
α

− 
 + 

 p  

  
The equilibrium constant for the dissociation is 



 
( ) ( )

2 2

2O 2 O2
I I

O O 2
I I

/ 4 /
 = =

/ 1

p p p ppK
p p p p

α

α
=

−
 

We also know that 
 

2total I(1 )pV n RT n RTα= = +  

Implying that 
2I

 1pV
n RT

α = −  where V = 342.68 cm3. The provided data along with calculated values of α and K(T) 

are summarized in the following table. 
 
   

T / K 973 1073 1173 
p / atm 0.06244 0.07500 0.09181 

104 
2I

n  / mol 2.4709 2.4555 2.4366 
α 0.08459 0.1887 0.3415 
K 1.82×10−3 1.12×10−2 4.91×10−2 

 
Since O

r H∆  is expected to be approximately a constant over this temperature range and since

O
r

d ln   [6B.2(b)]
d(1/ )

KH R
T

 
∆ = −  

 
, a plot of lnK against 1/T should be linear with slope = − O

r /H R∆ . The linear 

regression fit to the plot is found to be lnK = 13.027−(18809 K)/T with R2 = 0.999969. Thus, 
 

 O 1
r ( 18809 K) 156 kJ molH R −∆ = − − = +  

 
6B.1  H2(g) + ½O2(g) → H2O(l)     O O1 1 1

f f285 83 kJ mol  and 163 343 J K  mol  at 298.15 KH . S .− − −∆ = − ∆ = −  
Let the temperatures of interest be T1 = 298.15 K and T2. ΔfG(T2) at 1 bar can be calculated from the reaction 
thermodynamic properties at T1 with the following relations. 

 ( ) ( ) ( ) ( )2

1
r 2 r 1 r r J ,J

J
d  [2C.7(a)and  (b);  ]

T

p p pT
H T H T C T T C T v C∆ = ∆ + ∆ ∆ = ∑∫  

 ( ) ( ) ( )2

1

r
r 2 r 1 d  [3A.19 applied to reaction equations]

T p

T

C T
S T S T T

T
∆

∆ = ∆ + ∫  

 ( ) ( ) ( )r 2 r 2 2 r 2G T H T T S T∆ = ∆ − ∆  
The computation is most easily performed using the function capability and numeric integrations of either the 
scientific calculator or a computer software package. The following is a Mathcad Prime 2 worksheet for the 
calculation of ΔfG for 273.15 K ≤ T2 ≤ 373.15 K at 1 bar. 

  



  

  
Thus, with numerical integrations we have found that O 1

f 225 334 kJ molG . −∆ = − . The worksheet also makes it 
very easy to examine, even plot, changes in the reaction thermodynamic properties. The following worksheet plot 
shows the variation of the formation Gibb’s energy with temperature. The plot shows a decrease with temperature in 
a near-linear manner. Can you explain why? 
 

  
 
 
6C  Electrochemical cells 
 

Answers to discussion questions 
 
6C.2 A salt bridge connecting two half-cells is usually a U-tube filled with potassium chloride in agar jelly. It 
provides the mobile electrolyte for completing the circuit of an electrochemical cell. In its absence, the cell cannot 
generate an electrical current through the single wire that connects the two electrodes and the circuit is said to be 
"open". No electron can leave or enter either half-cell, because this act would cause the net electronic charge of the 
half-cell to be non-zero. The strong electrostatic force prevents this from happening and causes macroscopic objects 
to normally have a zero net electrical charge. However, a salt bridge provides an anion to the anodic half-cell for 
every electron that leaves while simultaneously providing a cation to the cathodic half-cell for every electron that 
enters. This is a “closed” electrical circuit in which the net charge of each half-cell remains zero but an electric 
current can be generated. 
 
6C.4 When a current is being drawn from an electrochemical cell, the cell potential is altered by the formation of 
charge double layers at the surface of electrodes and by the formation of solution chemical potential gradients 



(concentration gradients). Resistive heating of the cell circuits may occur and junction potentials between dissimilar 
materials both external and external to the cell may change. 
 
 

Solutions to exercises 
 
6C.1(b) The cell notation specifies the right and left electrodes. Note that for proper cancellation we must equalize 
the number of electrons in half-reactions being combined. For the calculation of the standard cell potentials we have 
used O

cell R LE E EΟ Ο= − , with standard electrode potentials from data tables. 
               OE  
  
(i) 2

2 4 4R: Ag CrO (s) 2 e 2 Ag(s) CrO (aq) +0.45 V− −+ → +  
 2 ( )L: Cl (g) 2 e 2 Cl aq   +1.36 V− −+ →  

 2
2 4 4 2Overall(R L): Ag CrO (s) 2 Cl (aq) 2 Ag(s) CrO (aq) Cl (g) 0.91 V− −− + → + + −  

 
(ii) 4+ 2R: Sn (aq) 2 e Sn (aq)  0.15 V− ++ → +  
        3+ 2L: 2 Fe (aq) 2e 2 Fe (aq)     0.77 V− ++ → +  

 4 2 2 3( ) ( ) ( ) ( )      Overall (R L) : Sn aq 2 Fe aq Sn aq 2 Fe aq 0.62 V+ + + +− + → + −  
 
(iii) 2

2 2( ) ( ) ( )       R: MnO s 4 H aq 2 e Mn aq 2 H O(l) 1.23 V+ − ++ + → + +  
        2+ ( ) ( )       L: Cu aq 2e Cu s 0.34 V−+ → +  

 2 2
2 2( ) ( ) ( ) ( ) ( )Overall (R L) :  Cu s MnO s 4 H aq Cu aq Mn aq 2H O(1)  0.89 V+ + +− + + → + + +  

Comment. Those cells for which O
cell 0E >  may operate as spontaneous galvanic cells under standard conditions. 

Those for which O
cell 0E <  may operate as nonspontaneous electrolytic cells. Recall that O

cellE  informs us of the 
spontaneity of a cell under standard conditions only. For other conditions we require Ecell. 
 
6C.2(b) The conditions (concentrations, etc.) under which these reactions occur are not given. For the purposes of 
this exercise we assume standard conditions. The specification of the right and left electrodes is determined by the 
direction of the reaction as written. As always, in combining half-reactions to form an overall cell reaction we must 
write half-reactions with equal number of electrons to ensure proper cancellation. We first identify the half-
reactions, and then set up the corresponding cell. 
               OE  
(i) 2 2R:    2 H O(1) 2 e 2 OH (aq) H (g)                                            0.83 V− −+ → + −  
 +L:    2 Na (aq) 2 e 2 Na(s)−+ →               2.71 V−  
and the cell is 
 2( ) ( )Na(s) NaOH aq H g Pt                                                                           +1.88 V  
  
(ii) 2R:    I (s) 2 e 2 I (aq)                                                                        +0.54 V− −+ →  
 +

2L: 2 H (aq) 2 e H (g)− →+                                                                 0  
and the cell is 

 2 2Pt H (g) H (aq), I (aq) I (s) Pt                                                             0.54 V+ − +  

   
  (iii) 2R : 2 H (aq) 2 e H (g)+ −+ →                                                                  0 
 2 2L : 2 H O(1) 2 e H (g) 2 OH (aq)− −+ → +                                                −0.83 V 
and the cell is 
 ( )+

2 2Pt H (g) OH (aq) H (aq) H g Pt                                                          +0.83 V−  



 
Comment. All of these cells have O

cell  0,E > corresponding to a spontaneous cell reaction under standard conditions. 
If O

cellE  had turned out to be negative, the spontaneous reaction would have been the reverse of the one given, with 
the right and left electrodes of the cell also reversed. 
 
6C.2(b)  O 1

2Pt|H (g ) HCl(aq,0.010 mol kg )|AgCl(s)|Ag, p | −  
(i) R:          AgCl(s) +  e– → Ag(s) + Cl–(aq)   O 0.22 VE = +  
 L:          HCl(aq) + e– → ½ H2(g) + Cl–(aq)   O 0.00 VE = +  
 2×(R – L):  2 AgCl(s) + H2(g) → 2 Ag(s) + 2 HCl(aq)  O

cell 0.22 V and 2E v= + =  
The cell reaction is spontaneous toward the right under standard conditions because O

cell 0E > . The Nernst equation 
for the above cell reaction is: 

 
( ) ( ) ( )( )

( )
+

2 2

O
cell cell

22 22 O2
HCl 4H (aq) Cl (aq)HCl(aq) 4 O O

HClO
H (g) H (g)

ln  [6C.4]

/
/  (i.e., )

/

RTE E Q
vF

b ba aa
Q b b p p

a a p p

γ
γ

− ±

±

= −

= = = = =

 
Thus, 

 ( ){ } ( ){ }O O44 O O
cell cell HCl cell cell HCl

2ln /      or     ln /
2
RT RTE E b b E E b b

F F
γ γ± ±= − = −  

(ii) O O 4 1 1
r cell 2 (9.6485 10  C mol ) (0.22 V) 42 kJ molG FEν − −∆ = − = − × × × = −  

  
(iii) The ionic strength and mean activity coefficient are: 

 

( ) ( ){ }2 O1 1
2 2

i
1/2 1/2

/  [5F.9] 1(0.010) 1 .010 0.010

log  [5F.8] 1 (0.509) (0.010) 0.0509
0.889

i iI z b b

z z AIγ
γ

± + −

±

= = + =

= − = − × × = −

=

∑
 

Therefore, 

 

( ){ }
( ) ( )

( ) ( ){ }

O O
cell cell HCl

1 1

5 1

2 ln /

2 8.3145 J mol  K 298.15 K
      0.22 V ln 0.889 0.010 0.22 V 0.24 V

9.6485 10  C mol
      0.46 V

RTE E b b
F

γ ±

− −

−

= −

× ×
= − × = +

×
= +

 

  
Solutions to problems 

 
6C.2 Cell: Hg|Hg2Cl2(s)|HCl(aq)|Q·QH2|Au Ecell = +0.190 V     and     v = 2 
The electrode half-reactions and their standard potentials are 

 

O

2

2 2

                                                              

R :   Q(aq) 2 H (aq) 2 e QH (aq)                                                                    0.6994 V
L :  Hg Cl (s) 2 e 2 Hg(l) 2 C

E
+ −

−

+ + →
+ → +

2 2 2

l (aq)                                                                  0.2676 V

Overall (R L) :  Q(aq) 2 H (aq) 2 Hg(l) 2 Cl (aq) QH (aq) Hg Cl (s)       0.4318 V

−

+ −− + + + → +

 

The reaction quotient is directly related to the pH, a relation that is simplified by noting that for an HCl solution 
H Cl

b b+ −=  while for the Q·QH2 equimolecular complex of quinone 
2Q QHb b= . 

 2QH
2 2

Q H Cl

a
Q

a a a+ −

=  



The Debye−Hückel limiting law makes use of the mean activity coefficient for the compound MpXq defined by aJ = 
γ±bJ. Thus, 

2QH Q 1a / a = , 
H Cl

a a+ −= , and the reaction quotient becomes 

 4
H

Q a +
−=  

The definition of pH provides the relation to the reaction quotient. 

 ( ) ( )
( )

( )
( )

( )
( ) ( ) ( )

1 4
H

H

ln ln ln
pH log      or     ln 4 ln 10 pH

ln 10 ln 10 4 ln 10

/a Q Q
a Q

+

+

−

≡ − = − = − = =  

The Nernst equation [6C.4] at 25 °C is now used to relate cell potentials to the pH. 
 

 
( )( )

O

O

3

cell cell

3

cell

25.693 10  V ln 

25.693 10  V 4 ln 10 pH

E E Q

E

ν

ν

−

−

×
= −

×
= −

 

 

( )O
cell cellpH

0.23664 V
2 (0.4318 0.190) V

0.23664 V
2.04

E Eν
= −

= × −

=

 

 
 
6D  Electrode potentials 
 

Answers to discussion questions 
 
6D.2 The pH of an aqueous solution can in principle be measured with any electrode having an emf that is sensitive 
to H+(aq) concentration (activity). In principle, the hydrogen gas electrode is the simplest and most fundamental. A 
cell is constructed with the hydrogen electrode being the right-hand electrode and any reference electrode with 
known potential as the left-hand electrode. A common choice is the saturated calomel electrode. The pH can then be 
obtained by measuring the emf (zero-current potential difference), Ecell, of the cell. The hydrogen gas electrode is 
not convenient to use, so in practice glass electrodes are used because of ease of handling (see Impact I6.2). 
 
 

Solutions to exercises 
 

6D.1(b) [ ]
O

cell   .In each case the equilibrium constant is calculated with the expression ln 6C.5vFEK
RT

=  

[ ]

O

O

4 4

2

cell2

cell

37.4 16

  

(i)     Sn(s) CuSO (aq) Cu(s) SnSO (aq)

  R :  Cu 2 e Cu(s) 0.34 V
0.48 V

  L :  Sn (aq) 2 e Sn(s) 0.14 V 

(2) (0.48 V)  ln 6C.5 37.4
25.693 mV

         e 1.7 10

E

vFEK
RT

K

+ −

+ −

+ +

+ → +  = +
+ → − 

×
= = =

= = ×



 



[ ]

O

O

2+ +

2 +

cell+

cell

14.0 7

  

(ii)     Cu(s) Cu (aq) 2 Cu (aq)

  R :  Cu e Cu (aq) 0.16 V
0.36 V

  L :  Cu (aq) e Cu(s) 0.52 V 

(1) ( 0.36 V)  ln 6C.5 14.0
25.693 mV

         e 8.3 10

E

vFEK
RT

K

+ −

−

− −

+

+ → +  = −
+ → + 

× −
= = = −

= = ×



 

 
6D.2(b) Bi|Bi2S3(s)|Bi2S3(aq)|Bi 
              OE  
 ( ) ( )3+R: 2 Bi aq 6 e 2 Bi s−+ →     +0.20 V 

 ( ) ( ) ( )2
2 3L:  Bi S s 6 e 2 Bi s 3 S aq− −+ → +    −0.76 V 

 ( ) ( ) ( ) ( )3+ 2
2 3Overall R L : 2 Bi aq 3 S aq Bi S s−− + →  +0.96 V  v = 6 

   

(i) ( )
( )

O
cell

3

6 0 96V
ln  [6C.5] 224

25 693 10 V
FEK
RT

ν
−

.
= = =

. ×
 

 224 97e 1.9 10K = = ×  
The solubility equilibrium is written as the reverse of the cell reaction.  Therefore, the solubility product of Bi2S3(s) 
is Ksp = K–1 = 1 / 1.9 × 1097 = 5.3×10–98. 
 
(ii) The solubility product of Bi2S3(s) is very small. Consequently, the molar solubility, s, of Bi2S3(s) must also be 
very low and we can reasonably take the activity coefficients of the aqueous ions to equal 1. 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
11

55

O O O

O

5 5 52 3 2 32+ 2
sp

98 3 20 3 3
sp

Bi S / 2 3 / 108 /

/108 5.3 10 /108  mol dm 1.4 10  mol dm  or 7.2 ag dm

K c s s c s c

s K c

−

− − − − −

   = = =   

= = × = ×
 

 
 

Solutions to problems 
 
6D.2 The method of the solution is first to determine O O O

r r r, , andG H S∆ ∆ ∆ at 25 °C for the cell reaction 
 2

1
2 H (g) AgCl(s) Ag(s) HCl(aq)+ → +  v = 1 

and then, from the values of these quantities and the known values of O O O
f f,  ,  and G H S∆ ∆ , for all the species 

other than Cl (aq)− , to calculate O O O
f f,  ,  and G H S∆ ∆  for Cl (aq)− .  

Since – – –
2

O O O O O
cell AgCl/Ag,Cl H H AgCl/Ag,Cl AgCl/Ag,Cl

0
/

E E E E E+= − = − = , we have (R.G. Bates and V.E. Bowers, J. Res. Nat. 

Bur. Stand., 53, 283 (1954)): 
 O

cellE /V = 0.236 59 − 4.8564 × 10−4 (θ/°C) − 3.4205 × 10−6 (θ/°C)2 + 5.869 × 10−9 (θ/°C)3  
and we proceed with the calculation of the electrochemical and thermodynamic reaction properties at 25 °C. 
 

 
O 4 6

c ll
2

e
9 3/ V (0 23659) (4 8564 10 ) (25 00) (3 4205 10 ) (25 00) (5 869 10 ) (25 00)

0 22240V
E − − −= . − . × × . − . × × . + . × × .

= + .
 

 
O O

celr
1 1

l

1 (96 485 kC mol ) (0 22240 V) 21 46 kJ mol

G EFν
− −

∆ = −

= − × . × . = − .
 



 

[ ]

( ) ( )( ) ( )( ){ }
( ) ( ) ( )

( ) ( )

O O O
O cellr

r

2 34 6 9 2

4 6

1

9

cell C [6C.6] d C d K
K

C V4 8564 10 C 2 3 4205 10 C 3 5 869 10 C
K

4 8564 10 2 3 4205 10 25
1 (96 485 kC mol )

3 5 869 10 25

p p p

EGS F EF T
T T

F

ν ν θ
θ

ν θ θ− − −

− −

−

−

     ∂ ∂∂∆ °
∆ = − = = ° =    ∂ ∂ ∂     

°
= − . × ° − × . × ° + × . × °

− . × − × . × ×
= × . ×

+ × . × × 2

1 1

V
K

62 30 J K  mol− −

  
 
  

= − .

 
O O O

r r r
1 1 1 1(21.46 kJ mol ) (298.15 K) ( 62.30 J K  mol ) 40.03 kJ mol

H G T S
− − − −

∆ = ∆ + ∆

= − + × − = −
 

The cell reaction Gibb’s energy is related to formation Gibb’s energies by 

 
( ) ( ) ( )

( ) ( ) ( )

O O O O

O O O

r f f f

f f f

H Cl AgCl

C1 AgCl H 0

G G G G

G G G

+ −

− +

∆ = ∆ + ∆ − ∆

 = ∆ − ∆ ∆ = 
 

Hence,  ( ) ( )
( )

O O O
f r f

1

1

AgClCl

21 46 109 79  kJ mol

131.25 kJ mol

G G G−

−

−

∆ = ∆ + ∆

= − . − .

= −

 

  
Similarly, ( ) ( )

( )

O O O
f r f

1

1

Cl AgCl

40 03 127 07  kJ mol

167.10 kJ mol

H H H−

−

−

∆ = ∆ + ∆

= − . − .

= −

 

For the entropy of Cl−  in solution we use 
 O O O O O O

r 2 (AgCl)(Ag) (H ) (Cl ) ½ (H )S S S S S S+ −∆ = + + − −  

with ( )O H 0S + = . Then, 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ }

O O O O O
r 2

1 11
2

1 1

Ag ½ H AgClCl

62 30 42 55 130 68 96 2  J K  mol

56.7 J K  mol

S S S S S−

− −

− −

= ∆ − + +

= − . − . + × . + .

= +

 

 
Integrated activities 
 

6.3 (a) 
O O O

2 21 [5F.9] 4
2

b b bI z z
b b b+ −

+ −

      = + =      
      

 

For CuSO4,  3 3(4) (1.0 10 ) 4.0 10I − −= × × = ×  

For ZnSO4,  3 2(4) (3.0 10 ) 1.2 10I − −= × × = ×  
(b) 1/2log | |  [5F.8]z z AIγ ± + −= −  

 3 1/ 2
4log (CuSO ) (4) (0.509) (4.0 10 ) 0.1288γ −

± = − × × × = −  

 4(CuSO ) 0.74γ ± =  

 2 1/ 2
4log (ZnSO ) (4) (0.509) (1.2 10 ) 0.2230γ −

± = − × × × = −  

 4(ZnSO ) 0.60γ ± =  
(c) The reaction in the Daniell cell is 
 2 2 2 2

4 4Cu (aq) SO (aq) Zn(s) Cu(s) Zn (aq) SO (aq)+ − + −+ + → + +  



Hence, 

O

2 2
4

2 2
4

2 2
4

2 2
4

(Zn ) (SO , R)
(Cu ) (SO , L)

(Zn ) (SO , R)
     here and below

(Cu ) (SO , L)

a aQ
a a

b b bb
b b b

γ γ
γ γ

+ −

+ −

+ −
+ + − −

+ −
+ + − −

=

 = ≡  

 

where the designations R and L refer to the right and left sides of the equation for the cell reaction and all b are 
assumed to be unitless, that is, Ob b . 
 2 2

4 4(Zn ) (SO ,R) (ZnSO )b b b+ −
+ −= =  

 2 2
4 4(Cu ) (SO , L) (CuSO )b b b+ −

+ −= =  
Therefore, 

 
2 2 2 3 2

4 4
2 2 2 3 2

4 4

(ZnSO ) (ZnSO ) (0.60) (3.0 10 ) 5.92 5.9
(CuSO ) (CuSO ) (0.74) (1.0 10 )

bQ
b

γ
γ

−
±

−
±

× ×
= = = =

× ×
 

 

(d) 
O

O
3 1

r
cell 4 1

( 212.7 10 J mol )[6C.3] 1.102 V
(2) (9.6485 10 C mol )

GE
Fν

−

−

∆ − − ×
= − = = +

× ×
  

O
3 3

cell cell
25.693 10  V 25.693 10  V(e) ln (1.102 V) ln(5.92)

2

= (1.102 V) (0.023 V) +1.079 V

E E Q
ν

− − × ×
= − = −  

 

− =

 

 
 
6.4  ( ) ( ) ( )O 1 1

2Pt|H g, |NaOH aq,0.01000 mol kg ,NaCl aq,0.01125 mol kg |AgCl(s)|Ag(s)p − −  

 
2

O

O

+
2

H

H (g, ) 2 AgCl(s) 2 Ag(s) + 2 Cl (aq) 2 H (aq)

where 2 [Activities of solids equal 1 and .]

p
v p p

−+ → +

= =
 

 

{ }

{ }

O

O O O

O O

O

2

cell cell H Cl

w wCl Cl
cell H Cl

OH OH

w Cl Cl
cell w

OH OH

Cl
cell w w

OH

ln  [6C.4 and 6A.12(b)]
2

  ln ln ln

  ln ln ln

  ln10 ×p ln p

RTE E a a
F

K a K bRT RT RTE a a E E
F F a F b

K b bRT RT RTE E K
F b F F b

bRT RTE K K
F F b

γ
γ

+ −

− −

+ −

− −

− −

− −

−

−

±

±

= −

= − = − = −

= − = − −

= + − w
w

ln
= log =

ln10
K

K
− − 

 

 

Hence, 

( ) ( )

( )

O

O

O

Cl

OHcell cell
w

1 cell cell

1 cell cell

ln

p
ln10 / ln10

ln 0.0100 / 0.01125
5039.75 V

/ K ln10

5039.75 V 0.05115
/ K

b
bE E

K
RT F

E E
T

E E
T

−

−

−

−

 
  −  = +

 −
= × + 

 
 −

== × − 
 

 

 
Using information of the data tables, we find that  
 
 ( ) ( )O O O O O +

2cell R L AgCl, Ag H /H 0.22 V 0 0.22 VE E E E E= − = − = + − = + . 



This value does not have the precision needed for computations with the high precision data of this problem. 
Consequently, we will use the more precise value found in the CRC Handbook of Chemistry and Physics(71st ed): 

O
cell 0.22233 VE = . We then draw up the following table.  

 
θ / C°  20.0 25.0 30.0 
cell  / VE  1.04774  1.04864  1.04942  

wpK  14.14  13.92  13.70  
 
Inspection of the table reveals that for each 5 K increase in temperature the value of pKw decreases by 0.22 and, 
consequently, d(pKw)/dT = −0.22 / 5.0 K = −0.044 K−1. Thus, at 25°C: 

 [ ]
O

w w
2  

d ln 6B.2(a)
d

K H
T RT

∆
=  

 

( ) ( ) ( )

O 2 2 2w w w
w

23 1 1 1

1

d ln d log d pln10 ln10
d d d

ln10 8.3145 10  kJ mol  K 298.15 K 0.044 K

74.9 kJ mol

K K KH RT RT RT
T T T

− − − −

−

∆ = = × = − ×

= − × × × × −

= +

 

 O 1
w w w1n ln10 p 79.5 kJ molG RT K RT K −∆ = − = × × = +  

 
O O

O 1 1w w
w 15.4 J K mol

H G
S

T
− −∆ − ∆

∆ = = −  

       
 
6.5‡ Electrochemical Cell Equation: 1

2 2H (g,1 bar) AgCl(s) H (aq) Cl (aq) Ag(s)+ −+ + +  
O

2 Cl Cl
with (H ) 1 bar  and a p a γ b− −= = = . 

Weak acid Equilibrium: BH B H+ ++  with + BBH
b b b= =  

 ( )+ + +a B B BH BH H BH H BH
/ / /K a a a γ ba γ b γ a γ+ + += = =  

Thus,  + + a BH BH
/a γ K γ= . 

Ionic strength (neglect 
H

b +  because +H
) :b b<<  + +

2 21
2 BH BH Cl Cl
{ }I z b z b b− −= + = . 

According to the Nernst equation [6C.4] 

 
+

+
O O

O
H Cl

cell cell cell H Cl
2

 ln(10)ln log( )
(H ) /
a aRT RTE E E a a

F Fp p
−

−

 
= − = − 

 
 

 
( ) +

+

O a BH Cl
cell cell H Cl

B

2
a BBH Cl

log( ) log
ln(10)

                                p log( ) 2log( )     where     /

K bF E E a b
RT

K b

γ γ
γ

γ

γ γ γ γ γ

−

+ −

−± ±

 
− = − = −  

 
= − − ≡  

Substitution of the Davies equation, 

 

1/2

1/2log   [5F.11(b)]
1

A z z I
CI

BI
γ + −

± = − +
+

, 

gives

 
 

( )O
cell cell a

2p log( ) 2
ln(10) 1
F A bE E K b Cb

RT B b
− = − + −

+
     where     A = 0.5091. 

The expression to the left of the above equality is experimental data that is a function of b. The parameters apK , B, 
and C on the right side are systematically varied with a mathematical regression software package like Mathcad until 
the right side fits the left side in a least squares sense. The results are: ap 6.736 ,  1.997K B= = , and 0.121C = − . 



The mean activity coefficient is calculated with the equation 
1/ 2

1/ 2110
AI Cb
BIγ

 −
+  + 

± =  for desired values of b and I. Figure 
I6.1 shows a γ± against I plot for b = 0.04 mol kg−1 and 0 0.1I≤ ≤ . 

 

 
Figure I6.1  
 
6.6  O

r r ln   [6A.10]G G RT Q∆ = ∆ +  
In Equation 6A.10 molar solution concentrations are used with 1 M standard states ( O 31 mol dmc −= ).  The 
standard state (O)  pH equals zero in contrast to the biological standard state ( ⊕ ) of pH 7.  For the ATP hydolysis 
 ATP(aq) + H2O(l) → ADP(aq) + Pi

–(aq) + H3O+(aq) 
we can calculate the standard state free energy given the biological standard free energy of about  –31 kJ mol–1 
(Impact On Biochemistry I6.1). 
 O

r r  +  ln   [6A.10]G G RT Q⊕ ⊕∆ = ∆  

 ( ) ( ) ( )
O

r r

1 1 1 7

1

  ln 

         31 kJ mol 8.3145 J K  mol 310 K ln 10  M/1 M

         11 kJ mol

G G RT Q⊕ ⊕

− − − −

−

∆ = ∆ −

= − − ×

= +

 

This calculation shows that under standard conditions the hydrolysis of ATP is not spontaneous!  It is endergonic. 
 
The calculation of the ATP hydrolysis free energy with the cell conditions pH = 7, [ATP] = [ADP] = [Pi

–] = 1.0×10–

3 M, is interesting. 

 

[ ]
[ ] ( )

( ) ( ) ( )

O O

+
i

r r r 2

1 1 1 3 7

1

ADP P H
ln ln

ATP 1 M

      11 kJ mol 8.3145 J K  mol 310 K ln 10 10

      48 kJ mol

G G RT Q G RT
−

− − − − −

−

    × ×    ∆ = ∆ + = ∆ +
 × 

= + + × ×

= −

 

 
The concentration conditions in biological cells make the hydrolysis of ATP spontaneous and very exergonic.  A 
maximum of 48 kJ of work is available to drive coupled chemical reactions when a mole of ATP is hydrolyzed.    
     
 
6.7 Yes, a bacterium can evolve to utilize the ethanol/nitrate pair to exergonically release the free energy needed for 
ATP synthesis. The ethanol reductant may yield any of the following products. 



 3 2 3 3 2 2CHCH OH CH CHO CH COOH CO  + H O
    ethanol          ethanal      ethanoic acid

→ → →  

The nitrate oxidant may receive electrons to yield any of the following products. 
 3 2 2 3  

nitrate          nitrite     dinitrogen    ammonia
NO     NO    N    NH− −→ → →  

Oxidation of two ethanol molecules to carbon dioxide and water can transfer 8 electrons to nitrate during the 
formation of ammonia. The half-reactions and net reaction are:  
 
 +

3 2 2 22 [CH CH OH(l) 2 CO (g) + H O(l) + 4 H (aq) + 4 e ]−→  
 +

23 3(aq) + 9 H (aq) + 8 e (aq) + 3 H O(l)NO NH−− →  
 _____________________________________________________________________ 
 +

3 2 2 23 32 CH CH OH(l) + H (aq) + (aq) 4 CO (g) + 5 H O(l) + (aq)NO NH− →  
O

r 2331.29 kJG∆ = −  for the reaction as written (a data table calculation). Of course, enzymes must evolve that 
couple this exergonic redox reaction to the production of ATP, which would then be available for carbohydrate, 
protein, lipid, and nucleic acid synthesis.  
 
6.8‡ (a) The equilibrium constant is given by 

 
O O O

r r rexp exp exp   [6A.18]
G H SK

RT RT R
     −∆ −∆ ∆

= =     
     

 

so 
O O

r rln
H SK

RT R
−∆ ∆

= − + . 

A plot of ln K against 1 T should be a straight line with a slope of O
r H R−∆ and a y-intercept of O

r S R∆ (Fig. 
I6.2). 
 
Figure I6.2 

 
So ( ) ( )O 3 1 1 3

r

1

slope 8.3145 10  kJ mol  K 8.71 10  K

72.4 kJ mol

H R − − −

−

∆ = − × = − × × ×

= −

 

and  ( ) ( )O 1 1 1 1
r intercept 8.3145 J K  mol 17.3 144 J K  molS R − − − −∆ = × = × − = −  

(b) ( )( ) ( ) ( )( ) ( )O O O O O O
r f f f r f2 2

ClO 2 ClO      so     ClO 2 ClOH H H H H H∆ = ∆ − ∆ ∆ = ∆ + ∆ . 

 ( )( ) ( )O 1 1
f 2

ClO 72.4 2 101.8 kJ mol 131.2 kJ molH − −∆ = − + = +    



 ( )( ) ( )O 1 1 1 1
2

ClO 144 2 226.6 J K  mol 309.2 J K  molS − − − −= − + = +     
 



          
7 Introduction to quantum theory 
 
7A  The origins of quantum mechanics 
 

Answers to discussion questions 
 
7A.2 A successful theory of black-body radiation must be able to explain the energy density distribution of the 
radiation as a function of wavelength, in particular, the observed drop to zero as λ→0. Classical theory predicts 
the opposite. However, if we assume, as did Planck, that the energy of the oscillators that constitute 
electromagnetic radiation are quantized according to the relation E = nhν = nhc/λ where the quantum number 
n can equal zero or any positive integer, we see that at short wavelengths the energy of the oscillators is very 
large. This energy is too large for the walls to supply it, so the short-wavelength oscillators remain unexcited. 
The effect of quantization is to reduce the contribution to the total energy emitted by the black-body from the 
high-energy short-wavelength oscillators, for they cannot be sufficiently excited with the energy available. 
 
7A.4 By wave-particle duality we mean that in some experiments an entity behaves as a wave while in other 
experiments the same entity behaves as a particle. Electromagnetic radiation behaves as a wave in reflection and 
refraction experiments but it behaves as particulate photons in absorption and emission spectroscopy. Electrons 
behave as waves in diffraction experiments but as particles in the photoelectric effect. Consequences of wave–
particle duality include the quantization of available energies for small fundamental particles like electrons, 
atoms, and molecules. Another consequence is the impossibility of simultaneously specifying with unlimited 
precision the values of the complementary observables position and momentum. Likewise, the values of energy 
and the time of an event occurrence cannot be simultaneously measured with unlimited precision.  Wave-
particle duality causes the multiplied uncertainties of complementary observables, such as x and px or E and t, 
to be greater than, or equal to, / 2  (i.e., the Heisenberg uncertainty principle of eqns 7C.13a and 7C.17). 
Quantum theory shows that, because of wave-particle duality, it is necessary to specify the wavefunction ψ of 
fundamental particles and to use the tenets, often called postulates (text 7C.4), of quantum mechanics to 
interpret their behavior and observable properties. These tenets are elaborated upon throughout text Chapter 7 
Sections A, B, and C.  Here’s a summary of these tenets: 
 
Tenet I:  The state of the system is described as fully as possible by the wavefunction ψ(r1, r2 ...) where r1, r2, ... 
are the spatial coordinates of all particles (1, 2, ...) in the system. 
 
Tenet II, The Born interpretation:  For a system described by the wavefunction ψ(r), the probability of finding 
the particle in the volume dτ is proportional to |ψ|2dτ = ψ*ψdτ. The constant of proportionality, the 

normalization constant, is chosen so that the integral 
2

all space

dψ τ∫  equals 1. 

Tenet III:  For each observable property Ω of a system there is a corresponding operator Ω̂  built from the 
following position and linear momentum operators. 

 dˆ ˆ          and            [7C.3]
i dxx = x p

x
× =

  

Tenet IV:  If the system is described by a wavefunction ψ that is an eigenfunction of Ω̂  such that Ω̂ =ψ ωψ , 
then the outcome of a measurement of Ω will be the eigenvalue ω. 
 
Tenet V:  When the value of an observable Ω is measured for a system that is described by a linear combination 
of eigenfunctions of Ω̂ , with coefficients ck, each measurement gives one of the eigenvalues ωk of Ω̂  with a 
probability proportional to | ck |2. 
  
 

Solutions to exercises 
 
7A.1(b)  [ ] m A / period 1/      and    E h h T T E N Eν ν∆ = = = = ∆ = ∆  
(i) For T = 2.50 fs 

 
 1 



 
( ) ( )
( ) ( )

34 15 19

23 1 19 1
m

6.626 10  J s / 2.50 10  s 2.65 10  J

6.022 10  mol 2.65 10  J 160 kJ mol

E

E

− − −

− − −

∆ = × × = ×

∆ = × × × =
 

(ii) For T = 2.21 fs 

 
( ) ( )
( ) ( )

34 15 19

23 1 19 1
m

6.626 10  J s / 2.21 10  s 3.00 10  J

6.022 10  mol 3.00 10  J 181 kJ mol

E

E

− − −

− − −

∆ = × × = ×

∆ = × × × =
 

(iii) For T = 1.0 ms 

 
( ) ( )
( ) ( )

34 3 31

23 1 31 10 1
m

6.626 10  J s / 1.0 10  s 6.6 10  J

6.022 10  mol 6.6 10  J 4.0 10  kJ mol

E

E

− − −

− − − −

∆ = × × = ×

∆ = × × × = ×
 

 

7A.2(b)  
( ) ( )34 8 1 25 6 626 10  J s 2 998 10 m s 1.986 10  J m  [Example 7A.2]hcE hν

λ λλ

− − −. × × . × ×
= = = =  

 A
m A

0.1196 J mN hcE N E
λλ

= = =  

We can therefore draw up the following table. 
 

λ / m E / J Em / (kJ mol–1) 

(i) 200 × 10−9 199.93 10−×  598 

(ii) 150 × 10−12 151.32 10−×  7.97 × 105 

(iii) 1.00 × 10−2 231.99 10−×  0.012 
 
 
7A.3(b) Upon absorption of a photon by a free helium-4 atom, the law of conservation of energy requires that 
the acquired kinetic energy, Ek, of the atom equal the energy of the absorbed photon: Ek = Ephoton = ½mHev2. The 
values of Ephoton are calculated in Exercise 7A.2(b) so the atom is accelerated to the speed 

 

( ) ( )

photon photon

He

photon 13 1
photon27

2 2
4.0026

2
 1.7347 10  m s / J

4.0026 1.66054 10  kg

E E
m u

E
E−

−

= =
×

= = × ×
× ×

v

 

We can therefore draw up the following table. 
  

λ Ephoton / J v / (km s–1) 

(i) 200 × 10−9 199.93 10−×  17.3 

(ii) 150 × 10−12 151.32 10−×  630 

(iii) 1.00 × 10−2 231.99 10−×  0.0774 
 
 
7A.4(b) The total energy emitted in time Δt is PΔt where P is the power of the emission. The energy of each 
emitted photon photon /  [C.3]E hv hc λ= = . The total number of photons emitted in an interval Δt is then the total 
energy divided by the energy per photon. 

 
photon

P t P tN
E hc

λ∆ ∆
= =  

Assuming that de Broglie’s relation applies to each photon, and recognizing that the law of conservation of 
linear momentum requires that the loss of a photon imparts an equivalent momentum (in the opposite direction) 
to the spacecraft, the total momentum imparted to the spacecraft in time Δt is 

 
 2 



 photon  [7A.14]Nh P t h P tp Np
hc c
λ

λ λ
×

∆ ∆
= = = =  

Since p = (mv)spacecraft, the final speed of the spacecraft is 

 ( ) ( ) ( )
( ) ( )

spacecraft

3 7 1
1

8 1
 

1.50 10  W 10 y 3.1557 10  s y
 158 m s

2.9979 10  m s 10.0 kg

P t
c m

−
−

−

∆
=

× × × ×
= =

× ×

v

 

 
 
7A.5(b) The total energy emitted in time Δt is PΔt where P is the power of the emission. The energy of each 
emitted photon is given by photon /  [C.3]E hv hc λ= = . The total number of photons emitted in an interval Δt is 
then the total energy divided by the energy per photon. 

 ( ) ( )
( ) ( ) ( )

photon

9
18

34 8 1
 

1.00 s 700 10  m
  3.52 10 / W

6 626 10  J s 2 998 10 m s

P t P tN
E hc

P P

λ

−

− −

∆ ∆
= =

× ×
= = × ×

. × × . ×

 

(i) When P = 0.10 W, 173.52 10N = × . 

(ii) When P = 1.0 W, 183.52 10N = × . 
 

7A.6(b)  21
2k k e k e [7A.13]     and, since ,     2 /hcE h Φ E m E mν

λ
= − = −Φ = =v v  

 19 192 09eV (2 09) (1 602 10 J) 3 35 10 JΦ − −= . = . × . × = . ×  
(i) For λ = 650 nm 

 
( ) ( )34 8 1

 
19 19 19

k 9

6 626 10  J s 2 998 10 m s
3.35 10  J 3.06 10  J 3.35 10  J

650 10  m
E

− −
− − −

−

. × × . ×
= − × = × − ×

×
 

Inspection of the above equation reveals that the photon energy of the radiation is less than the work function 
and we conclude that no electron ejection occurs. 
 
(ii) For λ = 195 nm 

 

( ) ( )

( ) ( )

34 8 1
 

19 18 19
k 9

19

19 31 1

6 626 10  J s 2 998 10 m s
3.35 10  J 1.02 10  J 3.35 10  J

195 10  m
    6.84 10  J

2 6.84 10  J / 9.109 10  kg 1.23 Mm s

E
− −

− − −
−

−

− − −

. × × . ×
= − × = × − ×

×

= ×

= × × × =v

 

 

7A.7(b)  2 21 1
2 2binding photon k e e

hcE E E h m mν
λ

= − = − = −v v  

  

( ) ( ) ( ) ( )

( )

21
2binding e

34 8 1
231 7 11

212

16
19

6.626 10  J s 2.998 10  m s
9.109 10  kg 5.69 10  m s

121 10  m
1 eV1.67 10  J 1.04 keV  without a relativistic mass correction

1.602 10  J

hcE m
λ

− −
− −

−

−
−

= −

× × ×
= − × × ×

×
 = × × = × 

v  

 
Note: The photoelectron is moving at 19.0% of the speed of light. So, in order to calculate a more accurate value 
of the binding energy, it would be necessary to use the relativistic mass in place of the rest mass. 
 

 
( )( ) ( )( )

31
31e

1/2 1/222 7 1 8 1

9.109 10  kg 9.28 10  kg
1 / 1 5.69 10  m s / 2.998 10  m s

m
m

c

−
−

− −

×
= = = ×

− − × ×v
 

 
 3 



 
 

( ) ( ) ( ) ( )

( )

21
2binding

34 8 1
231 7 11

212

16
19

6.626 10  J s 2.998 10  m s
9.28 10  kg 5.69 10  m s

121 10  m
1 eV1.39 10  J 0.870 keV  with the relativistic mass correction

1.602 10  J

hcE m
λ

− −
− −

−

−
−

= −

× × ×
= − × × ×

×
 = × × = × 

v  

 

7A.8(b) The de Broglie relation is  [7A.14]h h
p m

λ = =
v

. 

Hence, 
( ) ( )

34
3 1

 
27 12p

6 626 10  J s 3.96 10 m s
1 673 10  kg 100 10  m

h
m λ

−
−

− −

. ×
= = = ×

. × × ×
v  

The kinetic energy acquired by a proton upon acceleration through a voltage of E equals eE.  

 
2

p
k 2

m
E e= = E

v
 

Solving for the potential difference gives 

 

( ) ( )
( )

2
p

227 3 1

19

2

2

1.673 10  kg 3.96 10  m s
2 1.602 10  C

8.19 10  V

m
e

− −

−

−

=

× × ×
=

× ×

= ×

E
v

 

 

7A.9(b) The de Broglie relation is  [7A.14]h h
p m

λ = =
v

. 

Hence, 
( ) ( )

34
5 1

 
27 2

p

6 626 10  J s 1.3 10 m s , which is extremely slow!
1 673 10  kg 3 0 10  m

h
m λ

−
− −

− −

. ×
= = = ×

. × × . ×
v  

 
7A.10(b) The momentum of a photon is 

 
34

27 1
9

6.626 10  J s [7A.14] 1.89 10  kg m s
350 10  m

hp
λ

−
− −

−

×
= = = ×

×
 

The momentum of a particle is p = mv so the speed of a hydrogen molecule that has the above momentum is 

 
( )2 2

27 1
1

3 1 23 1
H H A

 

  

1.89 10 kg m s 0.565 m s
/ 2.016 10 kg mol / 6.022 10 mol

p pv
m M N

− −
−

− − −

×
= = = =

× ×
 

 

7A.11(b) The de Broglie wavelength is  [7A.14]h
p

λ = . The kinetic energy acquired by an electron upon 

acceleration through a voltage of E equals eE. Thus, since 
1 1

2 2
2

k e k e
e

,  (2 ) (2 )2
pE p m E m em= = = E  and 

1
2(2 )

h
me

λ =
E

. 

(i) 
( ) ( ) ( ){ }

34

1 231 19

6 626 10 J s 123 pm
2 9 109 10  kg 1.602 10  C 100V

λ
−

− −

. ×
= =

× . × × × ×
 

(ii) 
( ) ( ) ( ){ }

34

1 231 19 3

6 626 10 J s 39 pm
2 9 109 10  kg 1.602 10  C 1.0 10 V

λ
−

− −

. ×
= =

× . × × × × ×
 

(iii) 
( ) ( ) ( ){ }

34

1 231 19 3

6 626 10 J s 3.88 pm
2 9 109 10  kg 1.602 10  C 100 10 V

λ
−

− −

. ×
= =

× . × × × × ×
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Solutions to problems 

 
7A.2 As λ increases, /hc kTλ  decreases, and at very long wavelength hc/λkT « 1. Hence we can expand the 

exponential in a power series. Let x = hc/λkT, then 2 31 1 …e 1
2 3

x x x x= + + + +
! !

 and the Planck distribution 

becomes 

 
5 2 3 5 2 3

8π 8π
1 1 1 1… …1 12 3 2 3

hc hc

x x x x x x
ρ

λ λ   
   
   

= =
+ + + + − + + +

! ! ! !

 

When x is much, much smaller than one, second and higher order terns in x become negligibly small compared 
to x. Consequently, 

 5 5 4λ

8π 8π 1 8πlim
λ

hc hc kT
hc kTx→∞

 
= = = 

 
ρ

λ λ λ
 

This is the Rayleigh–Jeans law [7A.4]. 
 
7A.4 Since 1

5max /T hc kλ ≅  by Wien’s law, we find the mean of the maxTλ  values and obtain h from the 

equation ( )max mean 
5k

h T
c

λ= . We draw up the following table. 

 
 
 
 
 
  
 
 
The mean is 62 84 10 nm K. × with a standard deviation of 60.04 10 nm K× . Therefore, 

 34
23 1 3

8 1  
(5) (1 38066 10 J K ) (2 84 10 m K) 6.54 10 J s

2 99792 10  m s
h −

− − −

−

× . × × . ×
= = ×

. ×
 

Comment. Planck’s estimate of the constant h in his first paper of 1900 on black body radiation was 
27 76 55 10 ergsec(1erg 10 J)− −. × =  which is remarkably close to the current value of 346.626 10 Js−×  and is 

essentially the same as the value obtained above. Also from his analysis of the experimental data he obtained 
values of k (the Boltzmann constant), AN  (the Avogadro constant), and e (the fundamental charge). His values 
of these constants remained the most accurate for almost 20 years. 
 
7A.6 The total energy density of black-body radiation is 

 ( ) ( ) [ ]50 0

d d 8π       7A.6
e 1hc kT

hc
λ

λρ λ λ
λ

∞ ∞
= =

−∫ ∫E  

Let hcx
kTλ

= . Then, 
2

2d d  or d dhc kTx x
hckT

λλ λ
λ

= − = − . 

 
( ) ( ) ( )

3 32 3 4

5 30 0 0

5 4 5 4
4 4

3 3 3 2

d d d π8π 8π 8π 8π
15e 1 e 1 e 1

8π 4 2π       where  is the Stefan-Boltzmann constant
15 15

x x x

x x kT x x kTkT kT kT kT
hc hc

k kT T
ch c h c

λ
λ λ

σ σ

∞ ∞ ∞     = = = =     − − −     

   = = =   
  

∫ ∫ ∫E

 

This is the Stefan-Boltzmann law that specifies that the total energy-density of black-body radiation is 
proportional to T 4. 
 
7A.8‡ The wavelength λmax at which the spectral distribution of the sun is a maximum is nicely estimated with 
Wien’s law (see Problem 7A.7) 

 
( ) ( )

( ) ( )

34 8 1

max 23 1

6.626 10  J s 2.998 10  m s
 [Wien's law]

5 5 1.381 10  J K 5800 K
hc
kT

λ
− −

− −

× × ×
= =

× × ×
 

θ/ºC 1000 1500 2000 2500 3000 3500 
T/K 1273 1773 2273 2773 3273 3773 
λmax/nm 2181 1600 1240 1035 878 763 
λmaxT / (106 nm K) 2.776 2.837 2.819 2.870 2.874 2.879 
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 7      4.96 10  m 496 nm, blue-green−= × =  
 
7B  Dynamics of microscopic systems 
 

Answers to discussion questions 
 
7B.2 A central principle of quantum mechanics is that the wavefunction contains all the dynamical information 
about the system it describes. The normalized wavefunction ψ(r) itself is called the probability amplitude. It 
contains information about the location of a particle. |ψ(r)|2 is the probability density at the point r, and to 
obtain the probability of finding a particle in an infinitesimal volume dτ = dxdydz at r it must be multiplied by 
dτ. The probability of finding a particle in a region is found by integration of the probability density over the 
region: 

 ( ) 2

region
dP ψ τ= ∫ r  

 
7B.4 For the wavefunction that is normalized to 1 the integral over the whole of space of the probability density, 

|ψ(r)|2, equals 1: ( ) 2

all space
d 1ψ τ =∫ r . The normalized wavefunction has the advantages of simplify expressions 

for measurable quantities. First, the probability of finding a particle in a region is found by integration of the 
probability density over the region: 

 ( ) 2

region
dP ψ τ= ∫ r  

For an unnormalized wavefunction this probability is expressed as 

 ( ) ( )2 2

region all space
d dP ψ τ ψ τ= ∫ ∫r r  

Similarly, the expectation value of the dynamical property Ω is given by the simplified integration: 
 ˆ d   [7C.11]Ω ψ Ωψ τ∗= ∫  
 

Solutions to exercises 
 
7B.1(b) The time-dependent, wavefunction in two-dimensional space is a function of x, y, and time t so we write 
ψ(x,y,t) or ψ(r,t). The infinitesimal space element is dτ = dxdy with each variable ranging from –∞ to +∞. For 
systems with symmetry in the xy plane it is best to work in the polar coordinates r and φ  where r2 = x2 + y2 and 
x = r cos φ. These variables have the ranges 0 ≤ r ≤ ∞ and 0 ≤ φ ≤ 2π with the infinitesimal space element dτ = r 
dr dφ. 
 
It is reasonable to expect that in some special cases the probability densities in each of the two independent 
directions and time should be mutually independent. Subsequently, the wavefunction in such a case must be the 
product of independent wavefunctions: ψ(r,t) ∝ X(x)× Y(y) × T(t).  
 
7B.2(b) An isolated, freely moving helium atom is expected to have a translational, time-dependent 
wavefunction that is a function of the center-of-mass coordinates xcm, ycm, and zcm and time t also. So we write 
ψcm(xcm,ycm,zcm,t) or ψcm(rcm,t). The infinitesimal space element for the center-of-mass variables is dτcm = 
dxcmdycmdzcm with each variable ranging from –∞ to +∞. 
 
The helium atom also has variables for the coordinates of two electrons with respect to the center-of-mass of the 
atom. They are the coordinates x1, y1, and z1 of electron "number 1" and coordinates x2, y2, and z2 of the electron 
"number 2". The electronic wavefunction can be written as ψel(r1,r2,t). The infinitesimal space element is dτ = 
dx1dy1dz1dx2dy2dz2 with each variable ranging from –∞ to +∞. 
 
In general we expect that the total wavefunction is the product ψcm(rcm,t) × ψel(r1,r2,t). Furthermore, we expect 
that there are special cases for which the translational wavefunction exhibits the separation of variables: 
ψcm(rcm,t) ∝ Xcm(xcm) × Y(ycm) × Zcm(zcm) × T(t). The electronic wavefunction does not exhibit the separation of 
variables in either the Cartesian or spherical polar coordinate systems because the electrostatic potential between 
the two electrons depends upon the distance between them. 
 
7B.3(b) The normalized wavefunction is ψ(x) = N sin(2πx/L) where N is the normalization constant. 
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2 *

0

2
2 2 2

0
0

1/2

 d 1 [7B.4c]

sin(4π / )sin (2π / ) d 1
2 8π / 2

2

x L
L

x

x x L N LN x L x N
L

N
L

π
ψ ψ ϕ

=

=

=

 = − = = 
 

 =  
 

∫

∫  

 
 
7B.4(b) The normalized wavefunction is ψ(x) = (2/L)½sin(2πx/L) so  |ψ(x)|2 = (2/L)sin2(2πx/L). Thus, the 
probability of finding the electron in an infinitesimal volume element at x = L/2 is 
 
 | ψ(L/2)|2dx = (2/L) sin2(2πL/2L) dx =  (2/L) sin2(π) dx = (2/L) × 0 dx = 0 
 
The probability of finding the electron in an infinitesimal volume element at the center of the carbon nanotube 
equals zero. 
 

7B.5(b) The normalized wavefunction is 
1

22 sin(2π / )x L
L

 =  
 

ψ . 

 

/2 *

/4
/2

/2 2

/4
/4

Probability that / 4 / 2  d

2 2 sin(4π / )sin (2π / ) d
2 8 /

2 sin(4π / 2 ) sin(4π / 4 )
4 8π / 8 8π /

1 sin(2π) 1 s
2 4π 4

L

L
x L

L

L
x L

L x L x

x x Lx L x
L L L

L L L L L L
L L L

ψ ψ

π

=

=

≤ ≤ =

    = = −    
    

      = − − −            
 = − − − 
 

∫

∫

in(π) 1 10 0
4π 2 4

1
4

     = − − −     
     

=  
 

Solutions to problems 
 
7B.2 In each case the normalization constant 2 2dN ψ τ− = ∫  must be evaluated by analytically determining the 
integral over the whole space of the wavefunction. The normalization integrals are best evaluated using the 
spherical coordinates ( ), ,r θ φ  for which 0 ,  0 π,  and 0 2πr≤ ≤ ∞ ≤ ≤ ≤ ≤θ φ . It is helpful to recognize that, 

when a wavefunction has the separation of variables form ( ) ( ) ( ) ( ), ,r R rψ θ φ Θ θ Φ φ= × × , the integral over 
the space of all variables is 

 

( ) ( ) ( )( )

( ) ( ) ( )

2 π 2π 22 2 2

0 0 0

π 2π 22

0 0 0

π 2π2 2 22

0 0 0

d sin d d d      Note that d sin d d d .

sin d d d

d sin( ) d d

r

r

r

N r r r r

r R r r

r R r r

θ φ

θ φ

θ φ

ψ τ ψ θ θ φ τ θ θ φ

Θ θ Φ φ θ θ φ

θ Θ θ θ Φ φ φ

∞−

= = =

∞

= = =

∞

= = =

 = = = 

= × × ×

= × × × ×

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

In the special case (i) for which ( ) ( )1 and 1Θ θ Φ φ= = : 

 ( ) ( )

[ ] [ ]

π 2π π 2π2 2

0 0 0 0

π 2π

0 0

sin( ) d d sin( )d d

cos

4π

θ φ θ φ

θ φ

θ Θ θ θ Φ φ φ θ θ φ

θ φ

= = = =

= =

× × = ×

= − ×

=

∫ ∫ ∫ ∫  

and the normalization integral is 
 ( )22 2

0
4π d

r
N r R r r

∞−

=
= ×∫  

 
In the special case (ii) for which ( ) ( )sin  and cosΘ θ θ Φ φ φ= = : 

 
 7 



 ( ) ( ) ( )
π 2π π 2π2 2 3 2

0 0 0 0

π 2π31 1
3 2 4 00

4
3

sin( ) d d sin ( )d cos d

cos cos sin 2

π

θ φ θ φ

φ
φθ

θ Θ θ θ Φ φ φ θ θ φ φ

θ θ φ

= = = =

==

× × = ×

 = − + × +   
=

∫ ∫ ∫ ∫  

and the normalization integral is 
 ( )22 24

3 0
π d

r
N r R r r

∞−

=
= ×∫  

(a) (i) The unnormalized wavefunction is 0

0

2 e r ar
a

ψ − / 
= − 
 

  and     0

2
22

0

2 e r ar
a

ψ − 
= − 
 

. 

  ( )

( ){ }
{ }

0

22 2

0
2

2

0
0

23 2
0 00

3 2 3 4 2 1
0 0 0

3 2 1
0

4π d

4π 2 e d

4π 2 e d      where     /

4π 4 4 e d   [Use the standard integral e d !/ ]

4π 4 2!/ 2 4 3!

r

r a

r

n a n

N r R r r

rr r
a

a r a

a n a

a

χ

χ

χ χ

χ

χ χ χ χ

χ χ χ χ χ χ

∞−

=

∞ − /

=

∞ −

=

∞ ∞− − +

=

+

= ×

   = × −  
   

= × − =

= − + =

= × − ×

∫

∫

∫

∫ ∫
{ }3 1 4 1

3
0

/ 2 4!/ 2

πa

+ ++

=

 

Hence, ( )
1

23
0πN a

−
=  and the normalized wavefunction is 

1
2

0
3

00

1 2 e
π

r ar
aa

− /   
= −   

  
ψ . 

(ii) The unnormalized wavefunction is 0 0/2 /2 2 2 2sin cos e  and sin cos er a r ar rψ θ φ ψ θ φ− −= = . 

 ( )

{ }

( ) ( )

0

22 24
3 0

2/224
3 0

5 44
3 0 00

5 14
3 0 0

5
0

π d

π e d

π e d      where     /

π 4!   [Use the standard integral e d !/ ]

32π

r

r a

r

n a n

N r R r r

r r r

a r a

a n a

a

χ

χ

χ

χ χ χ

χ χ

∞−

=

∞ −

=

∞ −

=

∞ − +

= ×

= ×

= =

= × =

=

∫
∫
∫

∫

 

Hence, ( )
1

25
032πN a

−
=  and the normalized wavefunction is 

1
2

0/ 2
5
0

1 sin cos e
32π

r ar
a

− 
=  
 

ψ θ ϕ . 

(b) Since normalization constants do not affect orthogonality, we use the unnormalized wavefunctions to 
examine the integral 1 2dψ ψ τ∫ . The wavefunctions are orthogonal if the integral proves to equal zero. 

 o o

o o

o

2
1 2

o

π 2π 2 2

0 0 0
o

34 π23 2

0
o0

d 2 e sin cos e d

2 e sin cos e sin d d d

2 e d sin d cos  

r r
a a

r r
a a

r

r
a

r

r r
a

r r r r
a

rr r
a

θ φ

θ

ψ ψ τ θ φ τ

θ φ θ θ φ

θ θ φ

− −

− −∞

= = =

∞ −

=
=

     = −   
     

     = −   
     

   = − × ×  
   

∫ ∫

∫ ∫ ∫

∫ ∫
2π

0
d

φ
φ

=∫

 

The integral on the far right equals zero:  

 
2π 2π

00
cos  d sin sin(2π) sin(0) 0 0 0

φ
φ φ φ

=
= | = − = − =∫  

Hence, 1 2d 0ψ ψ τ =∫  and we conclude that the wavefunctions are orthogonal. 
 

7B.4 The normalized wavefunction is 
1

22 πsin x
L L

   =    
   

ψ  and the probability that the particle will be found 
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between a and b is 

 

2

2

( , ) d

22 π 2π          sin d sin   [standard integral]
2 4π

1 2π          sin
2π

1 2π 2π          sin sin
2π

b

a
b

b

a
a

b

a

P a b x

x x L xx
L L LL

x x
L L

b a b a
L L L

ψ=

 = = − 
 

 = − 
 
−  = − − 

 

∫

∫
 

Calculations with the above expression may be compared to the small-range approximation that uses the mid-
range value m = (a + b)/2:  

 ( ) ( ) ( ) ( )
2

2 2 πsin mP a,b m b a b a
L L

ψ  ×  × − = × × −  
  

  

 
 10.0 nmL =  

(a) 0 10 1 (2π) × (5 05) (2π) × (4 95)(4 95,5 05) sin sin 0 020
10 0 2π 10 0 10 0

P . . . . . = − − = . . . . 
 

Small range approximation: ( )
2

2 π 5 00sin 5 05 4 95 0 020
10 10

. . . . ×  × × − =  
  

 

(b) 30 10 1 (2π) (2 05) (2π) (1 95)(1 95 2 05) sin sin 6.91 10
10 0 2π 10 0 10 0

P −. × . × . . , . = − − = × . . . 
 

Small range approximation: ( )
2

32 π 2 00sin 2 05 2 95 6 91 10
10 10

. . . . − ×  × × − = ×  
  

 

(c) 60 10 1 (2π) (10 0) (2π) (9 90)(9 90,10 0) sin sin 6.58 10
10 0 2π 10 0 10 0

P −. × . × . . . = − − = × . . . 
 

Small range approximation: ( )
2

62 π 9 95sin 10 00 9 90 4 93 10
10 10

. . . . − ×  × × − = ×  
  

 

(d) (5 0 10 0) 0 5 [because the wavefunction is symmetrical around / 2]P x L. , . = . =  

(e) 1 2 1 1 4π 2πsin sin 0 609
3 3 3 2π 3 3

P L L   , = − − = .   
   

 

Small range approximation: 
2

2 π 2 1sin 10 0 6667
10 2 3 3

.    × × − × =    
    

 

 
7B.6  

2 2/ 2( )  e x ax Nψ −=  

(a) ( )d 1  [normalization condition]x xψ
∞

−∞
=∫  

 
2 2

12 2 2

1
2

1
2

2 /

2

/

e d 1

1 1   [standard integral]
πe d

1
π

x a

x a

N x

N
ax

N
a

∞ −

−∞

∞ −

−∞

=

= =

 =  
 

∫

∫

 

 
(b) The probability P(−a,a) that the position is such that a x a− ≤ ≤  is 

 ( )

( )

2 2

2 2

1
2

2 /

/

, ( )d e d

1            e d erf 1 0.843
π

a a x a

a a

a x a

a

P a a x x N x

x
a

−

− −

−

−

− = =

= = =

∫ ∫

∫

ψ  
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7C  The principles of quantum theory 
 

Answers to discussion questions 
 
7C.2 For each observable property Ω of a system there is a corresponding operator Ω̂  built from the following 
position and linear momentum operators: 

 dˆ ˆ     and          [7C.3]
i dxx x p

x
= × =

  

If the system wavefunction ψ is an eigenfunction of Ω̂ , the outcome of a measurement of Ω will be the 
eigenvalue ω. Because the value of an observable is a real quantity, the operator of an observable must be a 
hermitian operator. That is: 

 ( )*
* *ˆ ˆd d      [7C.7]f Ωg g Ωfτ τ=∫ ∫  

When the system wavefunction ψ is not an eigenfunction of Ω̂ , we can only find the average or expectation 
value of the dynamical property by performing the integration shown in eqn 7C.11: ˆ dΩ ψ Ωψ τ∗= ∫ .  
 
7C.4 A wavepacket is a sharply localized wavefunction formed by the superposition of an infinite number of 
wavefunctions each of which has a different linear momentum. Being extremely localized, the modulus square 
of the wavefunction is non-zero at the precise location of the particle and zero elsewhere. However, each of the 
infinite momentum values has a non-zero probability of being observed so a momentum measurement is 
unpredictable. This is the conceptualization of the Heisenberg uncertainty principle which indicates that, when 
there is no uncertainty in knowledge of the particle position, there is an infinite uncertainty in knowledge of the 
particle momentum. Quantitatively, the product of the uncertainty in position and the uncertainty in momentum 
must always be greater or equal to / 2  (eqn. 7C.13a). 
 
 

Solutions to exercises 
 
7C.1(b) The Coulomb potential energy between point charge Q1 and point charge Q2 at a distance r in a vacuum 
is 

 1 2

04π
Q QV

rε
=  

With one charge at the coordinate origin and the other at the position (x,y,z), the distance is given by the 
expression 

 ( )1/22 2 2r x y z= + +  

To construct the potential energy operator, V̂ , we replace the position x in the classical expression with the 
position operator identity x̂ x= × . Likewise,  y is replaced with ŷ y= ×  and z is replaced with ẑ z= × . 
We find that the potential energy operator is identical to the classical Coulomb potential. 

 
( )

1 2 1 2
1/22 2 2

0 0

ˆ
4π 4π

Q Q Q QV
r x y zε ε

= =
+ +

 

 

7C.2(b)  
2π 2π* *

0 0

dˆ d  = d
i d

j
i z j il

ψ
ψ ψ φ ψ φ

φ∫ ∫
  

 
Application of ‘integration by parts’ yields 
 

 
*2π 2π* * 2π

00 0

dˆ d = d
i i d

| i
i z j i j jl

ψ
ψ ψ φ ψ ψ ψ φ

φ
−∫ ∫

   

 
The first term to the right vanishes because the wavefunction must repeat itself every 2π radian (i.e., 

( ) ( )0 2πi iψ ψ= ). 
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{ }

**2π 2π 2π* *

0 0 0

*2π *

0

d dˆ d  = d d
i d i d

ˆ d

i i
i z j j j

j z i

l

l

ψ ψ
ψ ψ φ ψ φ ψ φ

φ φ

ψ ψ φ

 
− =  

 

=

∫ ∫ ∫

∫

   

This is the condition of eqn 7C.7 so ẑl  is an hermitian operator.   
 
7C.3(b) ψi and ψj are orthogonal if * d 0  [7C.8]i jψ ψ τ =∫ . Where n ≠ m and both n and m are integers, 

 

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )
( )

( )
( )

0
0

sin π / sin π /
cos( π / ) cos( π / ) d

2π / 2π /

sin π sin π sin 0 sin 0
                                   

2π / 2π / 2π / 2π /

                         

x L
L

x

n m x L n m x L
n x L m x L x

n m L n m L

n m n m
n m L n m L n m L n m L

=

=

 − +
× = + 

− +  

− +   = + − + 
− + − +  

∫

          0     because the sine of an integer multiple of π equals zero.=

 

Thus, the functions cos( π / ) and cos( π / )n x L m x L  are orthogonal in the region 0 x L≤ ≤ . 
Alternatively, successively integrate by parts.
 

( )( )

0

  
0

0

0

cos( π / ) cos( π / ) d

sin( π / ) sin( π / )     cos( π / ) π / sin( π / ) d [integration by parts]
π / π /

     sin( π / ) sin( π / ) d   [use sin( π) 0 fo

L

x L
L

x

L

n x L m x L x

m x L m x Ln x L n L n x L x
m L m L

n n x L m x L x m
m

=

=

×

    = × − − ×        

 = × = 
 

∫

∫

∫

( )( )

{ }

  
0

0

2

0

r multiples of π]

cos( π / ) cos( π / )     sin( π / ) π / cos ( π / ) d [integration by parts]
π / π /

     cos( π / ) cos( π / ) d   [use

x L
L

x

L

n m x L m x Ln x L n L n x L x
m m L m L

n n x L m x L x
m

=

=

  −  −      = × × − ×               

 = × × 
 

∫

∫  sin( π) 0 for multiples of π]n =

Thus, { }
2

0
1 cos( π / ) cos( π / ) d 0

Ln n x L m x L x
m

  − × × =     
∫  

and we conclude that the integral necessarily equals zero when n ≠ m. 
 
7C.4(b) ψi and ψj are orthogonal if * d 0  [7C.8]i jψ ψ τ =∫ . 

 

( )

( ) ( )

{ } { }

2π 2π 2πi i i i 2i 2i 2π
00 0 0

4πi 0 4πi

i

1e e d e e d e d e |
2i

1 1                           e e e 1
2i 2i
1 1                           cos( 4π) i sin( 2π) 1 1 0 1 0
2i 2i

(The Euler identity ea

φ φ φ φ φ φ φ
φφ φ ϕ

∗ − − − − − =
=

− −

× = × = = −

= − − = − −

= − − − − − = − − − =

∫ ∫ ∫

cos( ) sin( ) has been used in the math manipulations.)a i a= −

 

Thus, the functions i ie  and eφ φ−  are orthogonal in the region 0 2πφ≤ ≤  
 
7C.5(b) The normalized form of this wavefunction and derivatives are:  

 ( )
1/22( ) sin π /x x L

L
ψ  =  

 
 

 
( )

( )

1/2

1/2 2 22

2

d 2 π cos π /
d

d 2 πsin π /
d

x L
x L L

x L
L L Lx

ψ

ψ π ψ

   =    
   

     = − = −     
     

 

The expectation value of the electron kinetic energy is: 
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2 2 2 2
* * *

k k 2 20 0 0

2 22 2 2
*

20

d dˆ d  [7.2] d d
2 2d d

π π      d
2 2 8

L L L

L

E E x x x
m mx x

hx
m L m L mL

ψψ ψ ψ ψ ψ

ψ ψ

     
= = − = −     

     

      = − − = =      
      

∫ ∫ ∫

∫

 

 

 

  
7C.6(b) The normalization constant for this wavefunction is: 

 

( ) ( ) ( )1/2 1/2 1/22π 2πi i

0 0

1 1 1  [7B.3]
2πe e d 1 d

N
x xφ φ−

= = =
×∫ ∫

 

Working with the normalized wavefunction and using the symbol Jz to represent angular momentum about the 
axis that is perpendicular to the plane of rotation, we find: 

 

1/2
i

2 2π* i i

0 0

i2π 2π 2πi i i

0 0 0

1( ) e
2π

1 dˆ d  [7C.11] e e d
2π i d

1 de 1      e d i e e d 1 d
2π i d 2π i 2π

      2π
2π

z zJ J

φ

π φ φ

φ
φ φ φ

ψ φ

ψ ψ φ φ
ϕ

φ ϕ φ
φ

−

− −

 =  
 

  = =   
   

          = × = × × × = ×          
          
 = × = 
 

∫ ∫

∫ ∫ ∫



  





 

 
7C.7(b) The minimum uncertainty in position is 100 pm. Therefore, since 1

2x p∆ ∆ ≥  , 

 
34

25 1
12

1 0546  10 J s 5 3 10 kg m s2(100  10 m)2
p

x

−
− −

−

. ×∆ ≥ = = . ×
×∆

  

 
125

5 1
31

5 3 10 kg ms 5.8 10 m s
9 11 10 kg

p
m

−−
−

−

. ×∆
∆ = = = ×

. ×
v  

 
7C.8(b) The desired uncertainty in the electron momentum is 

  ( ) ( ) ( )
5 5

e

5 31 3 1 30 1

1.00 10  1.00 10  

    1.00 10 9 109 10  kg 995 10  m s 9.06 10  kg m s

p p m− −

− − − − −

∆ = × = ×

= × × . × × × = ×

v
 

Thus, the minimum uncertainty in position must be 

 
( )

34

30 1

1.055 10  J s [7C.13a] 5.82 μm
2 9.06 10  kg m s2

x
p

−

− −

×
∆ = = =

× ×∆



  

 
7C.9(b) The quantity 1 2 1 2 2 1

ˆ ˆ ˆ ˆ ˆ ˆ,Ω Ω ΩΩ Ω Ω  = −    [7C.15] is referred to as the commutator of the operators 

1 2
ˆ ˆ and Ω Ω . In obtaining the commutator it is necessary to realize that the operators operate on functions; thus, 

we find the expression for ( ) ( ) ( )1 2 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ, x x xΩ Ω ψ ΩΩψ Ω Ωψ  = −  . 

 

( ) ( ) [ ] ( )

[ ] ( ) ( )( ) ( )( ){ } ( )

1 1
2 2

† 1
2

1 1
2 2

2 21
2

ˆ ˆ ˆ ˆi i dˆ ˆ ˆ ˆ ˆ ˆ, , i , i      where          and     
i d2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                 i , i i i i i

ˆ ˆ ˆ ˆ ˆ                 i i i

x p x pa a x x x p x p x p x x
x

x p x p x x p x p x p x p x

x px x p

+ −   = = + − = = ×    
= + − = + − − − +

= + − −

ψ ψ ψ

ψ ψ

( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆi i i

d d d dˆ ˆ ˆ ˆ                 i i
d d d d

d d                 
d d

p x px x p p x

px x p x x x x x x x x
x x x x

x x x x x x
x x

− − + −

   = − = − = −   
   

 = + − = 
 

 

 

ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

 

Thus, †,a a  =   . 
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Solutions to problems 

 
7C.2 The quantum mechanical operators are constructed by first writing the classical expression for the 
observable and then making operator substitutions for position and momentum. The operators for the x 
components of position and momentum are 

 dˆ ˆ          and            [7C.3]
i dxx = x p

x
× =

  

The operator for px
2 is  

 

2

2
2

2

2
2

2
,

d dˆ ˆ ˆ
i d i d

d            for one-dimensional systems
d

     for three-dimensional systems

x x x

y z

p p p
x x

x

x

  = =   
  

= −

 ∂
= −  ∂ 

 





 

(a) Kinetic energy in one dimension 

 
2 2

2
k 2

1 dˆ ˆ
2 2 dxE p

m m x
= = −

  

Kinetic energy in three dimensions 

 
( )

2 2 2 2
2 2 2

k 2 2 2
, , ,

2 2 2 2 2 2 2
2 2

2 2 2 2 2 2
, , ,

1ˆ ˆ ˆ ˆ
2 2

     where 
2

x y z
y z x z x y

y z x z x y

E p p p
m m x y z

m x y z x y z

      ∂ ∂ ∂ = + + = − + +      ∂ ∂ ∂      

     ∂ ∂ ∂ ∂ ∂ ∂
= − ∇ ∇ = + + = + +     ∂ ∂ ∂ ∂ ∂ ∂     





 

(b) The inverse separation, 1/x 

 1̂ 1
x x
= ×  

The inverse separation in three dimensions is determined by the vector magnitude of the position vector 
r x y z= + +i j k

  

 : 

 
{ }

1
22 2 2

1̂ 1
r x y z
=

+ +
 

(c) The electric dipole moment for J point charges QJ at the positions xJ is J J
J

Q x∑ . Similarly, the electric 

dipole moment operator for J point charges QJ at the vector positions Jr
  is 

 J J J J J J
J J J

ˆ ˆ ˆx y z Q x Q y Q zµ µ µ+ + = + +∑ ∑ ∑i j k i j k
    

 

The magnitude of the electric dipole moment, μ, is  

 { }
1

2
1

2

2 2 2
2 2 2

J J J J J J
J J J

x y z Q x Q y Q zµ µ µ µ
       = + + = + +      
       
∑ ∑ ∑  

(d) The root mean square deviation of position in one dimension is 

 { }
1

222  [7C.13b]x x x∆ = −  

The root mean square deviation of momentum in one dimension is 
 

 

1
2

1
2

2 2

22

2

d d  [7C.13b]
i d i d

d d   
i dd

xp
x x

xx

   ∆ = −  
   

  = − 
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7C.4 Operate on each function f with î (the inversion operator, which has the effect of making the replacement 
x → −x). If the result of the operation is f multiplied by a constant, f is an eigenfunction of î  and the constant is 
the eigenvalue [7C.2a, b, and c]. 
 
(a) 3f x kx= −  

  3 3ˆ( )i x kx x kx f− = − + = −  
Yes, f is an eigenfunction with eigenvalue −1. 
 
(b) cosf kx=  

 ˆ cos cos( ) cosi kx kx kx f= − = =  
Yes, f is an eigenfunction with eigenvalue +1. 
 
(c) 2 3 1f x x= + −  

 2 2ˆ( 3 1) 3 1 constanti x x x x f+ − = − − ≠ ×  

No, f is not an eigenfunction of î . 
 
7C.6 Suppose that Ω̂  is a hermitian operator. Then, by definition of a hermitian operator: 

 ( )** 2 * 2ˆ ˆd d      [7C.7]f Ω g g Ω fτ τ=∫ ∫  

We show that 2Ω̂  is hermitian as follows. 
 ( )

( )( )
( )

( )( )
( )

* 2 *

**

*

*
*

*
* 2 * 2

ˆ ˆ ˆd d

ˆ ˆ ˆd   [  is hermitian.]

ˆ ˆ d

ˆ ˆ ˆd   [  is hermitian.]

ˆ ˆd d

f Ω g f Ω Ωg

Ωg Ωf Ω

Ωf Ωg

g Ω Ωf Ω

f Ω g g Ω f

τ τ

τ

τ

τ

τ τ

=

=

=

=

=

∫ ∫

∫

∫

∫

∫ ∫

 

The last expression satisfies the definition of a hermitian operator so we conclude that 2Ω̂  is hermitian. 
 

7C.8  ( )
1

2
i1 e      where     0,  1, 2, 3,....

2π
m mφψ φ − = = ± ± ± 

 
 

The average position (angle) is given by: 

 

1 1
2 22 i i

0

2π22π 2πi i

0 0
0

    .

1 1d e   e  d
2π 2π

1 1 1   e   e  d d
2π 2π 2π 2

π

m m

m m

∗

− −

−

         ∗= =       
         

      = = =       
      

=

∫ ∫

∫ ∫

π φ φ

φ φ

φ ψ φψ τ φ φ

φφ φ φ φ  

Note: This result applies to all values of the quantum number m, for it drops out of the calculation. 
 
7C.10 The wavefunction 1 2

+i i +i i(cos )e (sin )e e ekx kx kx kxc cψ χ χ − −= + = +  is a superposition of the functions 
+i ie  and ekx kx− . We first demonstrate that the functions +i ie  and ekx kx−  are eigenfunctions of the linear momentum 

operator, dˆ  [7C.3]
i dxp

x
=
 , that have the eigenvalues  and k k+ −  , respectively. 
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( )

( )

+i +i +i +i

i i i i

dˆ e e i e e
i d i

dˆ e e i e e
i d i

kx kx kx kx
x

kx kx kx kx
x

p k k
x

p k k
x

− − − −

 = = × = + 
 
 = = × − = − 
 

 



 



 

Because these functions are eigenfunctions of the momentum operator and the system wavefunction is a 
superposition of them, by the principle of linear superposition of eigenfunctions the probability of measuring a 
particular momentum eigenvalue in a series of observations is proportional to the square modulus (|ck|2) of the 
corresponding coefficient in the superposition expression of ψ (see text Section 7C.2). 
(a) The probability of observing the linear momentum k+   is 22

1 cosc χ= . 

(b) The probability of observing the linear momentum k−   is 22
2 sinc χ= . 

(c) 2
1 0.90c =  and, taking c1 to be positive, c1 = 0.95. 

Since the sum of the probabilities must equal 1, 2 2
2 1 21 0.10 and, therefore, 0.32c c c= − = = ± . 

Hence, the wavefunction is i i0 95 e 0 32 ekx kxψ −= . ± . . 

(d) 1 2
+i i +i i(cos )e (sin )e e ekx kx kx kxc cψ χ χ − −= + = +  

The expectation value for kinetic energy depends upon the curvature of the wavefunction so we begin by finding 
the expression for d2ψ/dx2. 

 

+i i
1 2

2
2 +i 2 i 2

1 22

d i e i e
d
d e e
d

kx kx

kx kx

kc kc
x

k c k c k
x

ψ

ψ ψ

−

−

= −

= − − = −
 

Thus, ψ is an eigenfunction of the d2ψ/dx2 operator and it must also be an eigenfunction of the kinetic energy 
operator. 

 
( )22 2

k 2

dˆ  [7C.5]
2 2d

k
E

m mx
ψ ψ ψ= − =



  

The kinetic energy of the particle is the eigenvalue 
( )2

2
k
m


. 

 
7C.12 The ground-state wavefunction of a hydrogen atom is 𝜓 = (1 π𝑎03⁄ )1/2e−𝑟/𝑎0 . Calculate (a) the mean 
potential energy and (b) the mean kinetic energy of an electron in the ground state of a hydrogenic atom. 

The normalized wavefunction is 
1 2

0
3

0

1 e
π

r a

a
ψ

/
− / 

=  
 

. 

(a) 
2

0

2 2
2 / 0

03
0 00

22 2
0

3
0 0 00

ˆ ˆd
4π

1 1d e d 4π
4π 4ππ

1 4π
4π 2 4ππ

r a

eV V V
r

e e r r
r a

ae e
aa

ψ ψ τ
ε

ψ ψ τ
ε ε

ε ε

−∞

 ∗= = −∫  
 

   − −∗= ⋅ = ×∫ ∫   
   

 − − = × × =   
  

 

(b) In one-dimension: 
2 2 2

k 2

ˆ 1 d d dˆ      [7C.5]
2 2 i d i d 2 d

xp
E

m m x x m x
  = = = −  
  

   . For three-dimensional systems 

such as the hydrogen atom the kinetic energy operator is 

 

22 2 2 2 2 2 2
2

k 2 2 2

2 2 2 2 2 2 2 2 2
2

2 2 2 2 2 2 2 2 2
, , ,

ˆˆ ˆˆ
2 2 2 2 2

where ,  ,  ,  and 

yx z

y z x z x y

pp pE
m m m m mx y z

x x y y z z x y z

 ∂ ∂ ∂
= + + = − + + = − ∇ 

∂ ∂ ∂ 
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= = = ∇ = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

 

The 2∇  operator, called the laplacian operator or the del-squared operator, is advantageously written in 
spherical coordinates because the wavefunction has its simplest form in spherical coordinates. Mathematical 
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handbooks report that  

 2
2 2 2 2

2
2 2 2 2 2

2 1
r rx y z r r

∂ ∂ ∂ ∂ ∂
∇ = + + = + + Λ

∂∂ ∂ ∂ ∂
 

where the Λ2 operator, called the legendrian operator, is an operator of angle variables only. 

 
2

2
2 2

1 1 sin
sinsin

θ
θ θ θθ φ

∂ ∂ ∂
Λ = +

∂ ∂∂
 

Since our wavefunction has no angular dependence, 2 0ψΛ = and the laplacian simplifies to  

 
2

2
2

2
r rr

∂ ∂
∇ = +

∂∂
 

 2
1 2 1 22

0 0
2 3 3 2

00 0 0

2 1 1 1 2e e
π π

r a r a

r r rar a a a
ψ

/ /
− / − /

       ∂ ∂  ∇ = + = −       ∂∂        
 

 

2 2

2 2

2 2 π 2π 2
k 0 0 0

e e
2 2π 2π2 2

0 0 0 0
e e

2 2 2
2 0

3 2 30
e 0 e0 0 0

ˆ d sin d d d
2 2

       d sin d d d 4π
2 2

4π 1 2 4π 1       e d
2 2π π

r

r r

r a

r

E r r
m m

r r r r
m m

r r r
m a ma a a

θ ϕ

θ ϕ

ψ ψ τ ψ ψ θ θ φ

ψ ψ θ θ φ ψ ψ

∞∗ ∗

= = =

∞ ∞∗ ∗

= = = =

∞ − /

=

= − ∇ = − ∇

= − ∇ = − ∇ ×

   
= − − = −  

   

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫

 

 

 

1

0

2

2 0
e 0

1 1
4 2

                 Note that e d
2

n ax
n

a

nx x am a
∞ −

+

   × −   
  

! = =  ∫


 

 
7C.14 The uncertainty principle states that ½p q∆ ∆ ≥   where Δq and Δp are root-mean-square deviations

1 22 22 2 1/2( )  and  ( )q x x p p p∆ = − ∆ = − . To verify whether the relationship holds for the particle in a state 

whose normalized wavefunction is 
21 4(2 π) e axaψ / −= , we need the quantum-mechanical averages 

2 2, , ,  and x x p p . 

 
2

1/2
* 22d = e d

π
0  [an odd integrand centered around 0]

axax x x x

x

ψ ψ τ
∞ −

−∞

 =  
 

= =

∫ ∫  

 
2

1/21/2 1/2
* 2 2 22 1 2π2 2d = e d

π π 8
1

4

axa ax x x x
a a

a

ψ ψ τ
∞ −

−∞

      = = × ×              

=

∫ ∫  

 ( ) 2 2d 2d 2 d d
i d i i
0  [an odd integrand centered around 0]

ap x ax x x x
x

x

ψ ψ ψ ψ
∞ ∞ ∞

−∞ −∞ −∞
= = − = −

= =

∫ ∫ ∫
    

 ( )
1 21 22

2 2 2 2 2 2 2
2

2

d 1 2π2d 2 2 d 2 1 2
π 8d

//ap x a ax x a a
a ax

a

ψ ψ ψ ψ
∞ ∞

−∞ −∞

     = − = − = × − × × ×             
=

∫ ∫  



 

Thus,  ( ) ( )
( )

1 2

1 2

1/22 22 2

1/221 0 0
4

/ 2

q p x x p p

a
a

∆ ∆ = − × −

 = − × − 
 

=





 

This value of ΔqΔp is the minimum product consistent with the uncertainty principle. 
 

7C.16  
2d ˆˆ ˆ          and            [7C.3]     and       [7C.1b]

i d 2
x

x
p

x = x p H V
x m

× = = +
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Frequent use is made of the rule for differentiation of a product: d df d
d d d

fg g f g
x x x

   = +   
   

. 

(a) (i) V is a constant. 

 ( )
2 3 3ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,

2 2 2

ˆ0   [because a constant commutes with ]

x x x
x x x x x x

x

p p p
H p V p V p p V V p p V

m m m

p

ψ ψ ψ ψ

ψ

      = + = + − + = −          
= ×

 

Thus, ˆ ˆ, 0xH p  =   

     (ii) V(x) = ½ kx2  

 ( )

( ) ( )

2 3 3
2 2 21 1 1

2 2 2

2 2 2 21 1 1 1
2 2 2 2

21
2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, ,
2 2 2

d dˆ ˆ           
i d i d

ˆ           
i

x x x
x x x x

x x

x

p p p
H p kx p kx p p kx

m m m

kx p kx kx p kx kx
x x

kx p

ψ ψ ψ

ψ ψ ψ ψ ψ

ψ

      = + = + − +          
       = − = − +       

       
 = − 
 

 

 ( )21
2

d i
i d i

kx kx kx kx
x

ψ ψ ψ ψ    − = − =     
    

 



 

Thus, ˆ ˆ, ixH p kx  =    

 
(b) (i) V is a constant. 

 

( )

( )( ) ( )

2 2 2

2 2

2 2 2 2

2 2

ˆ ˆ ˆˆ ˆ, ,
2 2 2

1 ˆ ˆ   [  and  commute when  is constant.]
2
1 1 d dˆ ˆ ˆ

2 2 d d

1 d d ˆ
2 d d

x x x

x x

x x x

x

p p p
H x V x x Vx x xV

m m m

p x xp x V V
m

p x xp x xp
m m x x

x xp
m x x

ψ ψ ψ

ψ

ψ ψ ψ ψ

ψ ψ ψ

      = + = + − +          

= −

 = − = − − 
 

  = − + −  
  





2
2 2

2

2

1 d d d ˆ
2 d d d

d i ˆ
d

x

x

x xp
m x x x

p
m x m

ψ ψ ψ ψ

ψ ψ

  
= − + + −      

= − = −



 

 

Thus, iˆ ˆ ˆ, xH x p
m

  = − 
  

 
     (ii) V(x) = ½ kx2  

 

( )( ) ( )

2 2 2
2 3 31 1 1

2 2 2

2 2 2

2 2 2

ˆ ˆ ˆˆ ˆ, ,
2 2 2

1 1 d dˆ ˆ ˆ
2 2 i d i d

1 d d 1 d d dˆ
2 d d 2 d d d

x x x

x x x

x

p p x xp
H x kx x kx kx

m m m

p x xp x xp
m m x x

x xp x
m x x m x x x

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ ψ

      = + = + − +          
   = − = −   
   

     = − + − = − +    
     

 

 

2

2
2 2

2

2 2

ˆ

1 d d d ˆ
2 d d d

d i d i ˆ
d i d

x

x

x

xp

x xp
m x x x

p
m x m x m

ψ

ψ ψ ψ ψ

ψ ψ ψ

  
−  

  
  

= − + + −     

  = − = − = −  
  



   



 

  

Thus,  iˆ ˆ ˆ, xH x p
m

  = − 
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Integrated activities 
 
 
7.2LG Suppose that the wavefunction of an electron in a carbon nanotube is a linear combination of cos(nx) 
functions. (a) Use mathematical software, a spreadsheet, or the Living graphs (labelled LG) on the web site of 
this book to construct superpositions of cosine functions as 
 

𝜓(𝑥) =
1
𝑁

 � cos(𝑘πx)
𝑁

𝑘=1

 

 
where the constant 1/N is introduced to keep the superpositions with the same overall magnitude. Set x = 0 at the 
centre of the screen and build the superposition there. (b) Explore how the probability density ψ2(x) changes 
with the value of N. (c) Evaluate the root mean square location of the packet, 〈x2〉1/2. (d) Determine the 
probability that a given momentum will be observed.  
 
(a) The following Mathcad Prime 2 worksheet shows the effect of increasing the number N of superpositioned 
cosine functions. We see that as N increases the symmetrical peak at x = 0 narrows and sharpens. 

 
 
(b) Once again the probability density narrows and sharpens as the superposition is extended. 
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(c) The root mean square location of the packet, 〈x2〉1/2, approaches zero as the superposition is extended (i.e., 
the wavefunction narrows). 
 

 
 
(d) This wavefunction is the superposition of N wavefunctions ψk=1,..N each of which has the form N−1cos(kπx) 
and the probability of any one of these equals N−2. Momentum is more easily discussed by substitution using the 
identity 
 ( ) ( )i π i πcos π ½ e ek x k xk x −= +  

Then, ψk=1,..N is the superposition of ½eikπx and ½e−ikπx. The magnitudes of their respective momentums are 
identically kh/2 but the former has momentum in the positive direction while the latter moves in the negative 
direction. 

 
( ) ( ) ( )

( ) ( ) ( )

i π i π i π

i π i π i π

d½e ½e ½e   [Momentum eigenvalue equals 2 ]
i d 2

d½e ½e ½e   [Momentum eigenvalue equals 2 ]
i d 2

k x k x k x
x

k x k x k x
x

khp̂ kh / .
x

khp̂ kh / .
x

− − −

 × = = 
 
 × = = − − 
 





 

We conclude that the probability of observing a momentum of |kh/2| is N−2. Also, when the momentum of 
magnitude |kh/2| is observed in a long series of measurements, half of the observations with be in the positive 
direction and half will be in the negative direction. 
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8 The quantum theory of motion 

8A Translation 

Answers to discussion question 
8A.2 Because translational motion in two or three dimensions can be separated into independent 

one-dimensional motions, many features of the one-dimensional solutions carry over. For 
example, quantization occurs in each dimension just as in the one-dimensional case; the 
energy associated with motion in each dimension has the same form as in the one-
dimensional case; one-dimensional wavefunctions are factors in the multi-dimensional 
wavefunction. The concept of degeneracy—of more than one distinct wavefunction having 
the same energy—does not arise for a particle in a one-dimensional box, but it can arise in 
the multi-dimensional case (depending on the proportions of the box). For example, in a 
square two-dimensional box, the state with n1 = 1 and n2 = 2 has the same energy as the 
state n1 = 2 and n2 = 1. 

Solutions to exercises 

8A.1(b) If the wavefunction is an eigenfunction of an operator, the corresponding eigenvalue is the 
value of corresponding observable [Topic 7C.1(b)]. Applying the linear momentum 

operator dˆ
i d

p
x

=
  [7C.3] to the wavefunction yields  

 i id dˆ e e
i d i d

kx kxp k
x x

ψ ψ= = =
 

  

so the wavefunction is an eigenfunction of the linear momentum; thus, the value of the 
linear momentum is the eigenvalue 

 
   
−k = −1.0546 ×10−34  J s × 5× (10−9  m)−1 = −5×10−25  kg m s−1  

Similarly, applying the kinetic energy operator 
2 2

k 2

dˆ
2 d

E
m x

= −
  [7C.5] to the wavefunction 

yields 

 
2 2 2 2 2 2

i i
k 2 2

d dˆ e e
2 2 2d d

kx kxkE
m m mx x

ψ ψ − −= − = − =
    

so the wavefunction is an eigenfunction of this operator as well; thus, its value is the 
eigenvalue 

 
   



2k 2

2m
=

{1.0546 ×10−34  J s × 5× (10−9  m)−1}2

2 ×1.67 ×10−27  kg
= 8 ×10−23  J  

8A.2(b) The wavefunction for the particle is [8A.2 with B = 0 because the particle is moving toward 
positive x 

   ψ k = Aeikx  
The index k is given by the relationship 

 
   
Ek =



2k 2

2m
 

But the kinetic energy of a 1.0 g particle travelling at 10 m s–1 is 
   Ek = 1

2 mv2  
Equating these two expressions and solving for k yields 

 

   



2k 2

2m
= 1

2 mv2

k =
mv


=
1.0 × 10−3  kg × 10 m s−1

1.0546 × 10−34  J s
= 9.5 × 1031  m−1

 

 
 
 
 

1 



8A.3(b)  
  
E =

n2h2

8me L2
 [8A.6b] 

 
  

h2

8me L2 =
(6.626 × 10−34 J s)2

8(9.109 × 10−31 kg) × (1.50 × 10−9 m)2 = 2.68 × 10−20 J  

The conversion factors required are 
 1 eV = 1.602×10–19 J; 1 cm–1 = 1.986×10–23 J; 1 eV = 96.485 kJ mol–1 

(i) 

  

E3 − E1 = (9 − 1) h2

8me L2 = 8(2.68 × 10−20 J)

= 2.14 × 10−19 J = 1.34eV = 1.08 × 104 cm−1 = 129 kJ mol−1

 

(ii) 

  

E7 − E6 = (49 − 36) h2

8me L2 = 13(2.68 × 10−20 J)

= 3.48 × 10−19 J = 2.17 eV = 1.75 × 104 cm−1 = 210 kJ mol−1

   

8A.4(b) The wavefunctions are [8A.6a] 

 
  
ψ n =

1/2
2
L







sin nπ x
L







 

The required probability is 

 
  
P = ψ *ψ dx =

2
L∫ sin2 nπ x

L




∫ dx ≈

2∆x
L

sin2 nπ x
L







 

where   ∆x = 0.02L  and the function is evaluated at x = 0.66 L. 

(i) For n = 1 
  
P =

2(0.02L)
L

sin2 (0.66π ) = 0.031  

(ii) For n = 2 
  
P =

2(0.02L)
L

sin2[2(0.66π )] = 0.029  

8A.5(b) The expectation value is 

 ˆ dp p xψ ψ∗= ∫  

but first we need p̂ψ [7C.3, 8A.6a] 

 
1 2 1 2d 2 2ˆ i sin i cos

d
n x n n xp

x L L L L L
π π πψ

/ /
       = − = −       
       

   

so 
   

p =
−2inπ

L2 0

L

∫ sin nπ x
L





 cos nπ x

L




 dx = 0  for all n. 

and 
  

2p = 2m H = 2mEn =
h2n2

4L2
 for all n. 

So for n = 2 

 
  

2p = h2

L2  

8A.6(b) The wavefunction is 

 
  
ψ n =

1/2
2
L







sin nπ x
L







 [8A.6a] 

Hence 
  

x = ψ ∗xψ dx∫ =
2
L

x sin2 nπ x
L







dx
0

L

∫  

Use integral T.11 from the Resource Section 

 
  

x sin2 ax dx∫ =
x2

4
−

x sin 2ax
4a

−
cos 2ax

8a2
 

 
 
 
 

2 



so 
  

x =
2
L

x2

4
−

Lx
4nπ

sin 2nπ x
L







−
L2

8(nπ )2 cos 2nπ x
L

















0

L

=
L
2

 for all n. 

 
  

x2 =
2
L

x2 sin2 nπ x
L







dx
0

L

∫  

Use integral T.12 from the Resource Section 

 
  

x2 sin2 ax dx∫ =
x3

6
−

x2

4a
−

1
8a3







sin 2ax −

x cos 2ax
4a2

 

so 

  

x2 =
2
L

x3

6
−

Lx2

4nπ
−

L3

(2nπ )3







sin 2nπ x

L






−
L2x

(2nπ )2 cos 2nπ x
L



















0

L

=
2
L

L3

6
−

L3

(2nπ )2







= L2 1

3
−

1
2n2π 2







 

For n = 2, 
  

x2 = L2 1
3

−
1

8π 2







 

8A.7(b) The zero-point energy is the ground-state energy, that is, with nx = ny = nz = 1: 

 
  
E =

(n1
2 + n2

2 + n3
2 )h2

8mL2 [8A.16b with equal lengths] =
3h2

8mL2  

Set this equal to the rest energy mc2 and solve for L: 

 
  
mc2 =

3h2

8mL2
 so 

  
L =

3
8







1/2
h

mc
=

3
8







1/2

λC  

where λC is the Compton wavelength of a particle of mass m. 

8A.8(b)  ( ) ( )1 2

5
52 sin x

L L
πψ

/

=  [8A.6a] 

 
  
P(x) ∝ ψ 5

2 ∝ sin2 5π x
L





  

Maxima and minima in P(x) correspond to 
  
d P(x)

dx
= 0  

 
  

d
dx

P(x) ∝
dψ 2

dx
∝ sin 5π x

L






cos 5π x
L







∝ sin 10π x
L







[2sinα cosα = sin 2α]  

Now sin θ = 0 when θ = 0, π, 2π, etc. (i.e., when θ =n′π where n′ is an integer). 

Thus 
  
10π x

L
= ′n π for ′n ≤ 10  so 

  
x =

′n L
10

 

x = 0 and x = L are minima. Maxima and minima alternate, so maxima correspond to 

n′ = 1,3,5,7,9, so 
  
x = L

10
,  3L

10
,  L

2
,  7L

10
,  9L

10
 

Comment. Maxima in ψ2 correspond to maxima and minima in ψ itself, so one can also 

solve this exercise by finding all points where 
  
dψ
dx

= 0.  

8A.9(b) In the original cubic box [8A.16b] 

 
  
E1 = (n1

2 + n2
2 + n3

2 ) ×
h2

8mL2







=

K
L2 , K = (n1

2 + n2
2 + n3

2 ) ×
h2

8m






 

In the smaller cubic box 

 
  
E2 =

K
(0.9L)2 . 
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Hence 
  
∆E =

K
L2

1
0.92 − 1







, 

and the relative change is 

 
  

∆E
E

=
1

(0.9)2 − 1 = 0.235 = 23.5%  

8A.10(b)   E = 3
2 kT  is the average translational energy of a gaseous molecule (see Topic 15C.2(a)). 

(i) 
2 2 2 2 2 2
1 2 33

2 2 2

( )
8

 [8A.16b]
8

n n n h n hE kT
mL mL

+ +
= = =  

so 
  
n =

(12kTm)1/2 L
h

 

Before we evaluate this expression, we need the mass of a nitrogen molecule: 

 
  
m =

2 × 14.01× 10−3  kg mol−1

6.022 × 1023  mol−1 = 4.653 × 10−26  kg  

Now 
  
n =

(12 × 1.381× 10−23  J K−1 × 300 K × 4.653× 10−26  kg)1/2 × 1.00 m
6.626 × 10−34  J s

= 7.26 × 1010  

(ii) The difference between neighbouring levels is 

 
  
∆En = En+1 − E1 =

{(n + 1)2 − n2}h2

8mL2 =
(2n + 1)h2

8mL2
. 

So here 

 
  
∆E =

(2 × 7.26 × 1010 + 1) × (6.626 × 10−34  J s)2

8 × 4.653× 10−26  kg × (1.00 m)2 = 1.71× 10−31  J  

(iii) The de Broglie wavelength is obtained from 

 
 
λ = h

p
= h

mv
 [7A.14] 

The velocity is obtained from 
   EK = 1

2 mv2 = 3
2 kT = 3

2 (1.381× 10−23  J K−1) × (300 K) = 6.21× 10−21 J  

So 
  
v =

2EK

m







1/2

=
2 × 6.21× 10−21  J
4.653 × 10−26  kg








1/2

= 517 m s−1  

and 
 
λ =

6.626 × 10−34  J s
(4.653× 10−26  kg) × (517 m s−1)

= 2.76 × 10−11  m = 27.6 pm  

Comment. The conclusion to be drawn from all of these calculations is that the 
translational motion of the nitrogen molecule can be described classically. The energy of the 
molecule is essentially continuous, 

 
  
∆E
E

<<< 1.  

8A.11(b) The energy levels are given by [8A.15b] 

 
  
En1,n2

=
n1

2

L1
2 +

n2
2

L2
2







h2

8m
=

n1
2

1
+

n2
2

4






h2

8mL2   

 
  
E2,8 =

22

1
+

82

4






h2

8mL2 =
20h2

8mL2 =
5h2

2mL2
 

We are looking for another state that has the same energy. By inspection we note that the 
first term in parentheses in E4,4 works out to be 4 and the second 16; we can arrange for 
those values to be reversed: 

 
  
E1,4 =

42

1
+

42

4






h2

8mL2 =
5h2

2mL2
  

So in this box, the state n1=4, n2=4 is degenerate to the state n1=2, n2=8. The question notes 
that degeneracy frequently accompanies symmetry, and suggests that one might be 
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surprised to find degeneracy in a box with unequal lengths. Symmetry is a matter of degree. 
This box is less symmetric than a square box, but it is more symmetric than boxes whose 
sides have a non-integer or irrational ratio. Every state of a square box except those with 
n1=n2 is degenerate (with the state that has n1 and n2 reversed). Only a few states in this box 
are degenerate. In this system, a state (n1, n2) is degenerate with a state (n2/2, 2n1) as long as 
the latter state (a) exists (i.e., n2/2 must be an integer) and (b) is distinct from (n1, n2). A box 
with incommensurable sides, say, L and 21/2L, would have no degenerate levels. 

8A.12(b) The energy levels are [8A.16b]  

 
  
En1 ,n2 ,n3

=
(n1

2 + n2
2 + n3

2 )h2

8me L2
 

 
  
E1,1,1 =

3h2

8mL2 ,
14
3

E1,1,1 =
14h2

8mL2
 

Hence, we require the values of n1, n2 and n3 that make 
   n1

2 + n2
2 + n3

2 = 14 = 32 + 22 + 12  
The degeneracy, then, is 6, corresponding to (n1, n2, n3) = (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 
1), (3, 1, 2), or (3, 2, 1). 

8A.13(b) The transmission probability [8A.23a] depends on the energy of the tunneling particle 
relative to the barrier height (ε = E/V = 1.5 eV/(2.0 eV) = 0.75), on the width of the barrier 
(L = 100 pm), and on the decay parameter of the wavefunction inside the barrier (κ), where 
[8A.20] 

 

   

κ =
{2m(V − E)}1/2



=
{2 × 1.67 × 10−27  kg × (2.0 − 1.5) eV × 1.602 × 10−19  J eV−1}1/2

1.0546 × 10−34  J s
= 1.6 × 1011  m−1

 

so   κ L = 1.6 × 1011  m−1 × 100 × 10−12  m = 16 . Using eqn. 10.6 for the transmission 
probability yields 

 
  
T = 1+

(eκ L − e−κ L )2

16ε(1− ε)












−1

= 1+
(e16 − e−16 )2

16 × 0.75 × (1− 0.75)












−1

= 1.0 × 10−13  

Comment. In fact, the simplified eqn. 8A.23b gives the same result: 

   T = 16ε(1− ε)e−2κ L = 16 × 0.75 × (1− 0.25) × e−2×16 = 1.0 × 10−13  
Eqn. 8A.23b is valid if κL >> 1; however, κL need not be huge to make the positive 
exponential term in eqn. 10.6 dominant, reducing the expression to eqn. 8A.23b. 

Solutions to problems 
8A.2 (a) The energy levels are given by: 

 
  
En =

h2n2

8mL2
 [8A.6b] 

and we are looking for the energy difference between n = 6 and n = 7: 

 
  
∆E =

h2(72 − 62 )
8mL2  

Since there are 12 atoms on the conjugated backbone, the length of the box is 11 times the 
bond length: 
   L = 11(140 × 10−12 m) = 1.54 × 10−9 m,  

so 
  
∆E =

(6.626 × 10−34 J s)2 (49 − 36)
8(9.11× 10−31 kg)(1.54 × 10−9 m)2 = 3.30 × 10−19 J  

(b) The relationship between energy and frequency is: 

 
  
∆E = hν so ν =

∆E
h

=
3.30 × 10−19 J

6.626 × 10−34 J s
= 4.95 × 1014 s−1 . 

(c) Look at the terms in the energy expression that change with the number of conjugated 
atoms, N. The energy (and frequency) are inversely proportional to L2 and directly 
proportional to (n+1)2 – n2 = 2n +1, where n is the quantum number of the highest occupied 
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state. Since n is proportional to N (equal to N/2) and L is approximately proportional to N 
(strictly to N – 1), the energy and frequency are approximately proportional to N–1. So the 
absorption spectrum of a linear polyene shifts to lower frequency as the number of conjugated 
atoms increases.  

8A.4 (a) In the box, the Schrödinger equation is 

 
   
−



2

2m
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2







ψ = Eψ  

Assume that the solution is a product of three functions of a single variable; that is, let 
 ψ(x,y,z) = X(x)Y(y)Z(z) . 
Substituting into the Schrödinger equation gives 

 
   
−



2

2m
YZ ∂2 X

∂x2 + XZ ∂2Y
∂y2 + XY ∂2Z

∂z2







= EXYZ  

Divide both sides by XYZ: 

 
   
−



2

2m
1
X

∂2 X
∂x2 +

1
Y

∂2Y
∂y2 +

1
Z

∂2Z
∂z2







= E  

For the purposes of illustration, isolate the terms that depend on x on the left side of the 
equation: 

 
   
−



2

2m
1
X

∂2 X
∂x2







= E +



2

2m
1
Z

∂2Z
∂z2 +

1
Y

∂2Y
∂y2







 

Note that the left side depends only on one variable, x, while the right side depends on two 
different and independent variables, y and z. The only way that the two sides can be equal to 
each other for all x, y, and z is if they are both equal to a constant. Call that constant Ex, and 
we have, from the left side of the equation: 

 
   
−



2

2m
1
X

∂2 X
∂x2







= Ex  so 

   
−



2

2m
∂2 X
∂x2 = Ex X . 

Note that this is just the Schrödinger equation for a particle in a one-dimensional box. Note 
also that we could just as easily have isolated y terms or z terms, leading to similar equations. 

 
   
−



2

2m
∂2Y
∂y2 = EyY  and 

   
−



2

2m
∂2Z
∂z2 = Ez Z  

The assumption that the wavefunction can be written as a product of single-variable functions 
is a valid one, for we can find ordinary differential equations for the assumed factors. That is 
what it means for a partial differential equation to be separable. 
(b) Since X, Y, and Z are particle-in-a-box wavefunctions of independent variables x, y, and z 
respectively, each of them has its own quantum number. The three-dimensional wavefunction 
is a product of the three, and therefore depends on all three quantum numbers: 

 
  
ψ (x, y, z) = X (x)Y ( y)Z(z) =

2
L1








1/2

sin
nxπ x

L1

×
2
L2








1/2

sin
nyπ y

L2

×
2
L3








1/2

sin
nzπ z

L3

 

Each constant of separation (Ex, Ey, and Ez) depends on its own quantum number. The three 
constants of separation add up to the total energy, which therefore depends on all three 
quantum numbers: 

 
  
E = Ex + Ey + Ez =

h2

8m
nx

2

L1
2 +

ny
2

L2
2 +

nz
2

L3
2









  

(c) For a cubic box, L1 = L2 = L3 = L, so 

 
  
E =

h2 (nx
2 + ny

2 + nz
2 )

8mL2
 

The energy levels are shown in Figure 8A.1. 
 
 
Figure 8A.1 
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(d) Compare this energy-level diagram to Figure 8A.2 of the textbook. The energy levels here 
are much more closely spaced. In a one-dimensional box, the 15th energy level is not reached 

until 
  

E
h2 / 8mL2 = 225 , and the previous level is 29 units below that. In the three-dimensional 

box, the first 15 energy levels fit within the range of 29 units. The energy levels in a one-
dimensional box are sparse compared to those in a three-dimensional box. 

8A.6 The text defines the transmission probability and expresses it as the ratio of   | ′A |2 / | A |2 ,  
where the coefficients A and A′ are introduced in eqns 8A.18 and 8A.21. Eqns 8A.22a and 
8A.22b list four equations for the five unknown coefficients of the full wavefunction: 
(a) A + B = C + D 
(b)   Ceκ L + De−κ L = ′A eikL  
(c)   ikA − ikB = κC −κ D  
(d)   κCeκ L −κ De−κ L = ik ′A eikL  
We need A′ in terms of A alone, which means we must eliminate   B,C , and D. Notice that B 
appears only in eqns (a) and (c). Solving these equations for  B  and setting the results equal to 
each other yields: 

 
  
B = C + D − A = A −

κC
ik

+
κ D
ik

.  

Solve this equation for C: 

 

  

C =
2A + D κ

ik
− 1







κ
ik

+ 1
=

2Aik + D(κ − ik)
κ + ik

.  
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Now note that the desired A′ appears only in (b) and (d). Solve these for A′ and set them equal: 

 
  

′A = e− ikL (Ceκ L + De−κ L ) =
κe− ikL

ik
(Ceκ L − De−κ L ) . 

Solve the resulting equation for C, and set it equal to the previously obtained expression for C: 

 

  

C =

κ
ik

+1






De−2κ L

κ
ik

− 1
=

(κ + ik)De−2κ L

κ − ik
=

2Aik + D(κ − ik)
κ + ik

.  

Solve this resulting equation for D in terms of A: 

 
  

(κ + ik)2 e−2κ L − (κ − ik)2

(κ − ik) (κ + ik)
D =

2Aik
κ + ik

,  

so 
  
D =

2Aik(κ − ik)
(κ + ik)2 e−2κ L − (κ − ik)2 . 

Substituting this expression back into an expression for C yields: 

 
  
C =

2Aik(κ + ik)e−2κ L

(κ + ik)2 e−2κ L − (κ − ik)2 .  

Substituting for C and D in the expression for A' yields: 

 
  
A ' = e− ikL (Ceκ L + De−κ L ) =

2Aike− ikL

(κ + ik)2 e−2κ L − (κ − ik)2 [(κ + ik)e−κ L + (κ − ik)e−κ L ],  

so 
  

′A
A

=
4ikκe−κ Le− ikL

(κ + ik)2 e−2κ L − (κ − ik)2 =
4ikκe− ikL

(κ + ik)2 e−κ L − (κ − ik)2 eκ L .  

The transmission probability is: 

 
  
T =

| ′A |2

| A |2
=

4ikκe− ikL

(κ + ik)2 e−κ L − (κ − ik)2 eκ L







−4ikκeikL

(κ − ik)2 e−κ L − (κ + ik)2 eκ L







.  

The denominator is worth expanding separately in several steps. It is: 

 

  

(κ + ik)2 (κ − ik)2 e−2κ L − (κ − ik)4 − (κ + ik)4 + (κ − ik)2 (κ + ik)2 e2κ L

= (κ 2 + k 2 )2 (e2κ L + e−2κ L ) − (κ 2 − 2iκ k − k 2 )2 − (κ 2 + 2iκ k − k 2 )2

= (κ 4+2κ 2k2+k4) (e2κ L+e−2κ L) − (2κ 4−12κ 2k2+2k4).
 

If the   12κ 2k 2  term were   − 4κ 2k 2  instead, we could collect terms still further (completing the 
square), but of course we must also account for the difference between those quantities, 
making the denominator: 
   (κ

4 + 2κ 2k 2 + k 4 ) (e2κ L − 2 + e−2κ L ) + 16κ 2k 2 = (κ 2 + k 2 )2 (eκ L − e−κ L )2 + 16κ 2k 2  
So the probability is: 

 
  
T =

16k 2κ 2

(κ 2 + k 2 )2 (eκ L − e−κ L )2 + 16κ 2k 2 .  

We are almost there. To get to eqn 8.19a, we invert the expression: 

 
  
T =

(κ 2 + k 2 )2 (eκ L − e−κ L )2 + 16κ 2k 2

16k 2κ 2








−1

=
(κ 2 + k 2 )2 (eκ L − e−κ L )2

16k 2κ 2 + 1







−1

 

Finally, we try to express 
  

(κ 2 +k 2 )2

k 2κ 2
 in terms of a ratio of energies,  ε = E /V . Eqns 8.18 and 

8.20 define k and κ. The factors involving 2, , and the mass cancel leaving   κ ∝ (V − E)1/2  

and   k ∝ E1/2 , so: 

 
  

(κ 2 + k 2 )2

k 2κ 2 =
[E + (V − E)]2

E(V − E)
=

V 2

E(V − E)
=

1
ε(1− ε)

,  

which makes the transmission probability: 
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T =

(eκ L − e−κ L )2

16ε(1− ε)
+ 1








−1

 

If κL>>1, then the negative exponential is negligible compared to the positive, and the 1 
inside the parentheses is negligible compared to the exponential: 

 
  
T ≈

e2κ L

16ε(1− ε)







−1

=
16ε(1− ε)

e2κ L = 16ε(1− ε)e−2κ L  

8A.8 We assume that the barrier begins at x = 0 and extends in the positive x direction. 

(a) 
  
P = ψ 2 dτ

barrier∫ = N 2e−2κ x dx =
N 2

2κ0

∞

∫   

(b) 
  

x = xψ 2dx
0

∞

∫ = N 2 xe−2κ xdx =
N 2

(2κ )2 =
N 2

4κ 20

∞

∫  

Question. Is N a normalization constant? 

 

8B Vibrational motion 

Answers to discussion question 
8B.2 The correspondence principle (mentioned in Topic 8A.2(b)) states that in the limit of very 

large quantum numbers quantum mechanics merges with classical mechanics. The 
harmonic oscillator provides an example. A classical harmonic oscillator’s range of motion 
is restricted by classical turning points, which are determined by the oscillator’s total 
energy; that energy can take on any real positive value. By contrast, a quantum harmonic 
oscillator can tunnel past classical turning points into the classically forbidden region with a 
non-zero probability. The total energy of a quantum harmonic oscillator is quantized; not 
every real positive value is allowed. At high quantum numbers, the probability of tunneling 
beyond the classical turning points falls (approaching the zero probability of classical 
harmonic oscillators). Furthermore, the most likely place to find the oscillator is near the 
classical turning points. (This is true of the classical oscillator as well: because the speed of 
the oscillator vanishes at the turning points, the oscillator spends more time near the turning 
points than elsewhere in its range.) See Figure 8B.7 of the main text, particularly for v = 18, 
to see the probability distribution for large v approach the classical picture. Finally, 
although the spacing between discrete allowed energy levels is the same size at large 
quantum numbers as at small ones, that spacing is a smaller fraction of total energy at large 
quantum numbers; in that sense, the allowed energy levels are more nearly continuous at 
large quantum numbers than small. 

Solutions to exercises 

8B.1(b)  
   
E = v +

1
2






ω, ω =

1/2
kf

m






 [8B.4] 

The zero-point energy corresponds to v = 0; hence 

 

   

E0 = 1
2 ω = 1

2 

1/2
kf

m






= 1

2 (1.0546 × 10−34 J s) ×
1/2

285 N m−1

5.16 × 10−26 kg







= 3.92 × 10−21 J

 

8B.2(b) The difference in adjacent energy levels is 

 
   
∆E = Ev+1 − Ev = ω  [8B.5] = 

1/2
kf

m






   [8B.4]  
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so 
   
kf =

m(∆E)2



2 =
(2.88 × 10−25 kg) × (3.17 × 10−21 J)2

(1.0546 × 10−34 J s)2 = 260 kg s−2 = 260 N m−1  

8B.3(b) The requirement for a transition to occur is that ∆E(system) = E(photon) , 

so 
   
∆E(system) = ω  [8B.5] = E(photon) = hν =

hc
λ

  

Therefore, 
  

hc
λ

=
hω
2π

=
h

2π






×
1/2

kf

m






 [8B.4] 

 

  

λ = 2πc
1/2

m
kf







= (2π ) × (2.998 × 108  m s−1) ×
15.9949 × 1.6605 × 10−27  kg

544 N m−1








1/ 2

= 1.32 × 10−5 m = 13.2 µm

 

8B.4(b) The frequency of a harmonic oscillator is [8B.4] 

 
  
ω =

1/2
kf

m






. 

1H (H) and 3H (T) are isotopes, so we expect that the force constant is the same in H2 and 
T2. They differ in mass. So the frequencies are inversely proportional to the square root of 
the mass: 

 
  
ωT = ωH

1/2
mH

mT







 

But the appropriate mass is not the mass of the molecule but its “effective mass” [8B.7] 

 
  
µ =

m1m2

m1 + m2

=
m
2

 [m1 = m2 = m]  

For H2: 
  
µ =

m
2

=
1.0078 × (1.6605×10−27  kg)

2
= 8.3673×10−28  kg  

For T2: 
  
µ =

m
2

=
3.0160 × (1.6605×10−27  kg)

2
= 2.5040 ×10−27  kg  

 
 
ωT = 131.9 THz ×

1/2
8.3673× 10−28  kg
2.5040 × 10−27  kg







= 76.2 THz  

8B.5(b)   ∆E = ω = hν  

(i) 
  
∆E = hν  [8B.5] = (6.626 ×10−34 J Hz−1) × (33×103 Hz) = 2.2 ×10−29 J  

(ii) For a two-particle oscillator µ, replaces m in the expression for ω. 

 
   
∆E = ω = 

1/2
kf

µ






 [8B.4] = 

1/2
2k
m







 

The last equality uses eqn 8B.7 for two equal masses, as in Exercise 8B.4(b). 

 

  

∆E = (1.055 × 10−34 J s) ×

1/2

(2) × (1177 N m−1)
(16.00) × (1.6605 × 10−27 kg)













= 3.14 × 10−20 J  

8B.6(b) The zero-point energy is 

 
   
E0 =

1
2

ω  [8B.6] =


2

1/2
k
µ







 [8B.4]  

 µ = 14.0031× (1.6605×10–27 kg)/2 = 1.1626×10–26 kg 
where we have used eqn 8B.7 for two equal masses, as in Exercise 8B.4(b). 

 
  
E0 =

1.0546 × 10−34 J s
2

× 2293.8 N m−1

1.1626 × 10−26  kg







1/2

= 2.3422 × 10−20  J  
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8B.7(b) The harmonic oscillator wavefunctions have the form [8B.8] 

 
   
ψ v (x) = Nv Hv ( y) exp − 1

2 y2



 with y =

x
α

and α =


2

mkf








1/4

 

The exponential function approaches zero only as x approaches ±∞, so the nodes of the 
wavefunction are the nodes of the Hermite polynomials. 
 H5(y) = 32y5 – 160y3 + 120y = 0 [Table 8B.1] = 8y(4y4 – 20y2 + 15) 
So one solution is y = 0, which leads to x = 0. The other factor can be made into a quadratic 
equation by letting z = y2 
 4z2 – 20z + 15 = 0  

so 
  
z =

−b ± b2 − 4ac
2a

=
20 ± 202 − 4 × 4 × 15

2 × 4
=

5 ± 10
2

 

Evaluating the result numerically yields z = 0.92 or 4.08, so y = ±0.96 or ±2.02. Therefore x 
= 0, ±0.96α, or ±2.02α . 
Comment. Numerical values could also be obtained graphically by plotting H5(y). 

8B.8(b) The most probable displacements are the values of x that maximize ψ2. As noted in Exercise 
8A.8(b), maxima in ψ2 correspond to maxima and minima in ψ itself, so one can solve this 

exercise by finding all points where 
  
dψ
dx

= 0 . From eqn 8B.8 and Table 8B.1, the 

wavefunction is 

 
   
ψ 3(x) = N3H3( y) exp − 1

2 y2



 with y =

x
α

,  α =


2

mkf








1/4

,  and H3( y) = 8y3 − 12y . 

 
  

dψ 3

dx
=

dy
dx

dψ 3

dy
=

N3

α
(24y2 − 12)exp − 1

2 y2



 − (8y3 − 12y)y exp − 1

2 y2



{ }= 0  

Dividing through by constants and the exponential functions yields 
 –8y4 + 36 y2 – 12 = 0 . 
Letting z = y2 (and dividing through by –4) yields the quadratic equation 
 2z2 –9z +3 = 0  

so 
  
z =

−b ± b2 − 4ac
2a

=
9 ± 92 − 2 × 3× 4

2 × 2
=

9 ± 57
4

 

Evaluating the result numerically yields z = 4.14 or 0.363, so y = ±2.03 or ±0.602. 
Therefore x = 0, ±2.03α, or ±0.602α . 

8B.9(b) Example 8B.4 analyzes the classical turning points of the harmonic oscillator. In terms of 
the dimensionless variable y, the turning points are ytp = ±(2v+1)1/2 . The probability of 
extension beyond the classical turning point is 

 
  
P = ψ v

2dx
xtp

∞

∫ = α Nv
2 {Hv ( y)}2 e− y2

dy
ytp

∞

∫  

For v = 2, H2(y) = 4y2 – 2 and 
  
N2 =

1
8απ 1/2







1/2

 

 
  
P = 4α N2

2 (2y2 − 1)2 e− y2

dy
51/2

∞

∫ = 4α N2
2 (4y4 − 4y2 + 1)e− y2

dy
51/2

∞

∫  

Use integration by parts for 
  

y2e− y2

dy∫ : 

 
  

udv∫ = uv − vdu∫  

where   u = y,    dv = ye− y2

dy  

so   du = dy,    v = − 1
2 e− y2

 

and 
  

y2e− y2

dy∫ = − 1
2 ye− y2

+ 1
2 e− y2

dy∫  

Use integration by parts for 
  

y4e− y2

dy∫  as well: 
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udv∫ = uv − vdu∫  

where   u = y3,    dv = ye− y2

dy  

so   du = 3y2dy,    v = − 1
2 e− y2

 

and 
  

y4e− y2

dy∫ = − 1
2 y3e− y2

+ 3
2 y2e− y2

dy∫ = − 1
2 y3e− y2

− 3
4 ye− y2

+ 3
4 e− y2

dy∫  

The remaining integral can be expressed in terms of the error function. 

 
  
erf z = 1−

2
π 1/2 e− y2

dy
z

∞

∫  

so 
  

e− y2

dy
51/2

∞

∫ =
π 1/2 (1− erf 51/2 )

2
 

Putting all the pieces together yields 

 ( )2 2

1/2

2 3 1/2 1/2
2

5
4 2 e e (1 erf 5 )y yP N y yα π

∞
− − = − − + − 

 
 

 ( )3/2 5 1/2 5 1/2 1/2
1/2

1 2 5 e 5 e (1 erf 5 )
2

P π
π

− −= × + + −  

Finally, using erf 51/2 = 0.9984, P = 0.048  
Comment. This is the probability of an extension greater than the positive classical turning 
point. There is an equal probability of a compression smaller than the negative classical 
turning point, so the total probability of finding the oscillator in a classically forbidden 
region is 0.095 . 
Comment. Note that molecular parameters such as m and k do not enter into the 
calculation. 

Solutions to problems 
8B.2 In effect, we are looking for the vibrational frequency of an O atom bound, with a force 

constant equal to that of free CO, to an infinitely massive and immobile protein complex. The 
angular frequency is [8B.4] 

 
  
ω =

1/2
kf

m






 

where m is the mass of the O atom 
 m = 16.0 × (1.66× 10–27 kg) = 2.66×10–26 kg, 
and kf is the same force constant as in Problem 8B.1. In that problem (unlike this one), the 
mass appropriate for the vibration of the free CO molecule was the effective mass. 

 
   
kf = ω 2µ = 4π 2c2

ν 2µ =
4π 2c2

ν 2m1m2

m1+m2

= 1902 N m−1  

Hence the frequency for haem-bound CO would be 

 
 
ω =

1/2
1902N m−1

2.66 ×10−26 kg






= 2.68 ×1014 s−1  

8B.4 The Schrödinger equation is 
   
−



2

2m
d2ψ
dx2 + 1

2 kx2ψ = Εψ  

We try  ψ = e− gx2

, so 
  
dψ
dx

= −2gxe− gx2

 

and 
  

d2ψ
dx2 = −2ge− gx2

+ 4g 2x2e− gx2

= −2gψ + 4g 2x2ψ  

Inserting into the Schrödinger equation yields 

 
   



2g
m







ψ −

2

2g 2

m






x2ψ + 1

2 kx2ψ = Eψ  
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2g
m

− E






ψ + 1

2 k −
2

2g 2

m






x2ψ = 0  

This equation is satisfied if 

 
   
E =



2g
m

and 2

2g 2 = 1
2 mk, or g= 1

2

1/2
mk


2






 

Therefore, 

 ( ) ( )1 2 1 2
1 1
2 2= if k kE

m m
ω ω

/ /

= =   

8B.6  
  

xn = α n yn = α n

−∞

+∞

∫ ψ ynψ dx = α n+1

−∞

+∞

∫ ψ 2 yn dy [x = α y]  

 
  

x3 ∝
−∞

+∞

∫ ψ 2 y3 dy = 0  by symmetry [y3  is an odd function of y]  

 
  

x4 = α 5

−∞

+∞

∫ ψ y4ψ dy  

   y
4ψ = y4 NHve

− y2 /2  

 

  

y4 Hv = y3 1
2 Hv+1 + vHv−1





 = y2 1

2
1
2 Hv+2 + (v + 1)Hv





 + v 1

2 Hv + (v − 1)Hv−2
















= y2 1
4 Hv+2 + v + 1

2( )Hv + v(v − 1)Hv−2










= y 1
4

1
2 Hv+3 + (v + 2)Hv+1





 + v + 1

2( )× 1
2 Hv+1 + vHv−1












+v(v − 1) × 1
2 Hv−1 + (v − 2)Hv−3












= y 1
8 Hv+3 + 3

4 (v + 1)Hv+1 + 3
2 v2 Hv−1 + v(v − 1) × (v − 2)Hv−3







 

Only yHv+1 and yHv–1 lead to Hv and contribute to the expectation value (since Hv is orthogonal 
to all except Hv) [Table 8B.1]; hence 

 

  

y4Hv = 3
4 y{(v +1)Hv+1 + 2v2Hv−1}+  ...

= 3
4 (v +1) 1

2 Hv+2 + (v +1)Hv




 + 2v2 1

2 Hv + (v −1)Hv−2














 +  ...

= 3
4{(v +1)2 Hv + v2Hv}+  ...

= 3
4 (2v2 + 2v +1)Hv +  ...

 

Therefore 

 
  −∞

+∞

∫ ψ y4ψ dy = 3
4 (2v2 + 2v + 1)N 2

−∞

+∞

∫ Hv
2e− y2

dy =
3

4α
(2v2 + 2v + 1)  

and so 

 
  

x4 = (α 5 ) ×
3

4α






× (2v2 + 2v + 1) = 3
4

(2v2 + 2v + 1)α 4  

8B.8 Call the integral I: 
 

  
I = ψ ′v xψ v dx∫ = α 2 ψ ′v yψ v d y∫  [x = αy] 

 
  
yψ v = Nv

Hv+1

2
+ vHv−1







e− y2 /2  [Table 8B.1] 

Hence 
  
I = α 2 Nv N ′v

1
2

H ′v Hv+1 + vH ′v Hv−1





∫ e− y2

dy = 0    unless ′v = v ± 1 [Table 8B.1] 

For v′ = v + 1 

 
  
I =

α 2 Nv Nv+1

2
Hv+1

2 e− y2

d y∫ =
α 2 Nv Nv+1

2
π 1/2 2v+1(v + 1)! = α v + 1

2






1/2

 

For v′ = v – 1  
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I = vα 2 Nv Nv−1 Hv−1

2 e− y2

d y∫ = vα 2 Nv Nv−1π
1/2 2v−1(v − 1)! = α v

2






1/2

 

No other values of v′ result in a nonzero value for I; hence, no other transitions are allowed. 

8B.10 To address this time-dependent problem, we need a time-dependent wavefunction, made up 
from solutions of the time-dependent Schrödinger equation 

 ( , )ˆ ( , ) i x tH x t
t

∂Ψ
Ψ =

∂
  [Table 7B.1] 

If ψ(x) is an eigenfunction of the energy operator with energy eigenvalue E, then 
 Ψ(x,t) = ψ(x)e–iEt/

  
is a solution of the time-dependent Schrödinger equation (provided the energy operator is not 
itself time dependent). To verify this, evaluate both sides of the time-dependent Schrödinger 
equation. On the left we have 
 i / i /ˆ ˆ( , ) ( )e ( )e ( , )Et EtH x t H x E x E x tψ ψ− −Ψ = = = Ψ   
On the right we have 

 
   
i ∂Ψ(x, t)

∂t
= iψ (x) ∂

∂t
e− iEt / = −i2 Eψ (x)e− iEt / = EΨ(x, t) , 

the same as on the left. Our wavepacket is an arbitrary superposition of time-evolving 
harmonic oscillator states (as in Problem 8B.9), 
 

   
Ψ(x, t) = cvψ v (x)e− iEvt /

v=0
∑  

where ψν(x) are time-independent harmonic-oscillator wavefunctions and 
    Ev = (v + 1

2 )ω  [8B.4] 
Hence, the wavepacket is 
 

  
Ψ(x, t) = e− iωt /2 cvψ v (x)e− ivωt

v=0
∑  

The angular frequency ω is related to the period T by T = 2π/ω, so we can evaluate the 
wavepacket at any whole number of periods after t, that is at a time t+nT, where n is any 
integer. (n is not a quantum number.) Note that 
 t + nT = t + 2πn / ω , 
so 

  
Ψ(x, t + nT ) = e− iωt /2e− iωnT /2 cvψ v (x)e− ivωte− ivωnT

v=0
∑ = e− iωt /2e− iπn cvψ v (x)e− ivωte−2π ivn

v=0
∑  

Since the exponential of (2πi × any integer) = 1, we note that the last factor inside the sum is 1 
for every state. Also, since e-inπ = (–1)n, we have 
   Ψ(x, t + nT ) = (−1)n Ψ(x, t)  . 
At any whole number of periods after time t, the wavefunction is either the same as at time t 
or –1 times its value at time t. Either way, |Ψ|2 returns to its original value each period, so the 
wavepacket returns to the same spatial distribution each period. 

8B.12  
  
V = −

e2

4πε0

⋅ 1
r

[9A.4 with Z = 1] = α xb with b = −1 [x → r]  

Since 
  
2 EK = b V = − V  [virial theorem, 8B.14] 

Therefore, 
  

EK = − 1
2

V  

 

8C Rotational motion 

Answers to discussion question 
8C.2 Rotational motion on a ring and on a sphere share features such as the form of the energy 

(square of the angular momentum over twice the moment of inertia) and the lack of zero-
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point energy because the ground state does not restrict the angular position of the particle. 
Degeneracy is possible in both cases. In the case of the ring, the axis of rotation is specified, 
but not in the case of the sphere. This distinction gives rise to the fact that angular momenta 
about different perpendicular axes cannot be simultaneously specified: ˆ ˆ ˆ,  ,  and x y zl l l  are 
complementary in the sense described in Topic 7C.3. 

Solutions to exercises 

8C.1(b) The magnitude of angular momentum is [8C.21a] 

 
   

2l
1/2

= {l(l +1)}1/2
 = (2 × 3)1/2

 = 61/2
  

Possible projections on to an arbitrary axis are [8C.21b] 
 

  
lz = ml  

where ml =0 or ±1 or ±2. So possible projections include 0, ±, ±2 . 

8C.2(b) Orthogonality requires that [7C.8] 

 
  

ψ m
∗ψ n dτ = 0∫  if m ≠ n. 

Performing the integration on the wavefunction [8C.11] 

 
  

ψ ml

∗ ψ nl∫ dτ =
0

2π

∫ Ne− imlφ Neinlφdφ = N 2

0

2π

∫ ei(nl −ml )φdφ  

If ml ≠ nl, then 

 
  

ψ ml

* ψ ml
dτ∫ =

N 2

i(nl − ml )
ei(nl −ml )φ

0

2π

=
N 2

i(nl − ml )
(1−1) = 0  

Therefore, they are orthogonal. 

8C.3(b) The energy levels of a particle on a ring are given by [8C.6b] 

 
  
E =

ml
2h2

2I
=

ml
2h2

2mr 2 , ml = 0, ±1, ±2, ... 

We set this quantity equal to the classical energy and solve for |ml|: 

 
  
E =

ml
2h2

2mr 2 =
kT
2

 so

 

  

ml =
r(kTm)1/2

h

=
(100 × 10−12  m) ×{(1.381× 10−23  J K−1) × (298 K) × (1.6726 × 10−27  kg)}1/2

1.0546 × 10−34  J s
= 2.49

 

Of course, ml must be an integer, so ml = ±2 is the closest energy level. 
Comment. The correspondence principle (Topic 8A.2(b)) states that quantum systems 
behave classically in the limit of large quantum numbers. One manifestation of classical 
behaviour is the smallness of excitation energies compared to typical system energies, 
which makes system energies appear to take on a continuum of values rather than a set of 
discrete values. The system in this Exercise is not nearly as classical as the one described in 
Exercise 8A.9(b), but it is much more classical than that of part (b) in Exercise 8B.5(b). 

8C.4(b) The energy levels are [8C.20] 

 
  
E =

l(l + 1)h2

2I
, l = 0, 1, 2, ... 

The minimum energy to start it rotating is the minimum excitation energy, the energy to 
take it from the motionless l = 0 to the rotating l = 1 state: 

 
  
∆E = E1 =

1× 2 × (1.0546 × 10−34  J s)2

2 × (3.07 × 10−45  kg m2 )
= 3.62 × 10−24  J  

8C.5(b) The energy levels are [8C.20] 
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E =

l(l + 1)h2

2I
, l = 0, 1, 2, ... 

So the excitation energy is 

 
  
∆E = E2 − E1 =

(3× 4 − 2 × 3) × (1.0546 × 10−34  J s)2

2 × (3.07 × 10−45  kg m2 )
= 1.09 × 10−23  J  

8C.6(b) The energy levels are [8C.20] 

 
  
E =

l(l + 1)h2

2I
, l = 0, 1, 2, ... 

So the minimum energy allowed for this system is zero—but that corresponds to rest, not 
rotation. So the minimum energy of rotation occurs for the state that has l = 1. The angular 
momentum in that state is [8C.21a] 
 {l(l+1)}1/2

 = 21/2
 = 21/2 × (1.0546×10–34 J s) = 1.49×10–34 J s. 

Comment. Note that the moment of inertia does not enter into the result. Thus the 
minimum angular momentum is the same for a molecule of CH4 as for a molecule of C60 as 
for a football. 

8C.7(b) The cones are constructed as described in Topic 8C.2(e) and Figure 8C.11b of the text; their 
edges are of length {6(6 + 1)}1/2 = 6.48 and their projections are mj = +6, +5, …, –6. See 
Figure 8C.1(a). 
The vectors follow, in units of . From the highest-pointing to the lowest-pointing vectors 
(Figure 8C.1(b)), the values of ml are 6, 5, 4, 3, 2, 1, 0, –1, –2, –3, –4, –5, and –6. 

 
Figure 8C.1 
 

 
8C.8(b) The rotational energy depends only on the quantum number l [8C.20], but there are distinct 

states for every allowed value of ml, which can range from –l to l in integer steps. For l = 4, 
possible values of ml = –4, –3, –2, –1, 0, 1, 2, 3, 4. There are 9 such values, so the 
degeneracy is 9 . 

Solutions to problems 

8C.2 Mathematical software can animate the real part or the imaginary part of Ψ(φ,t), or you may 
wish to have it display |Ψ(φ,t)|2. Try a “pure” state, that is, let c = 1 for one value of ml and 0 
for all others. This “packet” does not spread, but only circulates. Also try making all the 
coefficients in the sum equal (all 1, for example). Whatever your choice of coefficients, the 
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pattern will repeat with a period T that makes all the time-dependent factors equal to the 
exponential of (2πi × an integer): 

 
   
T =

4π I


 

making the exponent 
   

iEml
t



 equal to   2π iml
2  when t = T and at intervals of T thereafter. An 

example of this approach using Mathcad is illustrated below: 

 Wavepacket on a Ring as a MathCad Document. Let 
 
τ =

h ⋅ t
4 ⋅ π ⋅ I

 

and let each function in the superposition of m+1 functions contribute with equal 
probability (i.e., 1/m+1). The normalized angular momentum functions are: 

 
 
ψ(m,φ) := 1

2 ⋅ π






1
2 ⋅ei⋅m⋅φ  [8.38b] where m is an integer. 

The normalized superposition is 

 
 
Ψ(mmax ,φ,τ) := 1

m + 1






1
2 ⋅ ψ(m,φ) ⋅e−i⋅m2 ⋅τ

m=0

mmax
∑  

 
 
N := 500     j := 0..N     φ j := 2 ⋅ π ⋅ j

N
     mmax := 8     ∆τ := .03  

The probability density of the superposition is 
 
P(φ,τ) := Ψ(mmax ,φ,τ) ⋅ Ψ(mmax ,φ,τ)  

 
Figure 8C.2 
 

 
 

The plots (Figure 8C.2) show that as the initially localized wave propagates around the ring it 
spreads with time and the uncertainty in knowing particle position increases. The effect of 
increasing or decreasing the energies accessible to the particle may be explored by increasing 
or decreasing the value of mmax in the MathCad document. 
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8C.4 The elliptical ring to which the particle is confined is defined by the set of all points that obey 
a certain equation. In Cartesian coordinates, that equation is 

 
  

x2

a2 +
y2

b2 = 1 

as you may remember from analytical geometry. An ellipse is similar to a circle, and an 
appropriate change of variable can transform the ellipse of this problem into a circle. That 
change of variable is most conveniently described in terms of new Cartesian coordinates (X,Y) 
where 
 X = x and Y = ay / b . 
In this new coordinate system, the equation for the ellipse becomes: 

 
  

x2

a2 +
y2

b2 = 1 ⇒
X 2

a2 +
Y 2

a2 = 1 ⇒ X 2 + Y 2 = a2 , 

which we recognize as the equation of a circle of radius a centered at the origin of our (X,Y) 
system. The text found the eigenfunctions and eigenvalues for a particle on a circular ring by 
transforming from Cartesian coordinates to plane polar coordinates. Consider plane polar 
coordinates (R,Φ) related in the usual way to (X,Y): 
 X = R cos Φ and Y = R sin Φ . 
In this coordinate system, we can simply quote the results obtained in the text. The energy 
levels are [8C.6b] 

 
   
E =

ml
2


2

2I
 

where the moment of inertia is the mass of the particle times the radius of the circular ring 
 I = ma2. 
The eigenfunctions are [8C.6a] 

 
  
ψ =

eimlΦ

(2π )1/2  

It is customary to express results in terms of the original coordinate system, so express Φ in 
the wavefunction in terms first of X and Y, and then substitute the original coordinates: 

 
  
Y
X

= tanΦ so Φ = tan−1 Y
X

= tan−1 ay
bx

 

8C.6 The Schrödinger equation is [8C.16] 

 
   
−



2

2m
∇2ψ = Eψ  

Since r = constant, the first term is eliminated and the Schrödinger equation may be rewritten 

 
   
−



2

2mr 2 Λ2ψ = Eψ   or  −


2

2I
Λ2ψ = Eψ  [I = mr 2]  or  Λ2ψ = −

2IEψ


2  [8C.18] 

where 
 
Λ2 =

1
sin2 θ

∂2

∂φ 2 +
1

sinθ
∂

∂θ
sinθ ∂

∂θ
 

Now use the specified 
 
ψ = Yl ,ml

 from Table 8C.1, and see if they satisfy this equation. 

(a) Because Y0,0 is a constant, all derivatives with respect to angles are zero, so Λ2Y0,0 = 0, 
implying that E = 0 and angular momentum = 0 [from {l(l+1)}1/2

] 

(b) 
  
Λ2Y2,−1 =

1
sin2 θ

∂2Y2,−1

∂φ 2 +
1

sinθ
∂

∂θ
sinθ

∂Y2,−1

∂θ
 where 

  
Y2,−1 = N cosθ sinθ  e− iφ  

 
  

∂Y2,−1

∂θ
= Ne− iφ (cos2 θ − sin2 θ )  
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1
sinθ

∂
∂θ

sinθ
∂Y2,−1

∂θ
=

1
sinθ

∂
∂θ

sinθ Ne− iφ (cos2 θ − sin2 θ )

=
Ne− iφ

sinθ
sinθ(−4cosθ sinθ ) + cosθ(cos2 θ − sin2 θ )( )

= Ne− iφ −6cosθ sinθ +
cosθ
sinθ







[cos3 θ = cosθ(1− sin2 θ )]

 

 
  

1
sin2 θ

∂2Y2,−1

∂φ 2 =
−N cosθ sinθ  e− iφ

sin2 θ
=

−N cosθ  e− iφ

sinθ
 

so 
  
Λ2Y2,−1 = Ne− iφ (−6cosθ sinθ ) = −6Y2,−1 = −2(2 +1)Y2,−1   [i.e., l = 2]  

and hence 

 
   
−6Y2,−1 = −

2IE


2 Y2,−1,   implying that    E= 3

2

I
 

and the angular momentum is {2(2+1)}1/2
 = 61/2

 . 

(c) 
  
Λ2Y3,3 =

1
sin2 θ

∂2Y3,3

∂φ 2 +
1

sinθ
∂

∂θ
sinθ

∂Y3,3

∂θ
 where 

  
Y3,3 = N sin3 θ  e3iφ  

 
  

∂Y3,3

∂θ
= 3N sin2 θ cosθ  e3iφ  

 

  

1
sinθ

∂
∂θ

sinθ
∂Y3,3

∂θ
=

1
sinθ

∂
∂θ

3N sin3 θ cosθ  e3iφ

=
3Ne3iφ

sinθ
(3sin2 θ cos2 θ − sin4 θ ) = 3Ne3iφ sinθ(3cos2 θ − sin2 θ )

= 3Ne3iφ sinθ(3− 4sin2 θ ) [cos3 θ = cosθ(1− sin2 θ )]

 

 
  

1
sin2 θ

∂2Y3,3

∂φ 2 =
−9N sin3 θ  e3iφ

sin2 θ
= −9N sinθ  e3iφ  

so 
  
Λ2Y3,3 = −12N sin3θ e3iφ = −12Y3,3 = −3(3+1)Y3,3   [i.e., l = 3]  

and hence 

 
   
−12Y3,3 = −

2IE


2 Y3,3,   implying that   E =
6

2

I
 

and the angular momentum is {3(3+1)}1/2
 = 121/2

 . 

8C.8  
  
∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2  [8C.15b] 

 
  
∂2

∂x2 f = −a2 cos ax cos by cos cz = −a2 f  

Similarly, 
  

∂2

∂y2 f = −b2 f ∂2

∂y2 f = −c2 f  

so f is an eigenfunction with eigenvalue –(a2 + b2 + c2). 

8C.10 Upon making the operator substitutions 

 
   
px =



i
∂
∂x

 and  py =


i
∂
∂y

 

into   l


z  we find 

 
   
lz =



i
x ∂

∂y
− y ∂

∂x






 

But 
 

∂
∂φ

=
∂x
∂φ

∂
∂x

+
∂y
∂φ

∂
∂y

+
∂z
∂φ

∂
∂z

 [chain rule of partial differentiation]. 
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∂x
∂φ

=
∂

∂φ
(r sinθ cosφ) = −r sinθ sinφ = − y  

 
  

∂y
∂φ

=
∂

∂φ
(r sinθ sinφ) = r sinθ cosφ = x  

 
  

∂z
∂φ

= 0  

Thus, 
 

∂
∂φ

= − y ∂
∂x

+ x ∂
∂y

 

Upon substitution, 

 
   

zöl =


i
∂

∂φ
= −i ∂

∂φ
 

8C.12 (a) Within the sphere, the Schrödinger equation is 

 
   
−



2

2m
∂2

∂r 2 +
2
r

∂
∂r

+
1
r 2 Λ2





ψ = Eψ  [Table 7B.1], 

where Λ2 is an operator that contains derivatives with respect to θ and φ only. 
Let ψ(r,θ,φ) = R(r)Y(θ,φ) . 
Substituting into the Schrödinger equation gives 

 
   
−



2

2m
Y ∂2 R

∂r 2 +
2Y
r

∂R
∂r

+
R
r 2 Λ2Y







= ERY  

Divide both sides by RY: 

 
   
−



2

2m
1
R

∂2 R
∂r 2 +

2
Rr

∂R
∂r

+
1

Yr 2 Λ2Y






= E  

The first two terms in parentheses depend only on r, but the last one depends on both r and 
angles; however, multiplying both sides of the equation by r2 will effect the desired 
separation: 

 
   
−



2

2m
r 2

R
∂2 R
∂r 2 +

2r
R

∂R
∂r

+
1
Y

Λ2Y






= Er 2  

Put all of the terms involving angles on the right hand side and the terms involving distance on 
the left: 

 
   
−



2

2m
r 2

R
∂2 R
∂r 2 +

2r
R

∂R
∂r







− Er 2 =



2

2mY
Λ2Y  

Note that the right side depends only on θ and φ, while the left side depends on r. The only 
way that the two sides can be equal to each other for all r, θ, and φ is if they are both equal to 

a constant. Call that constant 
   
−



2l(l + 1)
2m

(with l as yet undefined) and we have, from the right 

side of the equation: 

 
   



2

2mY
Λ2Y = −



2l(l +1)
2m

 so   Λ
2Y = −l(l +1)Y  

From the left side of the equation, we have 

 
   
−



2

2m
r 2

R
∂2 R
∂r 2 +

2r
R

∂R
∂r







− Er 2 = −



2l(l + 1)
2m

 

After multiplying both sides by R / r2 and rearranging, we get the desired radial equation 

 
   
−



2

2m
∂2 R
∂r 2 +

2
r

∂R
∂r







+



2l(l + 1)
2mr 2 R = ER  

Thus, the assumption that the wavefunction can be written as a product of functions is a valid 
one, for we can find separate differential equations for the assumed factors. That is what it 
means for a partial differential equation to be separable. 
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(b) The radial equation with l = 0 can be rearranged to read: 

 
   

∂2 R
∂r 2 +

2
r

∂R
∂r

= −
2mER



2   

Form the following derivatives of the proposed solution: 

 
  

∂R
∂r

= (2π a)−1/2 cos(nπr / a)
r

nπ
a







−
sin(nπr / a)

r 2









  

and 

  

∂2 R
∂r 2 = (2π a)−1/2 −

sin(nπr / a)
r

nπ
a







2

−
2cos(nπr / a)

r 2

nπ
a







+
2sin(nπr / a)

r3













 

Substituting into the left side of the rearranged radial equation yields 

 

  

(2π a)−1/2 −
sin(nπr / a)

r
nπ
a







2

−
2cos(nπr / a)

r 2

nπ
a







+
2sin(nπr / a)

r3













+ (2π a)−1/2 2cos(nπr / a)
r 2

nπ
a







−
2sin(nπr / a)

r3











= −(2π a)−1/2 sin(nπr / a)
r

nπ
a







2

= −
nπ
a







2

R

 

Acting on the proposed solution by taking the prescribed derivatives yields the function back 
multiplied by a constant, so the proposed solution is in fact a solution. 
 
(c) Comparing this result to the right side of the rearranged radial equation gives an equation 
for the energy 

 
   

nπ
a







2

=
2mE


2  so 
   
E =

nπ
a







2


2

2m
=

n2π 2

2ma2

h
2π







2

=
n2h2

8ma2  

Integrated activities 

8.2 The particle in a box can serve a model for many kinds of bound particles. Perhaps most 
relevant to chemistry, it is a model for π-electrons in linear systems of conjugated double 
bonds. See Example 8A.2, in which it is the basis for estimating the absorption wavelength for 
an electronic transition in the linear polyene β-carotene. Electrons in nanostructures such as 
quantum dots can be modeled as particles in a three-dimensional box or sphere. More crudely 
yet more fundamentally, the particle in a box model can provide order-of-magnitude 
excitation energies for bound particles such as an electron confined to an atom-sized box 
around a nucleus or even for a nucleon confined to a nucleus-sized box. The harmonic 
oscillator serves as the first approximation for describing molecular vibrations. The excitation 
energies for stretching and bending bonds are manifested in infrared and Raman spectroscopy. 

8.4 (a) The ground state is n = 1. Expectation values for 
  

x ,  x2 ,  p ,  and  p2  were 
evaluated in Exercises 8A.5 and 8A.6. 

 
  

x =
L
2

 for all n, including n = 1 

 
  

x2 = L2 1
3

−
1

2n2π 2







= L2 1
3

−
1

2π 2







 [n = 1]  

 
  
∆x = L2 1

3
−

1
2n2π 2







−
L2

4










1/2

= L 1
12

−
1

2π 2n2







1/2

= L 1
12

−
1

2π 2







1/2

 [n = 1]  

 
  

p = 0  for all n, including n = 1 

 
  

p2 =
n2h2

4L2 =
h2

4L2  [n = 1]  
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∆p =

1/2
n2h2

4L2







=

nh
2L

=
h

2L
 [n = 1]  

 
   
∆p∆x =

nh
2L

× L 1
12

−
1

2π 2n2







1/2

=
nh

2 3
1−

1
24π 2n2







1/2

>


2
 

(b) The ground state is v = 0.  
 

  
x = 0  for all v, including v = 0 [8B.12a, or by symmetry] 

and 
   

x2 = v +
1
2







×


2

mkf








1/2

 [8B.12] = v +
1
2







×


ωm
 [8B.4] =



2ωm
 [v = 0]  

so 
   
∆x =

1/2

v +
1
2









ωm








=
1/2



2ωm






 [v = 0]  

 
  

p = 0  [by symmetry, or by noting that the integrand is an odd function of x] 

and 2
k k

ˆ2 2  dp m E m E xψ ψ
+∞

∗

−∞
= = ∫  

 
2 2 2 2 2

2
k 2 2 2 2

d d dˆ  [7C.5] ,  
2 2d 2 d d

E x y
m mx m y y

ω α α
ωα

 = − = − = − = , =  

     

which implies that 

 
2

k 2

dˆ
2 d

E
y

ω ψψ
 

= −  
 

  

We then use   ψ = NHe− y2 /2 , and obtain 

 
  

d2ψ
dy2 = N d2

dy2 (He− y2 /2 ) = N{ ′′H − 2y ′H − H + y2 H}e− y2 /2  

From Table 8B.1 
   ′′Hv − 2y ′Hv = −2vHv  

 
  

y2 Hv = y 1
2 Hv+1 + vHv−1( )= 1

2
1
2 Hv+2 + (v + 1)Hv( )+ v 1

2 Hv + (v − 1)Hv−2( )
= 1

4 Hv+2 + v(v − 1)Hv−2 + v + 1
2( )Hv

 

Hence, 
  

d2ψ
dy2 = N 1

4 Hv+2 + v(v − 1)Hv−2 − v +
1
2







Hv



















e− y2 /2  

Therefore, 

 

   

Ek = Nv
2 −

ω
2







Hv

1
4

Hv+2 + v(v −1)Hv−2 − v +
1
2







Hv







−∞

+∞

∫ e− y2

dx [dx = αdy]

= α Nv
2 − 1

2 ω( ) 0 + 0 − v + 1
2( )π 1/2 2v v!{ } [Hermite polynomials orthogonal]

=
1
2

v +
1
2






ω Nv

2 =
1

απ 1/2 2v v!
, Example 8B.2











so 

and 
   

p2 = v +
1
2







mω =
mω

2
 [v = 0] 

 
   
∆p =

1/2

v +
1
2






ωm









=
1/2

mω
2







 [v = 0]  

 
   
∆p∆x = v +

1
2






 ≥



2
 

Comment. Both results show a consistency with the uncertainty principle in the form 

   
∆p∆q ≥



2
 as given in eqn 7C.13 (for all values of the quantum numbers, by the way). 

 
 
 
 

22 



8.6 (a) Notice in Figures I8.1(a) and I8.1(b) that regions of high probability and low probability 
alternate on an increasingly smaller scale as n increases. The distribution of the particle’s 
probability becomes more uniform if one ignores the fluctuations or (what amounts to the 
same thing) if one looks for the probability of finding the particle in a region small compared 
to the box as a whole but large compared to the very short-wavelength n=50 state. For 
example, compare the probability of finding the particle in the central 10% of the box to the 
first 10% of the box. The different in probabilities is huge for the ground state and minuscule 
for the n=50 state. One more way to think of the distribution as becoming more uniform is that 
both regions of high probability and regions of low probability become more and more widely 
and evenly distributed. 

 
Figure I8.1(a) 
 

 
 

Figure I8.1(b) 

 
 
(b) Figure I8.2 is a plot like that of textbook Fig. 8A.12 of the main text. The curves in the 
figure differ in the value of L(mV)1/2/ , a measure of the size of the barrier (a combination of 
its width and “height”). Think of the curves in this plot as having the same value of L and V, 
but differing only in m. The values of L and V were chosen such that the proton and hydrogen 
molecule could exhibit “typical” tunnelling behavior: if the incident energy is small enough, 
there is practically no transmission, and if the incident energy is high enough, transmission is 
virtually certain. A barrier through which a proton and hydrogen molecule can tunnel with 
such behavior is practically no barrier for an electron: T for the electron is indistinguishable 
from 1 on this plot. 

 
Figure I8.2 
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(c) In Figure I8.3, y = Hv(x) is plotted against x. The quantum number v is equal to the number 
of nodes. Notice that the number of nodes increases as v increases and that the position of 
those nodes spreads out. 
 
Figure I8.3 
 

 
 
(d) The number of nodal lines (excluding those that fall on the boundaries) is n1+n2–2. The 
number of nodal lines for motion along a given axis is one less than n for that motion. 
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9  Atomic structure and spectra 

9A  Hydrogenic atoms 
 

Answers to discussion questions 
 
9A.2 (1)  The principal quantum number, n, determines the energy of a hydrogenic atomic orbital 

through eqn 9A.9. 
(2) The azimuthal quantum number, l, determines the magnitude of the angular momentum of a 
hydrogenic atomic orbital through the formula 1/ 2{ ( 1)}l l +  . 

 (3)  The magnetic quantum number, lm , determines the z-component of the angular momentum of 
a hydrogenic orbital through the formula lm  . 

(4) The spin quantum number, s, determines the magnitude of the spin angular momentum 
through the formula 1/ 2{ ( 1)}s s + 

. For hydrogenic atomic orbitals, s can only be 1 2/ . 

(5) The spin quantum number, sm , determines the z-component of the spin angular momentum 
through the formula sm  . For hydrogenic atomic orbitals, ms can only be 1 2± / . 

 
Solutions to exercises 

 
9A.1(b) The degeneracy g of a hydrogenic atom with principal quantum number n is 2g n= . The energy E of 

hydrogenic atoms is 

 
2 2

N N
2

hcZ R hcZ RE
gn

= − = −
 

 

   so the degeneracy is 

 
2

NhcZ Rg
E

= −


 

   (i) 
( )2

N

N

2
1

4
hc R

g
hcR

= − =
−





 

   (ii) 
( )2

N
1

N4

4
64

hc R
g

hcR
= − =

−





 

   (iii)
2

N

N

(5)
25

hc R
g

hcR
= − =

−





 

. 
9A.2(b) Normalization requires 

 0
2 / 22 2 2

00 0 0
d 1 [ (2 )e ] d sin d dr aN r a r r

π π
ψ τ φ θ θ

∞ −| | = = − /∫ ∫ ∫ ∫  

 0
2/2 2 2

00 0 0
1 e (2 ) d sin d dr aN r a r r

π π
θ θ φ

∞ −= − /∫ ∫ ∫  

 Integrating over angles yields 

 
0

0

/2 2 2
00

/2 2 2 2 3
0 0 00

1 4 (2 ) d

24 (4 4 ) d 4 (8 )

r a

r a

N e r a r r

N e r a r a r r N a

π

π π

∞ −

∞ −

= − /

= − / + / =

∫
∫

 

In the last step, we used / 2 3 / 3 4 / 4 5

0 0 0
e d 2 , e d 6 ,and e d 24r k r k r kr r k r r k r r k

∞ ∞ ∞− − −= = =∫ ∫ ∫ , 
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So 
3
0

1

4 2
N

aπ
=  

 
 
9A.3(b) The radial wavefunction is [Table 9A.1] 

 2 /61
3,0 9

0

26 2 e where ZrR A
a

ρρ ρ ρ− 
  = − + ≡ , and A is a collection of constants.  

[Note:  for convenience ρ defined here is 3 × ρ as defined in table 9A.1] 
  

Differentiating with respect to ρ  yields 

 
( ) ( )

( )2

3,0 2 /6 /61 1 2
9 6 9

/6 5
54 9

d
0 (6 2 ) e 2 e

d

e 3

R
A A

A

ρ ρ

ρρ

ρ ρ ρ
ρ

ρ

− −

−

= = − + × − + − +

= − + −
 

This is a quadratic equation 

 2 1 50 where     and  3
54 9

a b c a b cρ ρ= + + = − , = , = − .  

The solution is 

 
2 1/ 2( 4 ) 15 3 7
2

b b ac
a

− ± −
= = ±ρ  

so 
( )1/ 23 715 0

2 2
r

a

Z
=

 
 ±
 
 

. 

Numerically, this works out to 22.94ρ =  and 7.06, so 011.5 /r a Z=  and 03.53 /a Z . Substituting 

1Z =  and 11
0 5 292 10 ma −= . × , r = 607 pm and.187 pm. 

The other maximum in the wavefunction is at 0r = . It is a physical maximum, but not a calculus 
maximum: the first derivative of the wavefunction does not vanish there, so it cannot be found by 
differentiation. 

 
9A.4(b) The radial distribution function varies as 

 02 /2 2 2
3
0

44 e r aP r r
a

−= =π ψ [9A.17] 

 The maximum value of P occurs at 0r a=  since 

 0

2
2 / 2

0 max
0 0

 
4d 22 e 0 at and  e

d
r aP rr r a P

r a a
− − 

∝ − = = = 
 

 

 P falls to a fraction f of its maximum given by 

 
2

0
3
0 0

0

2 / 2
2 /2

22
0

4 e
e e4 e

r a

r a
r

raf
aa

−

−

−
= =  

 and hence we must solve for r in 

 0

1 2
/

0

e
e

r af r
a

−=  

 (i) 0 50f = .  

 0/

0

0 260 e r ar
a

−. = solves to 02 08 110pmr a= . =  and to 00 380 20 1pmr a= . = .  

 (ii) 0 75f = .  

 9:2 



 0/

0

0 319 e r ar
a

−. =  solves to 01 63 86pmr a= . =  and to 00 555 29 4pmr a= . = .  

In each case the equation is solved numerically (or graphically) with readily available personal 
computer software. The solutions above are easily checked by substitution into the equation for f . 
The radial distribution function is readily plotted and is shown in Fig. 9A.1. 
 

Figure 9A.1 

 
 
9A.5(b) The complete radial wavefunction, R4,1 is not given in Table 9A.1; however, consulting other references 

such as Introduction to Quantum Mechanics by Pauling and Wilson we learn that R4,1 is proportional 
to 

 2

0

2(20 10 ) where Zr
na

ρ ρ ρ ρ− + =  

The radial nodes occur where the radial wavefunction vanishes, namely where 

   2(20 10 ) 0ρ ρ ρ− + = . 

The zeros of this function occur at 

 0, 0rρ = =  

and when 
 2(20 10 ) 0 with roots 2.764 and 7.236ρ ρ ρ ρ− + = , = , =  

then 00 0 0
0 0  

28.9444 4 11.056 5.528 and 14.472
2 2 2 2

aa a ar a a
Z

ρ ρ
= = = = =  

10 10or  2.92 10  m   and 7.66 10  mr − −= × ×  

 
 
9A.6(b) The average kinetic energy is 

 K Kˆ ˆ* dE Eψ ψ τ= ∫  

where 
1/23

/2
3
0

1(2 )e  with 4 2
ZN N

a
ρψ ρ

π
−  

= − =  
 

. 

 [Note: ρ is defined here as in Table 9A.1] 

 
3 22

2 2 0
K 3

sin d d dˆ d sin d d d
2

ar rE m Z
= − ∇ = =

ρ θ ρ θ φ
τ θ θ φ  
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In spherical polar coordinates, three of the derivatives in 2∇  are derivatives with respect to angles, so 
those parts of 2∇ ψ  vanish. Thus 

 
222 2 2

2
2 2 2 2

0 0

2 2 2Z Z
r r a r ar r

ψ ψ ψ ρ ψ ρ ψ ψψ
ρ ρ ρ ρρ ρ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∇ = + = + = × +     ∂ ∂ ∂ ∂∂ ∂ ∂ ∂      
 

 ( ) ( )/2 /2 /21 1
2 2(2 ) e e 2 eN N Nρ ρ ρψ ρ ρ

ρ
− − −∂

= − × − − = −
∂

 

 ( ) ( ) ( )
2

2 2 231 1 1 1
2 2 2 2 42 2 e e eN N Nρ ρ ρψ ρ ρ

ρ
− / − / − /∂

= − × − + = −
∂

 

 
2

2 2

0

e ( 4 5 2 4)Z N
a

ρψ ρ ρ− / 
∇ = − / + / − / 

 
 

and 

 

2 22 /2
K 0 0 0

0

3 2
/2 0

3

ˆ (2 )e
2

d sin d d
e ( 4 5 2 4)

ZNE a m

a
N

Z

π π ρ

ρ

ρ

φ θ θ ρ ρ
ρ ρ

∞ −

−

   −
= − ×      

× − / + / − /

∫ ∫ ∫


 

The integrals over angles give a factor of 4π , so 

 
2

2 2 --0 5 1
K 2 40

ˆ 4 (2 ) 4 e d
2

aNE Z m
ρπ ρ ρ ρ ρ ρ

∞  
 
 

  = × − − × − + −  
   

∫
  

The integral in this last expression works out to -2, using -

0
e dn n

∞
= !∫ ρ ρ ρ  for 1 2n = , , and 3. So 

 
3 2 2 2

0
K 23

00

ˆ 4
832

aZ Z
E maZ ma

π
π

    = × × =    
    

   

The average potential energy is 

 
2 2 2

0 0 0

* d where
4 4
Ze Z eV V V

r a
ψ ψ τ

πε πε ρ
= = − = −∫  

and 
3 22 22 /2 /2 0

30 0 0
0 0

sin d d d
(2 )e (2 )e

4
aZ eV N N

a Z
π π ρ ρ ρ θ ρ θ φ

ρ ρ
πε ρ

∞ − − 
= − − −  ∫ ∫ ∫  

The integrals over angles give a factor of 4π , so 

 
2 32

2 0
3

0 0

2(2 ) e d04
4

aZ eV N
Z

ρρ ρ ρπ
πε α

∞ −−∫
   

= − ×       
 

The integral in this last expression works out to 2, using 
0 e dn nρ ρ ρ∞ − = !∫  for n = 1, 2, 3, and 4 . So 

 
33 2 2 2 2
0

3 3
0 0 0 00

4 (2)
4 1632

aZ Z e Z eV
a aa Z

π
πε πεπ

    
= × − × × = −    

    
 

 
9A.7(b) The radial distribution function is defined as 

  2 2 2 2
3 0,0 3,04 so 4 ( ) ,sP r P r Y Rπ ψ π= =  

 
3

2 2 2
3

0

(6 6 ) e
1 14

4 243s
ZP r ρρ ρπ

π α
−

    
    = × × × − +

         
 

where 
0 0

2 2 here
3

Zr Zr
na a

ρ ≡ = .  

But we want to find the most likely radius, so it would help to simplify the function by expressing it in 
terms either of r or ρ , but not both. To find the most likely radius, we could set the derivative of P3s 
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equal to zero; therefore, we can collect all multiplicative constants together (including the factors of 
0a Z/  needed to turn the initial 2r  into 2ρ ) since they will eventually be divided into zero 

 2 2 2 2
3 (6 6 ) esP C ρρ ρ ρ −= − +  

Note that not all the extrema of P are maxima; some are minima. But all the extrema of ( )1 2
3sP  

correspond to maxima of P3s. So let us find the extrema of ( )1 2
3sP  

 
( )

- 2

1 2
3 2 2

2 21
2

d d0 (6 6 )e
dd
[ (6 6 ) ( ) (6 12 3 )]e

sP
C

C ρ

ρρ ρ ρ
ρρ
ρ ρ ρ ρ ρ

−= = − +

= − + × − + − +

 

 - 22 3 2 31
20 (6 15 6 )e so 12 30 12 0C ρρ ρ ρ ρ ρ ρ= − + − − + − =  

Numerical solution of this cubic equation yields 
 0 49  2 79  and 8 72ρ = . , . , .  

corresponding to 

 0 0 00.74 / , 4.19 / ,  and 13.08 /  r a Z a Z a Z=  

Comment. If numerical methods are to be used to locate the roots of the equation which locates the 
extrema, then graphical/numerical methods might as well be used to locate the maxima directly. That 
is, the student may simply have a spreadsheet compute P3s and examine or manipulate the 
spreadsheet to locate the maxima. 

 
9A.8(b)The radial distribution function is defined as 

  2 2 2 2
3 3,1( ) so ( ) ,pP r R r P r R= =  

  2 2 2 2(4 ) e3P Cp
ρρ ρ ρ −= × −  

where 
0 0

2 2 here
3

Zr Zr
na a

ρ ≡ = .  

But we want to find the most likely radius, so it would help to simplify the function by expressing it in 
terms either of r or ρ  but not both. To find the most likely radius, we could set the derivative of P3p 
equal to zero; therefore, we can collect all multiplicative constants together (including the factors of 

0a Z/  needed to turn the initial 2r  into 2ρ ) since they will eventually be divided into zero 

Note that not all the extrema of P are maxima; some are minima. But all the extrema of ( )1 2

3pP  

correspond to maxima of P3p. So let us find the extrema of ( )1 2

3pP  

 
( )

- 2

1 2

3p 2 2

2

d d0 (4 )e
dd
[ (8 5 /2)]e

P
C

C ρ

ρρ ρ
ρρ
ρ ρ ρ

−= = −

= − +

 

 2 / 2so 8 5 0ρ ρ− + =  
Numerical solution of this quadratic equation yields 

 2  and 8ρ = ,  

corresponding to 
 0 03 /  and 12 /r a Z a Z=  

 P(r) is larger at 12a0 than at 3a0, so the most probable position is  r = 12a0/Z  
Comment. If numerical methods are to be used to locate the roots of the equation which locates the 
extrema, then graphical/numerical methods might as well be used to locate the maxima directly. That 
is, the student may simply have a spreadsheet compute P3p and examine or manipulate the 
spreadsheet to locate the maxima. 
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9A.9(b) Orbital angular momentum is 

 
1 22 1 2ˆ ( ( 1))l lL = +  

 There are l  angular nodes and 1n l− −  radial nodes 

(i)
1 22 1 2 34ˆ4  2  so 6 2.45 10 J sn l L −= , = , = = ×

   2 angular nodes 1 radial node  

(ii)
1 22 1 2 34ˆ2  1  so 2 1.49 10 J sn l L

−= , = , = = ×    1 angular nodes 0 radial nodes  

(iii) 
1 22 1 2 34ˆ3  1  so 2 1.49 10 J sn l L

−= , = , = = ×    1 angular node 1 radial node  

 
9A.10(b) The radial portion of the 4d orbital is proportional to (6 – ρ). Its position can be determined by 

setting (6 − ρ) = 0.  Hence, ρ = 6 and 012 /r a Z= . 

 See Figs. 8C.9, 8C.11 and 9A.16 as well as Table 8C.1 of the text.  The number of angular nodes is 
the value of the quantum number l which for d-orbitals is 2. Hence, each of the five d-orbitals has 
two angular nodes To locate the angular nodes look for the values of θ that makes the wavefunction 
zero. 

 dz
2 orbital: see eqn. 9A.23, Table 8C.1 and Figs. 8.35 and 9A.16. The nodal planes are difficult to 

picture. θ  = 0.95532 is the angular node for both planes.  
 dxy orbital: see eqn. 9A.23, Table 8C.1 and Figs. 8.35 and 9A.16. The two nodal planes are the xz and 

yz planes , and θ = 0 is the angular node for both planes. 
 dyz orbital: see eqn. 9A.23, Table 8C.1 and Figs. 8.35 and 9A.16. The two nodal planes are the xz and 

xy planes , and θ  = 0 and π/2 , respectively, are the angular nodes of these planes. 
 dxz orbital: see eqn. 9A.23, Table 8C.1 and Figs. 8.35 and 9A.16. The two nodal planes are the yz and 

xy planes , and θ = 0 and π/2 , respectively, are the angular nodes of these planes. 
 dx

2
-y

2 orbital: see eqn. 9A.23, Table 8C.1 and Figs. 8.35 and 9A.16. The two nodal planes are planes 
at φ = π/4 and and φ = 3π/4 , respectively, and θ = 0 is the angular node of both of these planes. 

 
 
Problems 
 
9A.2  In each case we need to show that 

 1 2all space
d 0ψ ψ τ∗ =∫  

(a)
2 ?2

1s 2s0 0 0
d sin d d 0r r

π π
ψ ψ θ θ φ

∞
=∫ ∫ ∫  

 
1 2

1 1 0 0 0
0 0

2 2 0 0 0

1 [Table 8 .1]
4

s

s

R Y
Y C

R Y
ψ
ψ π

/
, ,

,
, ,

=   =  =  
 

Since 0 0Y ,  is a constant, the integral over the radial functions determines the orthogonality of the 
functions. 

 2
1 0 2 00

dR R r r
∞

, ,∫  

 02
1 0

0

2e e Zr a ZrR
a

ρ ρ− /− /
,

 
∝ = = 

 
 

 024
2 0

0 0

2(2 2)e 2 e Zr aZr ZrR
a a

ρρ ρ− /− /
,

   
∝ − / = − =   

   
 

 9:6 



  

( ) ( )

0 0

0 0

0 0

22 2
1,0 2,00 0

0

(3 2) (3 2)2 3

0 0
0

3 4
3 302 2

d e 2 e d

2e d e d

2 2 3 0

Zr a Zr a

Zr a Zr a

z z
a a

ZrR R r r r r
a

Zr r r r
a

Z
a

∞ ∞ − / − /

∞ ∞− / / − / /

 
∝ −  

= −

 × ! !
= − × =  

∫ ∫

∫ ∫  

Hence, the functions are orthogonal. 
(b) We use the px  and p y  orbitals in the form given in Section 9A.2(g), eqn 9A.22 

 p px yx y∝ , ∝  

Thus 

 
all space

p p d d d d d dx y x y z xy x y z
+∞ +∞ +∞

−∞ −∞ −∞
∝∫ ∫ ∫ ∫  

This is an integral of an odd function of x and y over the entire range of variable from −∞  to +∞ , 
therefore, the integral is zero . More explicitly we may perform the integration using the orbitals 
in the form (Section 9A.2(g), eqn 9A.22) 

 p ( )sin cos p ( )sin sinx yf r f rθ φ θ φ= =  

 
22 2 2 2

all space 0 0 0
p p d sin  d  d ( ) d sin  d cos sin  dx yr r f r r r

π π
θ θ φ θ θ φ φ φ

∞
=∫ ∫ ∫ ∫  

The first factor is nonzero since the radial functions are normalized. The second factor is 
2
π . The 

third factor is zero. Therefore, the product of the integrals is zero  and the functions are 
orthogonal. 

 
9A.4 We use the px  and p y  orbitals in the form (Section 9A.2(g)) 

 p ( )sin cos p ( )sin sinx yrf r rf rθ φ θ φ= =  

and use i i1
2

cos (e e )φ φφ −= +  and i i1sin (e e )2i
φ φφ −= −  then 

 i i i i1 1p ( )sin  (e e ) p ( )sin  (e e )
2 2i

rf r rf rx y
φ φ φ φθ θ− −= + = −  

  ˆ
il z φ

∂
=

∂
  

 i iˆ p ( )sin  e ( )sin  e i p constant p
2 2

rf r rf rl x y xz
φ φθ θ −= − = ≠ ×

 

  

 i i
2 2ˆ p ( )sin  e ( )sin  e i p constant p

2i 2i
rf r rf rl y x yz

φ φθ θ −= + = − ≠ ×
 

  

Therefore, neither px  nor p y  are eigenfunctions of ˆ zl . However,  p ip and p ipx y x y+ −  are 

eigenfunctions 

 i ip ip ( )sin  e p ip ( )sin  erf r rf rx y x y
φ φθ θ −+ = − =  

since both ie φ  and ie φ−  are eigenfunctions of ˆ zl  with eigenvalues h+  and h− . 

 

9A.6   1s

1 2

01
3
0

e r a

aπ
ψ

/
− / 

=   
 

 

The probability of the electron being within a sphere of radius r′  is 

   
2

0 0 0

2 2
1s d  sin  d  d

r
r r

π π
ψ θ θ φ

′

∫ ∫ ∫  
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We set this equal to 0.90 and solve for r′ . The integral over θ  and φ  gives a factor of 4π ; thus 

 02 /2
3 0
0

40 90 e d
r r ar r

a
′ −. = ∫  

 02 /2

0
e d

r r ar r′ −∫  is integrated by parts to yield 

 

2 2 22 0 0 0
0 0 0 0

0

0 0 0

22 2 3 30 2 20 0 0 00 0

e e e
2 2 2 2

( ) e e e
2 2 4 4

rr rr a r a r a

r a
r a r a

a r a r a aa

a r a r a a

′′ ′− / − / − /

− /′
− / − /′ ′

      
   

− + − + −

′ ′
= − − − +

 

 Multiplying by 3
0

4
a

 and factoring 02e r a− /′  

 0 0

2 2
2 2

0 0 0 0

0 90 2 2 1 e 1 or 2 2 1 0 10er a r ar r r r
a a a a

′ ′− / /
 ′ ′ ′ ′       

. = − − − + + + = .        
         

 

It is easiest to solve this numerically. It is seen that 02 66r a′ = .  satisfies the above equation. 

Mathematical software has powerful features for handling this type of problem.  Plots are very 
convenient to both make and use. Solve blocks can be used as functions. Both features are 
demonstrated below using Mathcad. 

 
The following Mathcad document develops a function for calculating the radius for any desired 
probability.  The probability is presented to the function as an argument 
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9A.8. 
2

2
0

e 1The attractive Coulomb force
4
Z

rπε
= ⋅  

2 2

3 3
e e

(angular momentum) ( )The repulsive centrifugal force [postulated]n
m r m r

= =
  

The two forces balance when 

 
2 22 2 2

0
2 3 2

0 e e

4e 1 , implying that
4 e

nZ n r
r m r Z m

π ε
πε

× = =


  

The total energy is 

 

2 2 2 2 2

K 2
0 0e

22 2 2 42 2 2
e e e

2 2 2 2 2 2 2 2
e 00 0 0

(angular momentum) e 1 e [postulated]
2 4 42

e e ee 1
2 44 4 32

Z n ZE E V
I r rm r

Z m Z m Z mn Z
m n n n

πε πε

πεπ ε π ε π ε

= + = − × = −

      
= × − × = − ×             





  

 

 
 
9A.10 Refer to Problems 9C.8 and 9A.8 and their solutions. 

 e p
H e p

e p

[ mass of proton]
m m

m m
m m

µ = ≈ =
+

 

 e pos e
Ps pos e

e pos

[ mass of proton ]
2

m m m
m m

m m
µ = = = =

+
 

 
2

0
0 2

e

4
( 1) [9A.11a and Problem 9A.8]a r n

e m
π ε

= = =
  

To obtain Psa the radius of the first Bohr orbit of positronium, we replace em  with ;Ps 2
meµ =  hence, 

 
2

0
Ps 0 2

e

2a a
e m

π ε
= =

  

The energy of the first Bohr orbit of positronium is 

 1 Ps Ps  [Problem 9C.8]
2
hcE hcR R, ∞= − = −   

Thus, 1
1 Ps 1 H2E E, ,=  

Question. What modifications are required in these relations when the finite mass of the hydrogen 
nucleus is recognized? 
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9B   Many-electron atoms 
 

Answers to discussion questions 
 
9B.2 In period 2, the first ionization energies increase markedly from Li to Be, decrease slightly from Be to 

B, again increase markedly from B to N, again decrease slightly from N to O, and finally increase 
markedly from O to Ne. The general trend is an overall increase of 1I  with atomic number across the 
period. That is to be expected since the principal quantum number (electron shell) of the outer electron 
remains the same, while its attraction to the nucleus increases. The slight decrease from Be to B is a 
reflection of the outer electron being in a higher energy subshell (larger l value) in B than in Be. The 
slight decrease from N to O is due to the half-filled subshell effect; half-filled sub-shells have increased 
stability. O has one electron outside of the half-filled p subshell and that electron must pair with 
another resulting in strong electron–electron repulsions between them. 

 The same kind of variation is expected for the elements of period 3 because in both periods the outer 
shell electrons are only s and p. 

 
Solutions to exercises 

 
9B.1(b) Y: [Kr]5s24d1 
  Zr: [Kr]5s24d2 
  Nb: [Kr]5s24d3 or [Kr]5s14d4 (most probable) 
  Mo: [Kr]5s14d5 
  Tc: [Kr]5s24d5 
  Ru: [Kr]5s24d6 or [Kr]5s14d7 (most probable) 
  Rh: [Kr]5s14d8 
  Pd: [Kr]5s14d9 or [Kr]4d10 (most probable) 
  Ag: [Kr]5s14d10 
  Cd: [Kr]5s24d10 
 
9B.2(b)   (i) 2 2 2 6 2 6 3 3V 1s 2s 2p 3s 3p 3d =[Ar]3d+ :  

 (ii) The only unpaired electrons are those in the 3d subshell. There are three.        

 3 3 1
2 2 2and 1S = − = . 

    For 3
2

31
2 2, andSS M ± ±= =  

    for 1 1
2 2SS M= , = ±  

 
9B.2   (a) The Slater wavefunction [9B.5a] is 
  

( )1/ 2

(1) (1) (2) (2) (3) (3) ( ) ( )
(1) (1) (2) (2) (3) (3) ( ) ( )

1(1,2,3,..., ) (1) (1) (2) (2) (3) (3) ( ) ( )
!

(1) (1) (2) (2) (3) (3) ( ) ( )

a a a a

a a a a

b b b b

z z z z

N N
N N

N N N
N

N N

ψ α ψ α ψ α ψ α
ψ β ψ β ψ β ψ β

ψ ψ α ψ α ψ α ψ α

ψ β ψ β ψ β ψ β

=







    



 

 
Interchanging any two columns or rows leaves the function unchanged except for a change in sign.  For 
example, interchanging the first and second columns of the above determinant gives: 
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( )1/ 2

(2) (2) (1) (1) (3) (3) ( ) ( )
(2) (2) (1) (1) (3) (3) ( ) ( )

1(1,2,3,..., ) (2) (2) (1) (1) (3) (3) ( ) ( )
!

(2) (2) (1) (1) (3) (3) ( ) ( )

                  (2,1

a a a a

a a a a

b b b b

z z z z

N N
N N

N N N
N

N N

ψ α ψ α ψ α ψ α
ψ β ψ β ψ β ψ β

ψ ψ α ψ α ψ α ψ α

ψ β ψ β ψ β ψ β

ψ

−
=

= −







    



,3,..., )N
 

 
This demonstrates that a Slater determinant is antisymmetric under particle exchange. 

 
(b)  The possibility that 2 electrons occupy the same orbital with the same spin can be explored by 
making any two rows of the Slater determinant identical, thereby, providing identical orbital and spin 
functions to two rows.  Rows 1 and 2 are identical in the Slater wavefunction below.  Interchanging 
these two rows causes the sign to change without in any way changing the determinant. 

 

( )1/ 2

(1) (1) (2) (2) (3) (3) ( ) ( )
(1) (1) (2) (2) (3) (3) ( ) ( )

1(1,2,3,..., ) (1) (1) (2) (2) (3) (3) ( ) ( )
!

(1) (1) (2) (2) (3) (3) ( ) ( )

            (2,1,3,...,

a a a a

a a a a

b b b b

z z z z

N N
N N

N N N
N

N N

ψ α ψ α ψ α ψ α
ψ α ψ α ψ α ψ α

ψ ψ α ψ α ψ α ψ α

ψ β ψ β ψ β ψ β

ψ

=

= −







    



) (1, 2,3,..., )N Nψ= −
 

 
Only the null function satisfies a relationship in which it is the negative of itself so we conclude that, 
since the null function is inconsistent with existence, the Slater determinant satisfies the Pauli exclusion 
principle.  No two electrons can occupy the same orbital with the same spin. 

 
 
9B.4    See Figure 9B.1  
          
 
Figure 9B.1 

  
   

Trends: 
(i)  I1 < I2 < I3 because of decreased nuclear shielding as each successive electron is removed. 
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(ii)  The ionization energies of boron are much larger than those of the remaining group elements 
because the valence shell of boron is very small and compact with little nuclear shielding.  The boron 
atom is much smaller than the aluminum atom. 
(iii)  The ionization energies of Al, Ga, In, and Tl are comparable even though successive valence 
shells are further from the nucleus because the ionization energy decrease expected from large atomic 
radii is balanced by an increase in effective nuclear charge. 

9C   Atomic spectra 
 

Answers to discussion questions 
 
9C.2 The selection rules are: 
  1, 2 1 0, 1 ln l m∆ = ± ± , ∆ = ± ∆ = ±  

In a spectroscopic transition the atom emits or absorbs a photon. Photons have a spin angular 
momentum of 1. Therefore, as a result of the transition, the angular momentum of the electromagnetic 
field has changed by 1±  . The principle of the conservation of angular momentum then requires that 
the angular momentum of the atom has undergone an equal and opposite change in angular momentum. 
Hence, the selection rule on 1l∆ = ± . The principle quantum number n can change by any amount 
since n does not directly relate to angular momentum. The selection rule on 1m∆  is harder to account 
for on basis of these simple considerations alone. One has to evaluate the transition dipole moment 
between the wavefunctions representing the initial and final states involved in the transition. See 
Justification 9.4 for an example of this procedure. 

 
 

Solutions to exercises 
 
9C.1(b) Eqn. 9A.1 implies that the shortest wavelength corresponds to 2n = ∞ , and the longest to n2= 6.  

Solve eqn. 9A.1 for λ. 

   
2 2 1
1 2

H

(1/ 1/ )n n
R

λ
−−

=


 

 Shortest: 
2 2 1

4
-1

(1/ 5 1/ ) 2.279 10  cm
109677cm

λ
−

−− ∞
= = ×  

 

 Longest:      
2 2 1

4
-1

(1/ 5 1/ 6 ) 7.460 10  cm
109677cm

λ
−

−−
= = ×  

 
 
9C.2(b) For atoms N, eqn. 9A.9 may be rewritten in terms of the Rydberg constant RN as 

 


2 2N 2Li
2 2

e
n

Z hcR Z hcRE
m n n

µ + ∞= − ≈ −


 

 where to within 0.01% the ratio µN/me is unity. Eqn. 9A.1 can then be rewritten as  

 2
2 2
1 2

1 1   Z R
n n

ν ∞

 
= − 

 


   
1λ
ν

=


  
cν
λ

=  

 -1 4 -1
2 2

1 19 109 737 cm 2.222 10  cm
4 5

ν  = × − = × 
 

  

 54.500 10 cmλ −= ×  
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10 -1

14 -1
-5

2.9978 10  cm s 6.662 10  s
4.500 10  cm

ν ×
= = ×

×
 

 
9C.3(b) The energy of the photon that struck the Xe atom goes into liberating the bound electron and giving 

it any kinetic energy it now possesses 
 photon kinetic ionization  energyE I E I= + =  

The energy of a photon is related to its frequency and wavelength 

 photon λ
hcE hv= =  

and the kinetic energy of an electron is related to its mass and speed, s 
 21

kinetic e2E m s=  

 So 2 21 1
2 2λ λe e

hc hcI m s I m s= + −⇒ =  

 

( ) ( )

( ) ( )

34 8 1

9

231 6 11
2

18

6.626 10 J s 2.998 10 m s
58.4 10 m

9.11 10 kg 1.79 10 m s

1.94 10 J 12.1 eV

I
− −

−

− −

−

× × ×
=

×

− × × ×

= × =

 

 
9C.4(b)    (i) 5d 2s→  is not  an allowed transition, for 2l∆ = −  ( l∆  must equal 1± ). 

 (ii) 5p 3s→  is allowed , since 1l∆ = − . 

 (iii) 6p 4f→  is not  allowed, for 2l∆ = +  ( l∆  must equal 1± ). 

 
9C.5(b) For 0l > , 1 2j l= ± / , so 

(i) 1 so 1/ 2 or 3/2l j= , =  

(ii) 5 so 9 / 2or 11/2l j= , =  

 
9C.6(b)   Use the Clebsch–Gordan series in the form 

 1 2 1 2 1 2 1J j j j j … j j= + , + − , ,| − |  

    Then, with 1 5j =  and 2 3j =  

 8 7 6 5 4 3 2J = , , , , , ,  

 
 
9C.7(b)  The letter F indicates that the total orbital angular momentum quantum number L  is 3; the     

superscript 3 is the multiplicity of the term, 2 1S + , related to the spin quantum number 1S = ; and 
the subscript 4 indicates the total angular momentum quantum number J . 

 
9C.8(b)  (i) Possible values of S  for four electrons in different orbitals are 2,  1,  and 0 ; the multiplicity is 

2 1S + , so multiplicities are 5,  3, and 1 respectively. 

 (ii)   Possible values of S  for five electrons in different orbitals are 5 2,  3 / 2 and 1/2/ ; the 

multiplicity is 2 1S + , so multiplicities are 6, 4, and 2 respectively. 
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9C.9(b)   The coupling of a p  electron ( 1)l =  and a d electron ( 2)l =  gives rise to 3L =  (F), 2 (D), and 1 (P) 
terms. Possible values of S  include 0 and 1. Possible values of J  (using Russell–Saunders 
coupling) are 3, 2, and 1 ( 0)S =  and 4, 3, 2, 1, and 0 ( 1)S = . The term symbols are 

 1 3 3 3 1 3 3 3 1 3 3 3
3 4 3 2 2 3 2 1 1 2 1 0F ; F , F , F ; D ; D , D , D ; P , P , P , P . 

Hund’s rules state that the lowest energy level has maximum multiplicity. Consideration   of spin–
orbit coupling says the lowest energy level has the lowest value of ( 1) ( 1) ( 1).J J L L S S+ − + − + So 

the lowest energy level is 3
2F  

 
9C.10(b)  (i) 3 D  has 1S =  and 2L = , so 3, 2  and 1J = ,  are present. 3J =  has 7  states, with 0JM = , 1± , 

2± , or 3± ; 2J =  has 5  states, with 0JM = , 1± , or 2± ; 1J =  has 3  states, with 0JM = , or 
1± . 

(ii) 4 D  has 3 2S = /  and 2L = , so 7 / 2, 5 / 2, 3 / 2 and 1/ 2J = , are present. 7 2J = /  has 8  

possible states, with 7 2JM = ± / , 5 2± / , 3 2± /  or 1 2± / ; 5 2J = /  has 6  possible states, with 

5 2JM = ± /  3 2± /  or 1 2± / ; 3 2J = /  has 4  possible states, with 3 2JM = ± /  or 1 2± / ; 1 2J = /  

has 2 possible states, with 1 2JM = ± / . 

(iii) 2 G  has 1 2S = /  and 4L = , so 9 / 2 and 7/2J =  are present. 9 2J = /  had 10  possible states, 

with 9 2, 7 2, 5 2, 3 2 or 1 2JM = ± / ± / ± / ± / ± / , 7 2J = /  has 8  possible states, with 
7 2JM = ± / , 5 2± / , 3 2± /  or 1 2± / . 

9C.11(b) Closed shells and subshells do not contribute to either L or S and thus are ignored in what follows. 

    (i) 1 2Sc[Ar]3d 4s : 1
2S = , 2L = ; 5 3

2 2J = , , so the terms are 2
5 2D /  and 2

3 2D /  

(ii) 10 2 5Br[Ar]3d 4s 4p . We treat the missing electron in the 4 p  subshell as equivalent to a    single 

“electron” with 1l = , 1
2s = . Hence 1L = , 1

2S = , and 3 1
2 2,J = , so the terms are 2 2

3 2 1 2P and P/ /  

 
9C.12(b) See eqn. 9C.8 for the selection rules. (i) allowed, (ii) allowed, (iii) forbidden 

 
 
Solutions to problems 

 
9C.2 All lines in the hydrogen spectrum fit the Rydberg formula 

 ( )2 2
1 2

11 1
H H

1 19A.1,  with 109 677cm
λ λn n

R v R      − = − = =  
 

  

Find n1 from the value of maxλ , which arises from the transition 1 11n n+ →

 1
2 2 2 2
1 1 1 1max H

2 11 1 1
( 1) ( 1)

n
n n n nRλ

+
= − =

+ +

 

 
2 2

9 2 11 1
max H

1

( 1)
(656.46 10 m) (109677 10 m ) 7.20

2 1
n nR

n
λ − −+

= = × × × =
+

  

and hence 1 2n = , as determined by trial and error substitution. Therefore, the transitions are given by 

 1
22

2

1 1 1(109677 ) 3,4 5 6cm
λ 4

n
n

ν −  
= = × − , = , ,  

  

The next line has 2 7n = , and occurs at 

 11 1 1(109677 ) 397 13nmcm
λ 4 49

ν −  = = × − = .  
  

The energy required to ionize the atom is obtained by letting 2n → ∞ . Then 
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 1 11 1(109677 cm ) 0 27419 cm or 3 40 eV
λ 4

ν − −
∞

∞

 = = × − = , .  
  

(The answer, 3.40 eV , is the ionization energy of an H atom that is already in an excited state, with 
2n = .) 

Comment. The series with 1 2n =  is the Balmer series. 

 
9C.4 The lowest possible value of n  in 2 11s dn  is 3; thus the series of 2 D  terms correspond to 21s 3d , 

21s 4d , etc. Figure 9C.1 is a description consistent with the data in the problem statement. 
 
Figure 9C.1 

 
 If we assume that the energies of the d  orbitals are hydrogenic we may write 



2 1 2 Li
2(1s d , D) [ 3 4 5 ]

hcR
E n n

n
= − = , , ,  

 

 

 


2 1 2
Li
2

1 (1s 2p P)  
RE hc EE h hc

hc hcn
ν ν ν ν

λ λ
| , | ∆ = = − ∆ = = = , =  

    

 from which we can write 

 









Li
7

2 1 2
Li Li
2 7

Li
7

1 (a)
9610.36 10 cm

(1s 2p P) 1 1 (b)
16460.29 10 cm

1 (c)
25413.23 10 cm

R

R RE
hc n

R
λ

−

−

−


+

×
| , | = + = +

×


+
×

 

 Then 







1
Li

1 1
Li

1
Li

(b) (a) solves to 109886 cm

(a) (c) solves to 109910 cm  Mean 109920 cm

(b) (c) solves to 109963 cm

R

R

R

−

− −

−

− =
− = =
− = 

 

2 2Then for the D P transitions→
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 The binding energies are therefore 

 


2 1 2 1Li(1s 3d D) 12213cm
9

R
E

 −, = − = −  

 2 1 2 1 1
7

1(1s 2p P) 12213 cm 28597 cm
610 36 10 cm

E − −
−, = − − = −

. ×
 

 2 1 2 1 1
7

1(1s 2s S) 28597 cm 43505 cm
670 78 10 cm

E − −
−, = − − = −

. ×
 

 Therefore, the ionisation energy is 

 2 1 2 1(1s 2s S) 43505 cm or 5 39 eVI −, = , .  

 
9C.6 The ground term is 1

1 2s 2[Ar]4  S  and the first excited is 1 2[Ar]4p  P . The latter has two levels with 
31

2 21J = + =  and 1 1
2 21J = − = which are split by spin–orbit coupling (Section 9C.2(b). Therefore, 

ascribe the transitions to 2 2
3 2 1 2P S/ /→  and 2 2

1 2 1 2P S/ /→  (since both are allowed). For these values 

of J , the splitting is equal to 3
2 A  (Example 9C.1). Hence, since 

 7 1 7 1 1(766 70 10 cm) (770 11 10 cm) 57 75cm− − − − −. × − . × = .  

we can conclude that 138.50cmA −=  

 
9C.8 The Rydberg constant for positronium ( )RPs  is given by 

 e

e

Ps e

1 1

1 [9A.15; also see Problem 9C.7; (positron) = ]
1 1 21

54 869 cm [ 109737cm ]

m
m

R RR R m m

R

∞ ∞
∞

− −
∞

= = =
++

= =

 

 



  

Hence,           

  
1

2

1 1 1

1 1 1(54869 cm ) 3 4
λ 4

7621 cm , 10288 cm , 11522 cm ,...

v n …
n

−

− − −

 = = × − , = , ,  

=

 

The binding energy of Ps is 

 PsE hcR= −  , corresponding to 1( )54869 cm−−  

The ionization energy is therefore 154869 cm− , or 6 80eV.  

9C.10 Justification 9C.1 noted that the transition dipole moment, fiµ  had to be non-zero for a transition to be 
allowed. The Justification examined conditions that allowed the z component of this quantity to be non-
zero; now examine the x and y components. 

 * *
,fi f ,fi fd and dx i y ie x e yµ ψ ψ τ µ ψ ψ τ= − = −∫ ∫  

As in the Justification, express the relevant Cartesian variables in terms of the spherical harmonics, 
,l mY . Start by expressing them in spherical polar coordinates: 

  sin cos and sin sinx r y rθ φ θ φ= = .  

Note that 1 1Y ,  and 1 1Y ,−  have factors of sinθ . They also contain complex exponentials that can be 
related to the sine and cosine of φ  through the identities  

 i i i icos 1 2(e e ) and sin 1 2 (e e )iφ φ φ φφ φ− −
.= + = −  

These relations motivate us to try linear combinations 1 1 1 1Y Y, ,−+  and 1 1 1 1Y Y, ,−−  (from Table 8.2; note c 
here corresponds to the normalization constant in the table): 

 i i
1 1 1 1 sin (e e ) 2 sin cos 2Y Y c c cx rφ φθ θ φ−
, ,−+ = − + = − = − / ,  
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so 1,1 1, 1( ) 2 ;x Y Y r c−= − + /  

 i i
1,1 1, 1 sin (e e ) 2i sin sin 2iY Y c c cy rφ φθ θ φ−

−− = − = = / ,  
so 1,1 1, 1( ) 2 .y Y Y r ic−= − /  

Now we can express the integrals in terms of radial wavefunctions ,n lR  and spherical harmonics , ll mY  

  
ff f i i if i

2
2

,,fi , , 1 1 1 1
0 0 0

( ) sin d d
2 l ll mx n l n l l m
e R rR r dr Y Y YYc

π π

µ θ θ φ
∞

∗
, ,− ,= + .∫ ∫ ∫  

The angular integral can be broken into two, one of which contains 1,1Y  and the other 1, 1Y − . According 
to the “triple integral” relation (Section 8C), the integral 

 
2

*
, 1 1 ,

0 0

sin d df l f i li
l m l mY Y Y

π π

θ θ φ,∫ ∫  

vanishes unless f i 1l l= ±  and 1
f il lm m= ± . The integral that contains 1 1Y ,−  introduces no further 

constraints; it vanishes unless f i 1l l= ±  and 
f i

1l lm m= ± . Similarly, the y component introduces no 
further constraints, for it involves the same spherical harmonics as the x component. The whole set of 
selection rules, then, is that transitions are allowed only if 

 1 and 0 or 1ll m∆ = ± ∆ = ± . 

 
9C.12 A stellar surface temperature of 3000 K–4000 K, (a “red star”) doesn’t have the energetic particles and 

photons that are required for either the collisional or radiative excitation of a neutral hydrogen atom. 
Atomic hydrogen affects neither the absorption nor the emission lines of red stars in the absence of 
excitation. “Blue stars” have surface temperature of 15000 K – 20000 K. Both the kinetic energy and 
the blackbody emissions display energies great enough to completely ionize hydrogen. Lacking an 
electron, the remaining proton cannot affect absorption and emission lines either. 
In contrast, a star with a surface temperature of 8000 K – 10000 K has a temperature low enough to 
avoid complete hydrogen ionization but high enough for blackbody radiation to cause electronic 
transitions of atomic hydrogen. Hydrogen spectral lines are intense for these stars. 
Simple kinetic energy and radiation calculations confirm these assertions. For example, a plot of 
blackbody radiation against hν/I, where I is the ionization eneregy, is shown below. (Fig. 9C.2) 

 
Figure 9C.2 

 
It is clearly seen that at 25000 K a large fraction of the radiation is able to ionize the hydrogen ( / )hv I . 
It is likely that at such high surface temperatures all hydrogen is ionized and, consequently, unable to 
affect spectra.   
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Alternatively, consider the equilibrium between hydrogen atoms and their component charged 
particles:  

+ -H = H + e  
The equilibrium constant is:  

O O O

O
H

exp exp exp .
p p G H SK

RT RT Rp p
+ −      −∆ −∆ ∆

= = = ×     
     

 

Clearly OS∆  is positive for ionization, which makes two particles out of one, and OH∆ , which is close 
to the ionization energy, is also positive. At a sufficiently high temperature, ions will outnumber 
neutral molecules. Using concepts and equations developed in Chapters 15 and 21, one can compute 
the equilibrium constant; it turns out to be 60 (see below). Hence, there are relatively few undissociated 
H atoms in the equilibrium mixture that is consistent with the weak spectrum of neutral hydrogen 
observed. 
The details of the calculation of the equilibrium constant based on the methods of Chapter 15 follows. 
Consider the equilibrium between hydrogen atoms and their component charged particles:   

 + -H = H + e .     
The equilibrium constant is:  
 

 
O

O
H

exp .
p p GK

RTp p
+ −  −∆

= =  
 

    

Jump ahead to chapter 21 to use the statistical thermodynamic analysis of a dissociation equilibrium:  
 

 0

O O

O

/

H A

e r E RTq qK
q N

−∆+ −= . 

1/22
O

O 3where
2

gRT hq and
kTmp π

 
= Λ =  Λ  

. 

and where g is the degeneracy of the species. Note that 2, 2g g+ −= = , and H 4g = . Consequently, 
these factors cancel in the expression for K.  
 

0
O

3/ 23 / 2
/-

2
HA

2So e r E RTm mRT kTK
mp N h

π −∆+  =   
   

 

Note that the Boltzmann, Avogadro, and perfect gas constants are related A ( ),R N k=  and collect 
powers of kT; note also that the product of masses is the reduced mass, which is approximately equal 
to the mass of the electron; note finally that the molar energy ∆rE0 divided by R is the same as the 

atomic ionization energy ( 182.179 10 J −× ) divided by k:  

 

( ) ( )

( )( ) ( )
( )( )

( )( )

5/2 3/2
e /

O 3

3/25/223 1 31

35 34

-18

-23 1

2
e ,

1.381 10 JK 25000K 2 9.11 10 kg

10 Pa 6.626 10 Js

-2.179 10 J     exp .
1.381 10 JK 25000K

60.

E kTkT m
K

p h

K

K

π

π

−

− − −

−

−

=

   × ×   =
×

 × ×
 × 

=

 

 
Thus, the equilibrium favors the ionized species, even though the ionization energy is greater than kT. 
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Integrated activities 
 
 

9.2    H
2

hcREn n
= −



 where 1
H 109677 cmR −=  [9A.14] 

 (a) 1 H 2 2

1 1
( 1)nE E E hcRn n n+

 
∆ = − = − − + 

  

 (b) For 100n =  

 6
1 H H2 2

1 1 1.97 10
101 100nE E E hcR hcRn

−
+

 ∆ = − = − − = × 
 

   

 6 1
H1 97 10 0.216 cmEv R

hc
− −∆

= = . × =

  

            
2

2 01 ( 1)1 1
2n l

al l
Zn

r n
,

   +
+ −      

=   [eqn 10.19, Atkins and de Paula, Physical Chemistry, 8th edition] 

 
2

2 40
0 0100

3 3 3100 10 793 nm
2 2 2

n a
r a a

Z
≈ = = =  

 The radius of a Bohr orbit is 2
0na n a≈ ; hence the geometric cross-section 2 4 2

0na n aπ π≈ . For 1n =  this 

 is 21 28 8 10 m−. × ; for 100n = , it is 13 28.8 10  m−× .  

 

 H
2n n

hcRI E E E
n∞= − = − =


 

 4
100 H10I hcR−=   so 1100 10.9677 cmI

hc
−=  

(c) At 25 CT =   

  
( )2

23 1 m
10  cm 1

34 8 1

(1 38 10 J K ) (298 K)
207cm

(6 63 10 J s) (3 00 10 m s )
kT
hc

− −
−

− −

. × ×
= =

. × × . ×
 

so the thermal energy is readily available to ionize the state 100n = .  
 
(d) Let minv be the minimum speed required for collisional ionization. Then 

 100
2

H min1
2

Im v
hc hc

=  

 

( )2

1 2

100
min

H

34 8 1 1

3 1 23 1 1
10 cm

m

2

2(6 63 10 J ) (3 00 10 m s ) (10 97 cm )
(1 008 10  kg mol ) (6 022 10  mol )

Ihcv
m hc

s− − −

− − − −

  =   
  

. × × . × × .
=

. × × . × ×

 

 1
min 511 m sv −=  [very slow for an H atom] 

 (e) The geometric cross section calculated abov suggests that a neutral H atom in its ground state is 
likely to pass right by the 100n =  Rydberg atom, leaving it undisturbed, since it is largely empty 
space. 

 (f) The radial wavefunction for 100n = will have 99 radial nodes and an extremely small amplitude 

above 
0

20r
a

≈ . For large values of n  we expect the radial wavefunction [9A.12] to be governed 

largely by the product of 1nρ −  and / 2e nρ−  and thus to approach a smoothly decreasing function of 
distance, as the exponential will predominate over the power term. 
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10 Molecular structure 

10A Valence-bond theory 

Answers to discussion questions 
10A.2 Promotion and hybridization are two modifications to what one might call “naïve” valence-

bond (VB) theory, constructed to overcome obvious mismatches between predictions of that 
theory and observations. By “naïve” VB theory, I mean the assumption that the functions A 
and B that appear in a VB wavefunction [10A.2] are orbitals in free atoms occupied by 
unpaired electrons. Under that assumption, one would expect carbon normally to form only 
two bonds rather than the four bonds characteristic of it, because the electron configuration 
of carbon is 1s22s22p2 (with two unpaired electrons in two 2p orbitals). We can 
accommodate the tetravalence if we imagine that one of its 2s electrons is excited 
(“promoted”) to the empty 2p orbital, giving a configuration of 1s22s12p3, which has four 
unpaired electrons (in the 2s and 2p orbitals) available for forming valence bonds. (There is, 
however, no actual excitation or promotion; it is just a convenient fiction.) Hybrid orbitals 
are invoked to account for the fact that valence bonds formed from the orbitals of free atoms 
would have different orientations in space (among other properties) than are commonly 
observed. For instance, the four bonds in CH4 are observed to be equivalent and directed 
toward the corners of a regular tetrahedron. By contrast, bonds made from the three distinct 
2p orbitals in carbon would be expected to be oriented at 90° angles from each other, and 
those three bonds would not be equivalent to the bond made from a 2s orbital. Hybrid 
atomic orbitals (in this case, sp3 hybrids) are a sets of equivalent atomic orbitals formed by 
appropriate linear combinations of free-atom orbitals. Thus, the functions A and B in a VB 
wavefunction can be hybrid orbitals where appropriate. 
 It is worth remembering that molecules are different quantum mechanical systems 
than free atoms (obviously) and that there is, therefore, no a priori reason why the solution 
of the Schrödinger equation for molecules should have features in common with the 
solutions for free atoms. The experience of chemists developed before (and after) the advent 
of quantum mechanics, however, suggests that atoms really are building blocks of 
molecules. VB theory is a framework for generating approximate molecular wavefunctions 
consistent with chemists’ concepts and experience. 

10A.4 The part of the VB wavefunction that depends on spatial coordinates is given in eqn. 10A.2; 
let’s call it f(1,2): 
 f(1,2) = A(1)B(2) + A(2)B(1) 
This function corresponds to the lowest-energy way for orbitals on two different atoms to 
share two electrons. The wavefunction is a product of spatial and spin portions: 
 ψ(1,2) = f(1,2)σ(1,2) 
The Pauli principle requires that the wavefunction must be antisymmetric (i.e., change sign) 
upon interchange of particle labels: ψ(2,1) = –ψ(1,2). Because f(2,1) = +f(1,2) (i.e., the 
spatial factor is symmetric), the spin part must be antisymmetric 
 σ(2,1) = –σ(1,2) 
The antisymmetric spin wavefunction has paired spins: 
 σ(1,2) = {α(1)β(2) – α(2)β(1)}/21/2 . 
In summary, the lowest-energy VB wavefunction has a symmetric part that it depends on 
spatial coordinates, so it must have an antisymmetric spin part, which requires paired spins. 

Solutions to exercises 

10A.1(b) Each N atom has two sp-hybrid orbitals and two unhybridized orbitals. Label the orbitals on 
nitrogen nucleus A sp1A, sp2A, pxA, and pyA. The VB wavefunction that represents the triple 
bond in N2 is 

 ψ = {sp1A(1)sp1B(2) + sp1A(2)sp1B(1)} 
  × {pxA(3)pxB(4) + pxA(4)pxB(3)} × {pyA(5)pyB(6) + pyA(6)pyB(5)} 

Or rather, the part of the wavefunction that depends on spatial coordinates depends on terms 
of this form. The full VB wavefunction would include spin terms and would be properly 
antisymmetric to account for the indistinguishability of electrons. 
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Comment. The lone pairs would be represented by paired electrons in the hybrid orbitals 
not used for bonding: 
 {sp2A(7)sp2A(8)} × {sp2B(9)sp2B(10)} 

10A.2(b) Each N atom has two sp-hybrid orbitals and two unhybridized orbitals. Label the orbitals on 
nitrogen nucleus A sp1A, sp2A, pxA, and pyA. The VB wavefunction that represents the triple 
bond in N2 is 
 ψVB = {sp1A(1)sp1B(2) + sp1A(2)sp1B(1)} 
  × {pxA(3)pxB(4) + pxA(4)pxB(3)} × {pyA(5)pyB(6) + pyA(6)pyB(5)} 
Or rather, the part of the wavefunction that depends on spatial coordinates depends on terms 
of this form. The full VB wavefunction would include spin terms and would be properly 
antisymmetric to account for the indistinguishability of electrons. Call the wavefunction that 
corresponds to N+N– ψ1: 
 ψ1 = {sp1A(1)sp1B(2) + sp1A(2)sp1B(1)} × {pxA(3)pxB(4) + pxA(4)pxB(3)} × pyA(5)pyA(6 ) 
Similarly, call the wavefunction that corresponds to N+N– ψ2: 
 ψ2 = {sp1A(1)sp1B(2) + sp1A(2)sp1B(1)} × pxB(3)pxB(4) × pyB(5)pyB(6 ) 
(ψ1 and ψ2 would similarly also have terms that treat nuclei A and B equivalently, i.e., that 
have the positive charges on nucleus B rather than A, as well as spin terms and proper 
antisymmetry with respect to interchanging electron labels.) The wavefunction 
corresponding to the resonance hybrid is 
 ψ = aψVB + bψ1 + cψ2 
where a, b, and c are coefficients determined by the variation principle and normalization. 

10A.3(b) In SO2 there are two localized S–O σ bonds formed from S(3sp2) and O(2sp2) orbitals. 
There is a π bond that exhibits resonance and that can be described by the following 
superposition (properly antisymmetrized, of course): 
 ψ(π bond) = S3pz O2pz,A + S3pz O2pz,B  
The sulfur also has a lone pair in a 3sp2 hybrid orbital. 
 In SO3, there are three localized S–O σ bonds formed from S(3sp2) and O(2sp2) 
orbitals. There is a π bond that exhibits resonance and that can be described by the 
superposition 
 ψ(π bond) = S3pz O2pz,A + S3pz O2pz,B + S3pz O2pz,C  

10A.4(b) Carbon atoms 1-4 are sp2 hybridized; the remaining C atom is sp3 hybridized. The C–H σ 
bonds are formed by the overlap of carbon hybrid orbitals with H1s orbitals. The C–C σ 
bonds are formed by the overlap of carbon hybrid orbitals. The C–C π bonds are formed by 
the overlap of C2p orbitals. This description predicts double bonds between carbon atoms 1 
& 2 and 3 & 4. Unlike a simple molecular-orbital description, this description attributes no 
double-bond character to the bond between carbons 2 & 3. 

 

 

 
10A.5(b) Form the integral 

 
  

h1 * h2dτ∫ = {(sinζ )s + (cosζ )p}*{(cosζ )s − (sinζ )p}dτ∫  

If the integral vanishes, then the functions are orthogonal. (Note: the angle ζ is a parameter; 
it is not an angular coordinate in dτ.) Evaluating the integral yields 

 
  

h1 * h2dτ∫ = sinζ cosζ ( | s |2 − | p |2 )dτ∫ + cos2 ζ p *s dτ∫ − sin2 ζ s * p dτ∫  

Because the s and p orbitals are themselves normalized, the integrals of |s|2 and |p|2 are one, 
so the first integral in this expression vanishes. Because the s and p orbitals are orthogonal, 
the other two orbitals also vanish. 

10A.6(b) Normalization requires 

 
 
ψ *ψdτ∫ = 1 

Let ψ1 = N1h1 = N1{(sin ζ)s + (cos ζ)p}  
Solve for the normalization constant N1: 

 
  
1= N1

2 {(sinζ )s + (cosζ )p}*{(sinζ )s + (cosζ )p}dτ∫  
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so 

  

1
N1

2 = sin2 ζ | s |2 dτ∫ + cos2 ζ | p |2 dτ∫ + sinζ cosζ (s * p + p *s)dτ∫
= sin2 ζ + cos2 ζ = 1.

 

In the last step, we used the fact that the s and p orbitals are orthogonal and normalized. 
Thus 
 N1 = 1 and ψ = (sin ζ)s + (cos ζ)p  
Let ψ2 = N2h2 = N2{(cos ζ)s – (sin ζ)p}  
Solve for the normalization constant N2: 

 
  
1= N2

2 {(cosζ )s − (sinζ )p}*{(cosζ )s − (sinζ )p}dτ∫  

so 

  

1
N2

2 = cos2 ζ | s |2 dτ∫ + sin2 ζ | p |2 dτ∫ − sinζ cosζ (p *s + s * p)dτ∫
= cos2 ζ + sin2 ζ = 1

 

Thus 
 N2 = 1 and ψ = (cos ζ)s – (sin ζ)p  
In other words, the functions were already normalized. 

Solutions to problem 

10A.2 One approach is to construct the explicit forms of the orbitals and find the values of φ that 
maximize the squares of their magnitudes. We need the component unhybridized orbitals, put 
together from the radial and angular functions listed in Tables 9A.1 and 8C.1: 

 
  
2s = R20Y00 =

1
81/2

3/2
Z
a







× (2 − ρ)e−ρ/2 ×
1/2

1
4π







=
1/2

1
32π







3/2
Z
a







(2 − ρ)e−ρ/2  

Use eqns. 9A.22 to write the px and py orbitals in terms of the complex hydrogenic orbitals 
defined in eqn. 9A.21: 

 

  

2px = −
1

21/2 R21(Y1,+1 −Y1,−1)

= −
1

21/2 ×
1

241/2

Z
a







3 2

ρe−ρ /2 ×
3

8π






1/2

sinθ(−e+ iφ − e− iφ )

=
1

32π






1/2
Z
a







3 2

ρe−ρ /2 sinθ cosφ

 

 

  

2p y =
i

21/2 R21(Y1,+1 +Y1,−1)

=
i

21/2 ×
1

241/2

Z
a







3 2

ρe−ρ /2 ×
3

8π






1/2

sinθ(−e+ iφ + e− iφ )

=
1

32π






1/2
Z
a







3 2

ρe−ρ /2 sinθ sinφ

 

where 
  
ρ = 2Zr

2a
=

Zr
a

 [9A.11a] 

In forming each hybrid, we neglect the factor 
  

1/2
1

32π






3/2
Z
a







e−ρ/2  common to each 

component; an angle-independent multiplicative term cannot influence the angle at which the 
hybrid is maximal. 
 Next, form the hybrids, using eqn. 10A.7: 
 h1 = s + 21/2py = (2 – ρ) + 21/2(ρ sin θ sin φ) = 2 + ρ(21/2 sin θ sin φ –1) 
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h2 = s + 3
2







1/2

px −
1
2







1/2

p y = (2 − ρ) + 3
2







1/2

ρ sinθ cosφ − 1
2







1/2

ρ sinθ sinφ

= 2 + ρ 31/2 cosφ − sinφ
21/2 sinθ −1








 

and 

  

h3 = s − 3
2







1/2

px −
1
2







1/2

p y = (2 − ρ) − 3
2







1/2

ρ sinθ cosφ − 1
2







1/2

ρ sinθ sinφ

= 2 − ρ 31/2 cosφ + sinφ
21/2 sinθ +1








 

To find the angle φ at which the hybrids have maximum probability, differentiate with respect 
to φ, and set the derivative equal to zero, because positive maxima and negative minima in the 
hybrid orbitals correspond to maxima in the probability. Differentiation would work even for 
h1, but it is unnecessary there. One can see by inspection that the function is maximized when 
sin φ is maximal, namely at φ = π/2 (90°). It should come as no surprise that this orbital points 
along the positive y-axis. 

 
  

∂h2

∂φ
= 0 = ρ sinθ

21/2







(−31/2 sinφ − cosφ)  

so 
 

sinφ
cosφ

= −
1

31/2 = tanφ  or φ = 5π/6 or 11π/6 (150° or 330°) . 

Of these, 11π/6 (330°) is a maximum and 5π/6 a minimum. The larger amplitude is at the 
maximum (11π/6 or 330°). Finally 

 
  

∂h3

∂φ
= 0 = − ρ sinθ

21/2







(−31/2 sinφ + cosφ)  

so 
 

sinφ
cosφ

=
1

31/2 = tanφ  or φ = π/6 or 7π/6 (30° or 210°) . 

Of these, 7π/6 (210°) is a maximum and corresponds to the larger amplitude. The angles 90°, 
210°, and 330° are 120° apart. 

 

10B Principles of molecular orbital theory 

Answers to discussion question 
10B.2 The building-up principle for molecules is described in Topic 10C.1. That principle includes 

Hund’s rule of maximum multiplicity, first introduced in the context of atomic orbitals in 
Topic 9B.2(a). Recall that Hund’s rule says that configurations with parallel spins are lower 
in energy than configurations that have paired spins when the highest occupied orbitals are 
degenerate. In the case of atoms, most energy levels are degenerate (all except s orbitals), so 
parallel-spin configurations are common. Degenerate molecular orbitals are much less 
common, though. Therefore Hund’s rule, though still valid for molecules, comes into play 
much less frequently. 

Solutions to exercises 

10B.1(b)  

  

ψ 2 dτ∫ = N 2 (ψ A + λψ B + ′λ ′ψ B )2 dτ∫ = 1

= N 2 {ψ A
2 + λ2ψ B

2 + ( ′λ ′ψ B )2 + 2λψ Aψ B + 2 ′λ ψ A ′ψ B + 2λ ′λ ψ B ′ψ B}dτ∫
 

Defining 
  
ψ Aψ Bdτ = S∫  and ψ A ′ψ Bdτ = ′S∫  

the normalization integral becomes 
   1= N 2{1+ λ2 + ( ′λ )2 + 2λS + 2 ′λ ′S } 

 
 
 
 

4 



Hence 
  
N =

1/2
1

1+ λ2 + ( ′λ )2 + 2λS + 2 ′λ ′S






 

10B.2(b) Let ψ1 = N(0.727A + 0.144B) and ψ2 = aA + bB  
First, let us normalize ψ1: 

 
  
ψ 1 *ψ 1dτ∫ = 1= N 2 (0.727 A+ 0.144B) * (0.727 A+ 0.144B)dτ∫  

 
  
0.529 | A |2 dτ∫ + 0.0207 | B |2 dτ∫ + 0.110 B * Adτ∫ + 0.110 A* Bdτ∫ =

1
N 2  

The first two integrals are 1 due to normalization and the latter two are the overlap integral, 
S = 0.117 . So 

 
  
0.529 + 0.0207 + 2 × 0.110 × 0.117 =

1
N 2 = 0.552  

so N = 1.35  which makes ψ1 = 0.979A + 0.194B   
Orthogonality of the two molecular orbitals requires 

 
  
ψ 1 *ψ 2dτ∫ = 0 = N (0.727 A+ 0.144B) * (aA+ bB)dτ∫  

Dividing by N yields 

 
  
0.727a | A |2 dτ∫ + 0.144b | B |2 dτ∫ + 0.144a B * Adτ∫ + 0.727b A* Bdτ∫ = 0  

 0.727a + 0.144b + 0.144a×0.117 + 0.727b×0.117 = 0 = 0.744a + 0.229b  
Normalization of ψ2 requires 

 
  
ψ 2 *ψ 2dτ∫ = 1= (aA+ bB) * (aA+ bB)dτ∫  

 
  
a2 | A |2 dτ∫ + b2 | B |2 dτ∫ + ab B * Adτ∫ + ab A* Bdτ∫ = 1 

So a2 + b2 + 2ab×0.117 = 1 = a2 + b2 + 0.234ab  
We have two equations in the two unknown coefficients a and b. Solve the first equation for 
a in terms of b: 
 a = –0.229b/0.744 = –0.308b  
Substitute this result into the second (quadratic) equation: 
 1 = (–0.308b)2 + b2 + 0.234(–0.308b)b = 1.022b2  
So b = 0.989  a = –0.304  and ψ2 = –0.304A + 0.989B   

10B.3(b)     EH = E1 = −hcRH  [9A.14] 
Draw up the following table using the data in the question and using 

 

2 2 2
0 0

2 2
0 0 0 0 e0

4 4
e 0 0 e

h h H2 2 2 2 2 2
0 0

4 4 4 (4 )

2
16 16

a ae e e
R a R Rm e

m e a a m eE E hcR
R R

πε πε πε πε

π ε π ε

= × = ×
× /

 
= × = × ≡ = 

 





 

 

so that 
  

e2

4πε0 R
×

1
Eh

=
a0

R
 

 
Draw up the following table: 
 

R / a0 0 1 2 3 4 ∞ 

  

e2

4πε0 R
×

1
Eh

 ∞ 1 0.500 0.333 0.250 0 

(V1 – V2)/ Eh 0 –0.007 0.031 0.131 0.158 0 

(E – EH) / Eh ∞ 1.049 0.425 0.132 0.055 0 
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Figure 10B.1 

 
The points are plotted in Figure 10B.1. 

10B.4(b) Figure 10B.2 shows sketches of the orbitals in question. By inspection, one can see that the 
bonding orbital is even, g, with respect to inversion, and the antibonding orbital is odd, u. 

 
Figure 10B.2 
 

 
Solutions to problems 

10B.2   P = |ψ |2 dτ ≈ |ψ |2 δτ, δτ = 1.00 pm3 , where the wavefunction is [10B.2 and 9A.17] 

 
  
ψ ± = N±

1
πa0

3











1/2

{e−|z|/a0 ± e−|z−R|/a0 }  

 
  
N+ =

1/2
1

2(1+ S )






=
1/2

1
2(1+ 0.59)







= 0.56  

and 
  
N− =

1/2
1

2(1− S )






=
1/2

1
2(1− 0.59)







= 1.10  [Example 10B.1] 

Hence 
  
P± ≈ N±

2 1
πa0

3









 {e−rA /a0 ± e−rB /a0 }2δτ  

where rA and rB are measured from points A and B respectively, and A and B are 106 pm 
apart (Section 10B.1(b).) [Note: I am choosing to use the experimental equilibrium 
internuclear distance rather than that given by minimizing the approximate wavefunction. 
Using that internuclear distance is also a valid approach, one which would have R = 130 pm 
and would require using eqn. 10B.5a to compute S, which in turn would affect the 
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normalization constants.] Point (d) is shown in Figure 10B.3 (with greater precision than the 
problem specifies). 

 
Figure 10B.3 

 
First, consider the bonding orbital, ψ+ 

(a) 
  
P+ = (0.56)2 1

π (52.9 pm)3







{e−0/(52.9 pm) + e−106 pm/(52.9 pm)}2 ×1.00 pm3 = 8.7 ×10−7  

(b) By symmetry (or by taking z = 106 pm), P = 8.7×10–7  

(c) R/2 = 53 pm, so ( ) 71 3.6 102P R −
+ = × . 

(d) From Figure 10.3, the point referred to lies at 22.4 pm from A and 86.6 pm from B. 

Therefore, 
  
P+ = (0.56)2 1

π (52.9 pm)3







(e−22.4/52.9 + e−86.6/52.9 )2 = 4.9 ×10−7  

For the antibonding orbital, we proceed similarly. 

(a) 
  
P− = (1.10)2 1

π (52.9 pm)3







{e−0/52.9 − e−106/52.9}2 = 1.9 ×10−6  

(b) By symmetry (or by taking z = 106 pm), P = 1.9×10–6  

(c) ( )1 0 so 02 R Pψ− = , =  

(d) 
 
ψ+

2 = (1.10)2 1
π (52.9 pm)3







(e−22.4/52.9 − e−86.6/52.9 )2 = 5.5×10−7  

10B.4 We are asked to compare, essentially, the energy difference between the bonding and 
antibonding molecular orbitals and the 1s hydrogenic atomic orbital. Let us call the first 
difference ∆Ebond and the latter ∆Eanti: 

 0
bond H1s 1 1

jj kE E E
S Rσ

+
∆ = − = −

+
 [10B.4] 

and 0
anti 2 H1s 1

jj kE E E
S Rσ

+
∆ = − = − +

+
 [10B.7] 

Eqns. 10B.5 give expressions for j, k, and S as functions of R. One can draw up a spreadsheet 
computing j, k, and S as functions of R, and from those values form the energy differences. 
Here are selected values from the spreadsheet: 

R/a0 S 
  

j
j0 / a0

 
  

k
j0 / a0

 bond

0 0/
E

j a
∆

 anti

0 0/
E

j a
∆

 

0 1 1 1 –∞ ∞ 
1 0.858 0.729 0.736 –0.212 1.045 
2 0.586 0.473 0.406 0.054 0.339 
3 0.349 0.330 0.199 0.059 0.132 
4 0.189 0.250 0.092 0.037 0.055 
5 0.097 0.200 0.040 0.019 0.023 
∞ 0 0 0 0 0 

 
Figure 10B.4 
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The points are plotted in Figure 10B.4. At all internuclear distances, the energy of the 
antibonding orbital is greater than that of an isolated hydrogen atom, so its effect on bonding 
is to destabilize the bond. Furthermore, the absolute value of E – EH is always greater for the 
antibonding orbital than for the bonding orbital so that occupancy of the antibonding orbital 
by one electron destabilizes a bond more than occupancy of the bonding orbital stabilizes it. 

10B.6  
  
ψ ± = N±

1
πa0

3











1/2

{e−|z|/a0 ± e−|z−R|/a0 }  [10B.2 and 9A.17] 

where 
  
N+ =

1/2
1

2(1+ S )






=
1/2

1
2(1+ 0.586)







= 0.56  

and 
  
N− =

1/2
1

2(1− S )






=
1/2

1
2(1− 0.586)







= 1.10  [Example 10B.1] 

We obtain the probability densities from ψ+
2 and ψ–

2. Hence 

 
  
ψ ±

2 = N±
2 1
πa0

3









 {e−|z|/a0 ± e−|z−R|/a0 }2  

The “atomic” density is 

 ( ) A 0 B 0
2 2 / 2 /2

atomic 1sA 1sB 3
0

1 1 1 (e e )
2 2

r a r a

a
ρ ψ ψ

π
− − 

= + = × + 
 

 

with z measured from A along the axis toward B. 
The difference density is  δψ ±

2 = ψ ±
2
± − ρatomic  

We use a spreadsheet to draw the following table with R = 106 pm and a0 = 52.9 pm: 
 
z/pm –100 –80 –60 –40 –20 0 20 40 
ψ+ × 104 / pm–3/2 1.41 2.06 3.01 4.39 6.40 9.35 7.26 6.23 
ψ– × 104 / pm–3/2 2.10 3.07 4.48 6.54 9.55 13.93 7.87 2.94 
ψ+

2 × 107 / pm–3 0.20 0.42 0.90 1.92 4.09 8.72 5.27 3.88 
ψ–

2 × 107 / pm–3 0.44 0.94 2.01 4.27 9.11 19.40 6.17 0.85 
ρatomic × 107 / pm–3 0.25 0.53 1.13 2.41 5.15 10.93 5.47 3.26 
δψ+

2 × 107 / pm–3 –0.05 –0.11 –0.23 –0.49 –1.05 –2.20 –0.20 0.62 
δψ–

2 × 107 / pm–3 0.19 0.41 0.87 1.86 3.96 8.47 0.70 –2.40 
 

z/pm 60 80 100 120 140 160 180 200 
ψ+ × 104 / pm–3/2 6.10 6.85 8.59 7.17 4.91 3.37 2.31 1.58 
ψ– × 104 / pm–3/2 –1.57 –6.30 –11.95 –10.69 –7.33 –5.02 –3.44 –2.36 
ψ+

2 × 107 / pm–3 3.73 4.71 7.42 5.10 2.39 1.12 0.53 0.25 
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ψ–
2 × 107 / pm–3 0.25 4.02 14.41 11.34 5.32 2.50 1.17 0.55 

ρatomic × 107 / pm–3 3.01 4.58 8.88 6.40 3.00 1.41 0.66 0.31 
δψ+

2 × 107 / pm–3 0.70 0.13 –1.46 –1.29 –0.61 –0.29 –0.14 –0.06 
δψ–

2 × 107 / pm–3 –2.76 –0.56 5.54 4.95 2.33 1.09 0.51 0.24 
 
The wavefunctions are plotted in Figure 10B.5(a), the densities in Figure 10.5(b), and the 
difference densities in Figure 10B.5(c). 

 
Figure 10B.5(a) 

 
 
Figure 10B.5(b) 

 
 
Figure 10B.5(c) 
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10C Homonuclear diatomic molecules 

Answers to discussion questions 
10C.2 The building-up principle for homonuclear diatomic molecules is essentially the same as for 

atoms, but the diatomic molecular orbitals used in the former are different in name and in 
nature than the atomic orbitals used in the latter. One needs a diagram of energy levels and 
degeneracies. (For diatomic molecules, these energy levels are either nondegenerate (for σ 
bonds) or doubly degenerate (for all others).) Populate the orbitals with electrons, placing 
each successive electron in the lowest-energy orbital available, no more than two electrons 
per orbital. Hund’s rule tells us to singly populate different degenerate orbitals (with 
electrons that have parallel spins) before pairing two electrons in the same degenerate 
orbital. 

10C.4 Molecular orbitals are made up of linear combinations of atomic orbitals of similar energy 
and symmetry. The s and p atomic orbitals have distinctly different energies, so the 
molecular orbitals that result from linear combinations primarily of s orbitals have very 
little character of the higher-energy p orbitals and vice versa. (In addition, only a p orbital 
along the internuclear axis has the right symmetry to combine with an s orbital to make a 
molecular orbital; the others have the wrong symmetry, even if they did have similar 
energy.) 

Solutions to exercises 

10C.1(b) Refer to Figure 10C.11 of the text. Place two of the valence electrons in each orbital starting 
with the lowest-energy orbital, until all valence electrons are used. Apply Hund’s rule to the 
filling of degenerate orbitals. 
(i) F2

– (15 electrons) 1σg
21σu

22σg
21πu

41πg
42σu

1, b=0.5 
(ii) N2 (10 electrons) 1σg

21σu
21πu

42σg
2, b=3 

(iii) O2
2– (14 electrons) 1σg

21σu
22σg

21πu
41πg

4, b=1 

10C.2(b) Refer to Figure 10C.11 of the text. 
Li2 (2 electrons):  1σg

2  b=1 
Be2 (4 electrons): 1σg

21σu
2  b=0 

The bond orders of Li2 and Be2 are respectively 0 and 1; so Li2 should have the greater 
bond dissociation energy. The experimental values are approximately and 110 and 59 kJ 
mol–1 respectively. 

10C.3(b) Refer to Figure 10C.11 of the text.  
O2

+ (11 electrons) 1σg
21σu

22σg
21πu

41πg
1 b=2.5 

O2 (12 electrons) 1σg
21σu

22σg
21πu

41πg
2 b=2 

O2
– (13 electrons) 1σg

21σu
22σg

21πu
41πg

3 b=1.5 
O2

2– (14 electrons) 1σg
21σu

22σg
21πu

41πg
4 b=1 
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Each electron added to  O2
+  is added to an antibonding orbital, thus increasing the length. So 

the sequence 
 
O2

+ ,O2 ,O2
− ,O2

2−  has progressively longer bonds. 

10C.4(b) Refer to Figure 10C.11 of the text.  
Li2

+ (1 electrons): 1σg
1    b=0.5 

Be2
+ (3 electrons): 1σg

21σu
1   b=0.5 

B2
+ (5 electrons): 1σg

21σu
21πu

1  b=0.5 
C2

+ (7 electrons): 1σg
21σu

21πu
3  b=1.5 

N2
+ (9 electrons): 1σg

21σu
21πu

42σg
1  b=2.5 

O2
+ (11 electrons): 1σg

21σu
22σg

21πu
41πg

1 b=2.5 
F2

+ (13 electrons): 1σg
21σu

22σg
21πu

41πg
3 b=1.5 

 
Li2

– (3 electrons): 1σg
21σu

1   b=0.5 
Be2

– (5 electrons): 1σg
21σu

21πu
1  b=0.5 

B2
– (7 electrons): 1σg

21σu
21πu

3  b=1.5 
C2

– (9 electrons): 1σg
21σu

21πu
42σg

1  b=2.5 
N2

– (11 electrons): 1σg
21σu

22σg
21πu

41πg
1 b=2.5 

O2
– (13 electrons): 1σg

21σu
22σg

21πu
41πg

3 b=1.5 
F2

– (15 electrons): 1σg
21σu

22σg
21πu

41πg
42σu

1 b=0.5 
Comment. Note that each diatomic cation is isoelectronic with the diatomic anion of the 
next element, and has the same configuration and bond order. 

10C.5(b) Refer to Figure 10C.11 of the text and to the configurations given in Exercise 10C.4b. The 
LUMO is the next energy level not included in the configuration. 
Li2

+: 1σu Li2
–: 1πu 

Be2
+: 1πu Be2

–: 2σg
  

B2
+: 2σg B2

–: 2σg 
C2

+: 2σg C2
–: 1πg 

N2
+: 1πg N2

–: 2σu 
O2

+: 2σu O2
–: 2σu 

F2
+: 2σu F2

–: 3σg 
Comment. Note that each diatomic cation is isoelectronic with the diatomic anion of the 
next element, and has the same configuration and LUMO. 

10C.6(b) Energy is conserved, so when the photon is absorbed, its energy is transferred to the 
electron. Part of that energy overcomes the binding energy (ionization energy) and the 
remainder is manifest as the now freed electron’s kinetic energy. Then the speed is obtained 
from the kinetic energy: 
 Ephoton = I + Ekinetic 

so 
  
Ekinetic = Ephoton − I = mv2

2
  

 
  
v =

2(Ephoton − I )
m

=
2(21−12) eV
9.11×10−31  kg

×
1.602 ×10−19  J

1 eV
= 1.8 ×106  m s−1  

10C.7(b) The expression in Brief illustration 10C.2 cannot be solved analytically for R, but solving it 
numerically or graphically is fairly easy. In a spreadsheet, plot S as a function of ZR/a0, and 
look for the value of ZR/a0 where S = 0.20. One can change the scale of the plot and the 
spacing of grid points to find the graphical solution to arbitrary precision. 

 
Figure 10C.1 
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By inspection of the plot (Figure 10C.1), S = 0.20 at approximately ZR/a0 = 7.8. Or one 
could inspect the spreadsheet in the neighborhood of those points: 
ZR/a0 7.70 7.75 7.80 7.85 7.90 
S 0.208 0.205 0.202 0.199 0.195 
We can see that the value of S crosses S = 0.20 between the values of ZR/a0 = 7.80 and 7.85. 
So to two significant figures, ZR/a0 = 7.8, agreeing with the graphical estimate. 
(i) For H2, Z = 1, so R = 7.8a0/Z = 7.8×5.29×10

–11 m / 1= 4.1×10–10 m = 0.41 nm 
(ii) For He2, Z = 2, so R = 7.8a0/Z = 7.8×5.29×10

–11 m / 2 = 2.1×10–10 m = 0.21 nm 

Solutions to problems 
10C.2 The question asks about bonding and antibonding LCAO-MOs made from 2p atomic orbitals. 

 

 
(a) With spatial dimensions in units (multiples) of a0, the atomic orbitals of atom A and atom 
B may be written in the form 

 
  
pz ,A = 1

4(2π )1/2 (z + R / 2)e
− x2+ y2+( z+R/2)2{ }1/2 /2

 

and 
  
pz ,B = 1

4(2π )1/2 (z − R / 2)e
− x2+ y2+( z−R/2)2{ }1/2 /2

 

Following eqn. 10B.2 and Example 10B.1, we construct LCAO-MO’s of the form: 

 
  
ψσ* =

pz ,A + pz ,B

{2(1+ S )}1/2 [antibonding] and ψσ =
pz ,A − pz ,B

{2(1− S )}1/2 [bonding]  

where 
  
S = pz ,Apz ,B dx dy dz

−∞

∞

∫
−∞

∞

∫
−∞

∞

∫  [10C.3] 

Computations and plots are readily prepared with mathematical software such as Mathcad. 
(See Figure 10C.2.) 

 
Figure 10C.2 
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(b) With spatial dimensions in units of a0, the atomic orbitals for the construction of π 
molecular orbitals are: 

 
  
px ,A = 1

4(2π )1/2 xe
− x2+ y2+( z+R/2)2{ }1/2 /2

 

 
  
px ,B = 1

4(2π )1/2 xe
− x2+ y2+( z−R/2)2{ }1/2 /2

 

See Figures 10C.3 and 10C.4. 
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Figure 10C.3 
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Figure 10C.4 

 
 
The π MO’s are: 

 
  
ψπ =

px ,A + px ,B

{2(1+ S )}1/2 [bonding] and ψπ* =
px ,A − px ,B

{2(1− S )}1/2 [antibonding]  

where 
  
S = px ,Apx ,B dx dy dz

−∞

∞

∫
−∞

∞

∫
−∞

∞

∫  

The plots clearly show the constructive interference that makes a bonding molecular orbital. 
Nodal planes created by destructive interference are clearly seen in the antibonding molecular 
orbitals. When calculations and plots are produced for the  R = 10  case, constructive and 
destructive interference is seen to be much weaker because of the weak atomic orbital overlap. 

10C.4 Energy is conserved, so when the photon is absorbed, its energy is transferred to the electron. 
Part of it overcomes the binding energy (ionization energy) and the remainder is manifest as 
the now freed electron’s kinetic energy. 
 Ephoton = I + Ekinetic so I = Ephoton – Ekinetic 
so the first three ionization energies are: 
 I1 = 21.21 eV – 11.01 eV = 10.20 eV 
 I2 = 21.21 eV – 8.23 eV = 12.98 eV 
and I3 = 21.21 eV – 5.22 eV = 15.99 eV 
The energy level diagram is shown in Figure 10C.5. 

 
Figure 10C.5 
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10D Heteronuclear diatomic molecules 

Answers to discussion questions 
10D.2 The difference in energy between an the cation X+ of a free atom X and its anion X– is the 

sum of the ionization energy (the energy required to detach an electron from X) and the 
electron affinity (the energy benefit of binding an additional electron to X). On the 
assumption that atoms in molecules retain at least some of their free-atom characteristics 
regarding electron binding energies, the energy difference between an unoccupied valence 
orbital of atom X in a molecule and that same orbital doubly occupied is also the sum of the 
ionization energy and electron affinity. See Topic 10D.1(a). 

10D.4 The Coulomb integral is essentially the energy of an electron when it occupies an atomic 
orbital. (It would be the expectation value of the hamiltonian if the orbital function was a 
true wavefunction.) It is called a Coulomb integral because the energy of an electron in an 
atomic orbital is, at least semi-classically, the Coulombic energy of a negative charge 
distribution (essentially, the probability distribution of the electron in the orbital) and the 
atom’s nucleus. The resonance integral is a non-classical contribution to the energy of a 
molecule that can be interpreted as an energy associated with an electron occupying an 
orbital on more than one nucleus at once. The electron does not “resonate” (vibrate, shuttle) 
between nuclei, however. 

Solutions to exercises 

10D.1(b) (i) For XeF, the relevant molecular orbitals (the only ones to which both atoms contribute 
significantly) are linear combinations of the atomic orbitals occupied by valence electrons. 
Thus, 1σ = F2s + Xe5s  2σ = F2s – Xe5s 
 3σ = F2pz + Xe5pz 4σ = F2pz – Xe5pz 
 1π = F2px + Xe5px 2π = F2px – Xe5px 
(Note: each π molecular orbital is doubly degenerate; the other π orbital comes from py 
atomic orbitals.) Assume that the filling order is 3σ, 1π, 2π, 4σ, as it would be for OF. The 
configuration is 
 XeF (15 electrons)  1σ22σ23σ21π42π44σ1 
(ii) Likewise, for PN, the relevant molecular orbitals are linear combinations of valence 
atomic orbitals. 
 1σ = N2s + P3s  2σ = N2s – P3s 
 3σ = N2pz + P3pz  4σ = N2pz – P3pz 
 1π = N2px + P3px  2π = N2px – P3px (each doubly degenerate, as in part (a)) 
Assume that the filling order is 1π, 3σ, as it would be for N2. The configuration is 
 PN (10 electrons)  1σ22σ21π43σ2 
(iii) For SO–, the relevant molecular orbitals are. 
 1σ = S2s + O3s  2σ = S2s – O3s 
 3σ = S2pz + O3pz  4σ = S2pz – O3pz 
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 1π = S2px + O3px  2π = S2px – O3px (each doubly degenerate, as in part (a)) 
Assume that the filling order is 3σ, 1π, 2π, 4σ, as it would be for O2

–. The configuration is 
 O2

– (13 electrons)  1σ22σ23σ21π42π3 

10D.2(b) Figure 10D.1 is based on Figure 10C.12 of the text but with F orbitals lower than I orbitals. 
IF is likely to have a shorter bond length than IF–, for the extra electron would go into an 
antibonding orbital. (The bond orders are 1 and 0.5 respectively.) IF+ is likely to have a 
shorter bond length than IF, for the missing electron would be taken from an antibonding 
orbital. (The bond orders are 1.5 and 1 respectively.)  

 
Figure 10D.1 

 
10D.3(b) Form the electron configurations and find the bond order. See Figure 10C.11 of the main 

text. 
SO+ (11 electrons)  1σ22σ23σ21π42π1  b=2.5 
SO– (13 electrons)  1σ22σ23σ21π42π3  b=1.5 
Based on the electron configurations, we would expect SO+ to have the stronger and 
therefore the shorter bond. 

10D.4(b) Draw up the following table using data from Table 10D.1: 
element Na Mg Al Si P S Cl Ar 
χM 1.21 1.63 1.37 2.03 2.39 2.65 3.54 3.36 
(χM)1/2 1.10 1.28 1.17 1.42 1.55 1.63 1.88 1.83 
χP (from table) 0.93 1.31 1.61 1.90 2.19 2.58 3.16  
χP (from formula) 0.12 0.35 0.21 0.55 0.72 0.83 1.17 1.10 
A plot (Figure 10D.2(a) of the Pauling electronegativities (actual and from the formula) vs. 
the square root of the Mulliken electronegativities shows that the formula does a poor job. 
The formula consistently underestimates the Pauling electronegativity, and it underestimates 
the rise in electronegativity across the period. 

 
 
Figure 10D.2(a) 
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The problem is that the Mulliken electronegativities given in the table have already been 
scaled to the range of Pauling electronegativities using this very conversion. That is, the 
Mulliken electronegativities given in Table 10D.1 are not defined by eqn. 10D.3, but rather 
by eqn. 10D.3 and then eqn. 10D.4. Using Mulliken electronegativities based on eqn. 10D.3 
alone (the “intrinsic Mulliken electronegativities” also known as “Mulliken a parameters” 
from Steven G. Bratsch, “Revised Mulliken electronegativities: I. Calculation and 
conversion to Pauling units,” J. Chem. Educ., 1988, 65, 34-41). 
element Na Mg Al Si P S Cl Ar 
χM (Bratch a) 2.84 4.11 5.61 7.30 7.41 9.04 10.95 11.41 
(χM)1/2 1.69 2.03 2.37 2.70 2.72 3.01 3.31 3.38 
χP (from table) 0.93 1.31 1.61 1.90 2.19 2.58 3.16  
χP (from formula) 0.91 1.37 1.83 2.28 2.30 2.69 3.10  

 
Figure 10D.2 

 
 
A plot (Figure 10D.2(b)) of actual Pauling electronegativities (from Table 10D.1; filled 
circles) vs. the square root of the intrinsic Mulliken electronegativities (from Table 5 of 
Bratch’s article) yields quite a good regression line with an equation very close to that of 
eqn. 10D.4. The open circles on the same plot are the result of applying eqn. 10D.4 to the 
intrinsic Mulliken electronegativities from Bratch; these are essentially the “scaled” 
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Mulliken electronegativities. As you can see, they fall quite close to the best-fit line of the 
actual Pauling electronegativity values. 

10D.5(b) Following Brief Illustration 10D.1, we draw up a table of ionization energies and electron 
affinities from Tables 9B.2 and 9B.3. The mean of those two energies is the estimated 
orbital energy for each atom. 
 I/eV Eea/eV 

  
1
2 (I + Eea ) / eV  

H 13.6 0.75 7.2   
Br 11.8 3.4 7.6 

10D.6(b) In the zero overlap approximation, the molecular orbital energies are given by eqn. 10D.8c: 

 

  

E± =
1
2 (αA +αB ) ± 1

2 (αA −αB ) 1+ 2β
αA −αB








2











1/2

 

Taking β = –1.0 eV (a typical value), we have 

 

  

E± / eV = 1
2 (−7.2 − 7.6) ± 1

2 (−7.2 + 7.6) 1+ 2(−1)
−7.2 + 7.6







2











1/2

= −6.4 or − 8.4  

10D.7(b) If overlap cannot be neglected, then the molecular orbital energies are given by eqn. 
10D.8a: 

 
  
E± =

αA +αB − 2βS ±{(αA +αB − 2βS )2 − 4(1− S 2 )(αAαB − β
2 )}1/2

2(1− S 2 )
 

Taking β = –1.0 eV (a typical value), we have 
 

  

E±

eV
=
−7.2 − 7.6 + 2(1.0)(0.20) ±{(−7.2 − 7.6 + 2(1.0)(0.20))2 − 4(1− 0.202 )(7.2 × 7.6 −1.02 )}1/2

2(1− 0.202 )
 
so E± = –4.8 or –10.2 eV 

Solutions to problems 
10D.2 At first blush, we simply have three terms rather than two. But the fact that two of the atomic 

orbitals belong to the same nucleus alters matters. Overlap, for instance, is zero for atomic 
orbitals on the same nucleus, because the orbitals are orthogonal. Also the resonance integral 
for different atomic orbitals on the same nucleus (which we would denote by βBC) vanishes, as 
it must for orbitals that have zero overlap. 
Thus (αA–E)cA + (βAB–ESAB)cB + (βAC–ESAC)cC = 0 
 (βAB–ESAB)cA + (αB–E)cB = 0 
and (βAC–ESAC)cA + (αC–E)cC = 0 

10D.4 See the solution of Problem 10D.2 for the secular equations. For the case S = 0 (without, 
however, making the resonance integrals also vanish) the secular determinant—call it f(E)—is 

 

  

f (E) =

αA − E βAB βAC

βAB αB − E 0

βAC 0 αC − E

 

Solve for the energies by expanding the secular determinant and setting it equal to zero. Let us 
expand using the second row: 
 f(E) = βAB{βAB(αC–E)} – (αB–E){(αA–E)(αC–E) – βAC

2} = 0 
0 = E3 – (αA+αB+αC)E2 + (αAαB+αAαC+αBαC–βAB

2–βAC
2)E + αBβAC

2 + αCβAB
2 – αAαBαC 

Substituting in the parameters in Problem 10D.3, we have 
 0 = E3 + (26.0 eV)E2 + (221 eV2)E – 614 eV3 
This cubic equation can be solved numerically and/or graphically. The following table shows 
the roots of the secular determinant for a variety of values of αC while keeping all of the other 
parameters as specified in Problem 10D.4. 
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αC/eV –10.4 –8.4 –7.2 –6 –5 –4 –2 0 
E1/eV –10.8 –10.7 –10.7 –10.7 –10.7 –10.7 –10.7 –10.7 
E2/eV –10.4 –8.7 –7.8 –7.3 –7.2 –7.1 –7 –7 
E3/eV –6.8 –6.6 –6.3 –5.6 –4.7 –3.8 –1.9 0.1 
In all cases, the energies of the molecular orbitals (the roots of the secular determinant) are not 
terribly different from the energies of the input atomic orbitals (the Coulomb integrals α), with 
the lowest MO energy (E1) lower in energy than the lowest α because of a bonding interaction 
and the highest MO energy (E3) higher than the highest α because of a bonding interaction. 
The greatest bonding stabilization can be seen when the Coulomb integrals are closest in 
energy. (Notice that E1 is lowest when αC = αB = –10.4 eV, and that E2 shows a great deal of 
bonding stabilization when αC = αA = –7.2 eV.) When all three Coulomb integrals are within 
just a few eV of each other, both E1 and E2 show bonding character and only E3 appears to be 
antibonding (i.e., E1 lower than the lowest α, E2 at least as low as the next lowest α, and E3 
higher than the highest α). However, once αC gets substantially higher than the other atomic 
orbitals, E1 and E2 start acting like a bonding-antibonding pair and stop changing much in 
energy, while E3 increasingly closely matches αC, becoming, in effect, an irrelevant non-
bonding molecular orbital. 

 

10E Polyatomic molecules 

Answers to discussion questions 
10E.2 These are all terms originally associated with the Hückel approximation used in the 

treatment of conjugated π-electron molecules, in which the π-electrons are considered 
independent of the σ-electrons. π-electron binding energy is the sum of the energies of each 
π-electron in the molecule. The delocalization energy is the difference in energy between 
the conjugated molecule with n double bonds and the energy of n ethene molecules, each of 
which has one double bond. The π-bond formation energy is the energy released when a π-
bond is formed. It is obtained from the total π-electron binding energy by subtracting the 
contribution from the Coulomb integrals, α. 

10E.4 Gaussian type orbitals (functions of the form   e
−r2

) centred on atomic nuclei have the 
advantage over the slightly more realistic orbitals (functions of the form e–r, also known as 
Slater-type orbitals) that the product of two Gaussian functions on different centres is 
equivalent to a single Gaussian function located at a point between the centres. Therefore, 
two-electron integrals on three and four different atomic centres (such as eqn. 10E.14a) can 
be reduced to integrals over two different centres (such as eqn 10E.14b), which are much 
easier to evaluate numerically. 

Solutions to exercises 

10E.1(b) In setting up the secular determinant we use the Hückel approximations outlined in Topic 
10E.1: 

 (i) 

  

α − E β 0 0
β α − E β 0
0 β α − E β
0 0 β α − E

 (ii) 

  

α − E β 0 β
β α − E β 0
0 β α − E β
β 0 β α − E

 

 
The atomic orbital basis is 1sA, 1sB, 1sC, 1sD in each case; in linear H4 we ignore A, D 
overlap because A and D are not neighboring atoms; in cyclic H4 we include it because they 
are. 

10E.2(b) See Self-test 10E.2 for part (i) and Example 10E.2 for part (ii). 
(i) The energy levels are E1 = α + 1.41β , E2 = α, and E3 = α – 1.41β . There are three π 
electrons, so the configuration is ψ1

2ψ2
1 and the energy is 
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Eπ = 2(α +1.41β) +α = 3α + 2.82β  

(ii) The energy levels are E1 = α + 2β, E2 = E3 = α, and E4 = α – 2β. There are three π 
electrons, so the configuration is ψ1

2ψ2
1 and the energy is 

 
  
Eπ = 2(α + 2β) +α = 3α + 4β  

10E.3(b) The π-bond formation energy is the difference between the π-electron binding energy and 
the Coulomb energies α [10E.12]: 
   Ebf = Eπ − NCα  
The delocalization energy is the difference between Eπ and the energy of isolated π bonds: 
   Edelocal = Eπ − NC (α + β)  

(i)   Eπ = 3α + 2.82β  [Exercise 10E.2(b)]  
so Ebf = 3α + 2.82β – 3α = 2.82β 
and Edelocal = 3α + 2.82β – 3(α + β) = (2.82–3)β = –0.18β  
(ii)   Eπ = 3α + 4β  [Exercise 10E.2(b)] 
so Ebf = 3α + 4β – 3α = 4β   
and Edelocal = 3α + 4β – 3(α + β) = β   
Comment. With an odd number of π electrons, we do not have a whole number of π bonds 
in the formula for delocalization energy. In effect, we compare the π-electron binding 
energy to the energy of 1.5 isolated π bonds—whatever that means. This result in (i) is a 
destabilization, consistent with the observation from organic chemistry that cumulated 
double bonds (i.e., adjacent double bonds) are unfavorable. 

10E.4(b) The structures are numbered to match the row and column numbers shown in the 
determinants: 

 

 
(i) The secular determinant of azulene in the Hückel approximation is: 

 1 2 3 4 5 6 7 8 9 10 
1 α – E β 0 0 0 0 0 0 0 β 
2 β α – E β 0 0 0 0 0 0 0 
3 0 β α – E β 0 0 0 0 0 0 
4 0 0 β α – E β 0 0 0 0 β 
5 0 0 0 β α – E β 0 0 0 0 
6 0 0 0 0 β α – E β 0 0 0 
7 0 0 0 0 0 β α – E β 0 0 
8 0 0 0 0 0 0 β α – E β 0 
9 0 0 0 0 0 0 0 β α – E β 
10 β 0 0 β 0 0 0 0 β α – E 

 
(ii) The secular determinant of acenaphthalene in the Hückel approximation is: 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 α – E β 0 0 0 0 0 0 0 0 β 0 
2 β α – E β 0 0 0 0 0 0 0 0 0 
3 0 β α – E β 0 0 0 0 0 0 0 β 
4 0 0 β α – E β 0 0 0 0 0 0 0 
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5 0 0 0 β α – E β 0 0 0 0 0 0 
6 0 0 0 0 β α – E β 0 0 0 0 0 
7 0 0 0 0 0 β α – E β 0 0 0 β 
8 0 0 0 0 0 0 β α – E β 0 0 0 
9 0 0 0 0 0 0 0 β α – E β 0 0 
10 0 0 0 0 0 0 0 0 β α – E β 0 
11 β 0 0 0 0 0 0 0 0 β α – E β 
12 0 0 β 0 0 0 β 0 0 0 β α – E 

10E.5(b) The secular determinants from Exercise 10E.4(b) can be diagonalized with the assistance of 
general-purpose mathematical software. Alternatively, programs specifically designed for 
Hückel calculations (such as the Simple Hückel Molecular Orbital Theory Calculator at the 
University of Calgary, http://www.chem.ucalgary.ca/SHMO/ or Hückel software in 
Explorations in Physical Chemistry, 2nd ed., by Julio de Paula, Valerie Walters, and Peter 
Atkins, http://ebooks.bfwpub.com/explorations.php) can be used. 
(i) Azulene has 10 π electrons, which fill five orbitals. The energies of the filled orbitals are 
α + 2.310β, α + 1.652β, α + 1.356β, α + 0.887β, and α + 0.477β. Thus, the total π-electron 
binding energy is 10α + 13.364β . 
(ii) Acenaphthalene has 12 π electrons, which fill six orbitals. The energies of the filled 
orbitals are α + 2.471β, α + 1.688β, α + 1.683β, α + β, α + 0.831β, and α + 0.638β. Thus, 
the total π-electron binding energy is 12α + 16.619β . 

10E.6(b) LiH2+ is a two-electron molecule. The hamiltonian for the electrons in LiH2+ is 

 1 2

2 2 2 2 2 2 2
2 2

0 1H 0 2H 0 1Li 0 2Li 0 12

3 3ˆ
2 2 4 4 4 4 4

e e e e eH
m m r r r r rπε πε πε πε πε

= − ∇ − ∇ − − − − +
   

The first two terms represent kinetic energy of the electrons, the next two attraction of the 
electrons to the H nucleus, the next two attraction of the electrons to the Li nucleus, and the 
last electron-electron repulsion. There is an additional term that does not enter into the 
Schrödinger equation of the electrons but into the total energy as a function of internuclear 

separation, namely a nuclear-nuclear repulsion term 
  

3e2

4πε0R
. 

Solutions to problems 

10E.2 (a) In the absence of numerical values for α and β, we express orbital energies as (Ek–α)/β for 
the purpose of comparison. Recall that β is negative (as is α for that matter), so the orbital 
with the greatest value of (Ek–α)/β has the lowest energy. Draw up the following table, 
evaluating 

 
  

Ek −α
β

= 2cos 2kπ
N

 

 

 energy (Ek–α)/β 

orbital, k C6H6 C8H8 

±4  –2.000 

±3 –2.000 –1.414 

±2 –1.000 0 

±1 1.000 1.414 

0 2.000 2.000 

In each case, the lowest and highest energy levels are non-degenerate, while the other energy 
levels are doubly degenerate. The degeneracy is clear for all energy levels except, perhaps, the 
highest: each value of the quantum number k corresponds to a separate MO, and positive and 
negative values of k therefore give rise to a pair of MOs of the same energy. This is not the 
case for the highest energy level, though, because there are only as many MOs as there were 
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AOs input to the calculation, which is the same as the number of carbon atoms. Having a 
doubly-degenerate top energy level would yield one extra MO. (See also P10E.4.) 
(b) The total energy of the π electron system is the sum of the energies of occupied orbitals 
weighted by the number of electrons that occupy them. In C6H6, each of the three lowest-
energy orbitals is doubly occupied, but the second level (k = ±1) is doubly degenerate, so 

 
  
E¹ = 2E0 + 2 × 2E1 = 2(α + 2β cos0) + 4 α + 2β cos 2π

6





= 6α + 8β  

The delocalization energy is the difference between this quantity and that of three isolated 
double bonds: 

 
  
Edeloc = E¹ − 6(α + β) = 6α + 8β − 6(α + β) = 2β  

For linear hexatriene, the first three orbitals are also doubly occupied: 

 
  
E¹ = 2(α + 2β cos π

7
) + 2 α + 2β cos 2π

7





+ 2 α + 2β cos 3π

7





= 6α + 6.988β  

so Edeloc = 0.988β . Thus benzene has considerably more delocalization energy (assuming that 
β is similar in the two molecules). This extra stabilization is an example of the special stability 
of aromatic compounds. 
(c) In C8H8, each of the first three orbitals is doubly occupied, but the second level (k = ±1) is 
doubly degenerate. The next level is also doubly degenerate, with a single electron occupying 
each orbital. So the energy is 

 

  

E¹ = 2E0 + 2× 2E1 + 2×1E2

= 2(α + 2β cos0)+ 4 α + 2β cos 2π
8






+ 2 α + 2β cos 4π

8






= 8α + 9.657β

 

The delocalization energy is the difference between this quantity and that of four isolated 
double bonds: 

 
  
Edeloc = E¹ − 8(α + β) = 8α + 9.657β − 8(α + β) = 1.657β  

In linear octatetraene, the first four levels are doubly occupied: 

 

  

E¹ = 2(α + 2β cosπ
9

)+ 2 α + 2β cos 2π
9






+ 2 α + 2β cos 3π

9





+ 2 α + 2β cos 4π

9






= 8α + 9.518β

 

so Edeloc = 1.518β . Thus cycloocatetraene does not have much additional stabilitzation over 
the linear structure. Once again, though, we do see that the delocalization energy stabilizes the 
π orbitals of the closed ring conjugated system to a greater extent than what is observed in the 
open chain conjugated system. However, the benzene/hexatriene comparison shows a much 
greater stabilization than does the cyclooctatetraene/octatetraene system. This is an example of 
the Hückel 4n+2 rule, which states that any planar, cyclic, conjugated system exhibits unusual 
aromatic stabilization if it contains 4n+2 π electrons where n is an integer. Benzene with its 6 
π electrons has this aromatic stabilization whereas cycloctatetraene with 8 π electrons doesn't 
have this unusual stabilization. We can say that it is not aromatic, consistent with indicators of 
aromaticity such as the Hückel 4n+2 rule. 

10E.4 We use the Hückel approximation, neglecting overlap integrals. 

The secular determinant of cyclobutadiene is 

  

α − E β 0 β
β α − E β 0
0 β α − E β
β 0 β α − E

 

 
Mathematical software (such as the Simple Hückel Molecular Orbital Theory Calculator at the 
University of Calgary, http://www.chem.ucalgary.ca/SHMO/) diagonalizes the hamiltonian 
matrix to 
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E =

α + 2β 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α − 2β



















 

The secular determinant of benzene is 

  

α − E β 0 0 0 β
β α − E β 0 0 0
0 β α − E β 0 0
0 0 β α − E β 0
0 0 0 β α − E β
β 0 0 0 β α − E

 

 
The hamiltonian matrix is diagonalized to 

 

  

E =

α + 2β 0 0 0 0 0
0 α + β 0 0 0 0
0 0 α + β 0 0 0
0 0 0 α − β 0 0
0 0 0 0 α − β 0
0 0 0 0 0 α − 2β

























 

The secular determinant of cyclooctatetraene is 

 

  

α − E β 0 0 0 0 0 β
β α − E β 0 0 0 0 0
0 β α − E β 0 0 0 0
0 0 β α − E β 0 0 0
0 0 0 β α − E β 0 0
0 0 0 0 β α − E β 0
0 0 0 0 0 β α − E β
β 0 0 0 0 0 β α − E

 

 
The hamiltonian matrix is diagonalized to 

 

  

E =

α + 2β 0 0 0 0 0 0 0

0 α + 2β 0 0 0 0 0 0

0 0 α + 2β 0 0 0 0 0
0 0 0 α 0 0 0 0
0 0 0 0 α 0 0 0

0 0 0 0 0 α − 2β 0 0

0 0 0 0 0 0 α − 2β 0
0 0 0 0 0 0 0 α − 2β

































 

  
 Recall that β is negative, so energies increase from the upper left to the lower right of 
the diagonalized matrices. In each of these examples, one can see by inspection that the first 
and last energy levels are non-degenerate (for there is no other energy value in the 
diagonalized E matrix equal to them) and that the other levels are two-fold degenerate (for 
those energy values occur in pairs). 

10E.6 The secular determinant for an N-carbon linear polyene (call the determinant PN) has the form 
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1 2 3 1

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0

0 0 0 0 0 ... 1
0 0 0 0 0 1

N

… … … N N

x …
x …

x …
Px …

x
… x

−

=
       

 

 

where 
 
x = α − E

β
. The determinant can be expanded by cofactors; use the elements of the first 

row: 
 PN = M11c11 – M12c12 + M13c13 – ... + (–1)N+1M1Nc1N  
 
In this notation, M1n is the element in the first row, nth column of the determinant and c1n is the 
cofactor of that element. The cofactor, c1n, is a determinant whose elements are the elements 
of the original determinant with row 1 and column n removed. Note that the elements of the 
first row after M11 and M12 are zero, so PN = M11c11 – M12c12, M11 = x and c11 is the secular 
determinant of an (N–1)-carbon polyene; that is, the c11 cofactor in PN is PN–1 .  
M12 = 1, so we are almost there: 
  
 PN = xPN–1 – c12  
We need to examine c12. As shown below, c12 is the determinant left after crossing out the 
elements in the original PN determinant that are in the first row or the second column: 
 

 12

1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0

0 0 0 0 0 1
0 0 0 0 0 1

x …
x …

x …
c x …

… x
… x

=

       

. 

 
Now c12 is not itself a secular determinant of a polyene; its first row has ones as its first two 
elements and no x elements. Its first column, though, has only one element, a one. Expanding 
this determinant by the elements and cofactors of its first column yields a one-term sum whose 
cofactor is illustrated here. We cross out elements in the original PN determinant, not only 
those in the first row or second column, but also those in the same row or column as the single 
term in the first column of c12: 
 

 12 2 2

1 0 0 0 0 0

1 1 0 0 0 0
0 1 1 0 0 0

1 10 0 1 1 0 0

0 0 0 0 0 1
0 0 0 0 0 1

N N

x …

x …
x …

c P Px …

… x
… x

− −= × = × =

       

 

 
That is, the cofactor involved in evaluating c12 is the secular determinant of an (N–2)-carbon 
polyene, i.e., PN–2 . So PN = xPN–1 – PN–2 . 
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10E.8 (a) 

  

α − E β β
β α − E β
β β α − E

= 0  

 
  
(α − E)

α − E β
β α − E

− β
β β
β α − E

+ β
β α − E
β β

= 0  

   (α − E) ×{(α − E)2 − β 2}− β{β(α − E) − β 2}+ β{β 2 − (α − E)β}= 0  

   (α − E) ×{(α − E)2 − β 2}− 2β 2{α − E − β}= 0  

   (α − E) × (α − E + β) × (α − E − β) − 2β 2 (α − E − β) = 0  

   (α − E − β) ×{(α − E) × (α − E + β) − 2β 2}= 0  

   (α − E − β) ×{(α − E) × (α − E + 2β) − β(α − E) − 2β 2}= 0  
   (α − E − β) ×{(α − E) × (α − E + 2β) − β(α − E + 2β)}= 0  
   (α − E − β) × (α − E + 2β) × (α − E − β) = 0  

Therefore, the desired roots are 
  
E = α−β, α−β, and α+2β . The energy level diagram is 

shown in Figure 10E.1. 
 
Figure 10E.1 
 

 
The binding energies are shown in the following table: 
 

Species Number of e– Binding energy 
H3

+ 2 2(α + 2β) = 2α + 4β 
H3 3 2(α + 2β) + (α – β) = 3α + 3β 
H3

– 4 2(α + 2β) + 2(α – β) = 4α + 2β 
(b)  

H3
+(g) → 2H(g) + H+(g) ∆H1 = 849 kJ mol–1 

H+(g) + H2(g) → H3
+(g) ∆H2 = ? 

H2(g) → 2H(g) ∆H3 = [2(217.97) – 0] kJ mol–1 
 ∆H2 = ∆H3 – ∆H1 = {2(217.97) – 849} kJ mol–1, 
 ∆H2 = –413 kJ mol–1  

This is only slightly less than the binding energy of H2 (435.94 kJ mol–1) 
(c) 2α + 4β = –∆H1 = –849 kJ mol–1, 

so 
  
β =

−∆H1−2α
4

where ∆H1 = 849 kJ mol−1  

Species Binding energy 

H3
+ 

  
2α + 4β = −∆H1 = −849 kJ mol−1  
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H3 
  
3α + 3β = 3 α −

∆H1+2α
4






= 3 1

2α −
∆H1

4





= 3(α / 2) − 212 kJ mol−1  

H3
– 

  
4α + 2β = 4α −

∆H1+2α
2 = 3α −

∆H1
2 = 3α − 425kJ mol−1  

 
As α is a negative quantity, all three of these species are expected to be stable. 

10E.10 For H2 the 6-31G* basis set is equivalent to the 6-31G basis set because the star indicates that 
the basis set adds d-type polarization functions for each atom other than hydrogen. 
Consequently, we choose the basis sets (a) 6-31G* and (b) 6-311+G**. 1 au = 27.2114 eV. 
Since the calculated energy is with respect to the energy of widely separated stationary 
electrons and nuclei, the experimental ground electronic energy of dihydrogen is calculated as 
De + 2I. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Both computational basis sets give satisfactory bond length agreement with the experimental 
value for H2. However the 6-31G* basis set is not as accurate as the larger basis set as 
illustrated by consideration of both its higher ground-state energy and the variation principle 
that the energy of a trial wavefunction is never less than the true energy. That is, the energy 
provided by the 6-311+G** basis set is closer to the true energy. Figure 10E.2 shows the 
variation of the dihyrogen ground-state energy with the internuclear distance. 
It is surprising that the 6-311+G** basis set gives a significantly shorter bond length for F2. 
This might be an indication that the method should be used with caution when fluorine is 
present in a molecule. 

 
Figure 10E.2 

H2 Ground-State HF-SCF/6-311+G**
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10E.12 (a) The standard enthalpy of formation 1
f( )kJ molH −∆ /  of ethene and the first few linear 

polyenes is listed below. 
Species Computed* Experimental† % error 
C2H4  69.58 52.46694 32.6 

Features Calculated with HF-SCF Method* 
Bond length (R) in pm and ground-state energy (E0) in eV 

H2 (a) 6-31G* (b) 6-311+G** exp 
R 73.0 73.5 74.1 
E0 –30.6626 –30.8167 –32.06 

 
F2 (a) 3-31G* (b) 6-311+G** exp 
R 134.5 132.9 141.8 
E0 –5406.30 –5407.92  
*Spartan ’10TM 
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C4H6 129.84 108.8 ± 0.79 19.3 
C6H8 188.52 168. ± 3 12.2 
C8H10 246.85 295.9‡ 16.6 
*Semi-empirical, PM3 level, Spartan ’10TM 
†http://webbook.nist.gov/chemistry/ 
‡Pedley, Naylor, and Kirby, Thermodynamic Data of Organic Compounds. 

 
(b) The % error, shown in the table, is defined by: 

 

f f

f

(calc) (expt)% error = 100%.
(expt)

H H
H

∆ −∆
×

∆

 



 
(c) For all of the molecules, the computed enthalpies of formation deviate from the 
experimental values by much more than the uncertainty in the experimental value. This 
observation serves to illustrate that molecular modeling software is not a substitute for 
experimentation when it comes to quantitative measures. It is also worth noting, however, that 
the experimental uncertainty can vary a great deal. The NIST database reports f H∆   for C2H4 
to seven significant figures (with no explicit uncertainty). Even if the figure is not accurate to 
1 part in 5000000, it is clearly a very precisely known quantity—as one should expect in such 
a familiar and well studied substance. The database lists two different determinations for 

f 4 6(C H )H∆  , and the experimental values differ by more than the uncertainty claimed for 
each; a critical evaluation of the experimental data is called for. The uncertainty claimed for 

f 6 8(C H )H∆   is greater still (but still only about 2%). Finally, it should go without saying that 
not all of the figures reported by the molecular modeling software are physically significant. 

Integrated activities 

10.2 (a) The orbitals are sketched in Figure I10.1(a). ψ1 is a bonding orbital, showing no nodes 
between adjacent atoms, and ψ3 is antibonding with respect to all three atoms. ψ2 is non–
bonding, with neither constructive nor destructive interaction of the atomic orbitals of adjacent 
atoms. 
 
Figure I10.1(a) 

 

C N
O

C

C N
O

C

C N
O

C

Energy (a,..,h > 0)

ψ1 = aψO + bψC + cψN

ψ2 = dψO − eψN

ψ3 = fψO − gψC + hψN

 
(b) This arrangement only works if the entire peptide link is coplanar. For starters, the O, C, 
and N atoms in the peptide link must be in the same plane (call it the xy plane) if all three 
atoms are to contribute unhybridized p orbitals (pz orbitals) to make the three MOs sketched in 
Figure 10.15(a). And if the peptide N and C atoms contribute pz orbitals in the π system, then 
all of the σ bonds they make must be in the xy plane. Hence the peptide O and H atoms as well 
as the non-peptide C atoms bound to the peptide C and N atoms must also lie in the xy plane. 
That is, the entire peptide linkage plus the ends of the carbon chains that they connect. 
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(c) The energy order of the orbitals and their occupancy are shown in Figure 10.15(a). There 
are four electrons to be distributed. If we look at the neutral representation of the peptide link 
(on the left side of the resonance structures shown here), the two electrons represented by the 
C=O π bond are obviously part of the π system, leaving the two lone pairs on O, the C–O σ 
bond, and the two other σ bonds of C as part of the σ system. Turning now to the Lewis octet 
of electrons around the N atom, we must assign two electrons to each of the σ bonds involving 
N; clearly they cannot be part of the π system. That leaves the lone pair on N, which must 
occupy the other orbital that N contributes to the molecule, namely the pz orbital that is part of 
the π system. 
(d) The orbitals of the non-planar alternative are sketched in Figure I10.2(b). ψ4 is a bonding 
orbital with respect to C and O, and ψ6 is antibonding with respect to C and O. ψ5 is non–
bonding, involving only the N atom. There are four electrons to be placed in this system, as 
before, two each in a bonding and non–bonding orbital. 

 
Figure I10.2(b) 

 

C N
O

C

C N
O

C

C N
O

C

Energy (a,..,g > 0)

ψ4 = aψO + bψC

ψ5 = eψN

ψ6 = fψO − gψC

 
(e) This system cannot be planar. As before, the end of the chain connected to the peptide C 
must be in the xy plane. As before, the atoms bound to N must be in a plane perpendicular to 
the orbital that N contributes to this system, which is itself in the xy plane. Only one of the N 
atom’s σ bonds can be in both the xy plane and a plane perpendicular to it (because only a line 
can be in two perpendicular planes). Thus, the bonding partners of N other than the peptide C 
are forced out of the xy plane. 
(f) The bonding MO ψ1 must have a lower energy than the bonding MO ψ4, for ψ1 is bonding 
(stabilizing) with respect to all three atoms, while ψ4 is bonding with respect to only two of 
them. Likewise, the antibonding MO ψ3 must have a higher energy than the antibonding MO 
ψ6, for ψ3 is antibonding (destabilizing) with respect to all three atoms pairwise, while ψ6 is 
antibonding only with respect to two of them. The non–bonding MOs ψ2 and ψ5 must have 
similar energies, not much different than the parameter α, for there is no significant 
constructive or destructive interference between adjacent atoms in either one. 
(g) Because bonding orbital ψ1 has a lower energy than ψ4, the planar arrangement has a lower 
energy than the non–planar one. The total energy of the planar arrangement is 
 Eplanar = 2E1 + 2E2 . 
Compare this to the energy of the non–planar arrangement: 
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 Enon–planar = 2E4 + 2E5 > 2E1 + 2E2 = Eplanar. 
The fact that E3 > E6 is immaterial, for neither of those orbitals is occupied. 

10.4  
2

trial e rN αψ −=  
We must find the expectation value of the hydrogenic hamiltonian: 

 
2 2

2 2
2

trial trial trial
0

ˆ* d e e d
2 4

r reE H H N N
r

α αψ ψ τ τ
µ πε

− − 
= = = − ∇ − 

 ∫ ∫   

The laplacian operator is 

 

2
2 2

2 2

2 1
r rr r

∂ ∂
∇ = + + Λ

∂∂ . 
Because Λ2 contains derivatives with respect to angles only, we can ignore it in applying the 
laplacian to our trial function, which is independent of angles. Applying the kinetic energy 
operator to our trial function yields 
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2
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Inserting this into the energy expectation yields: 

 
   
Etrial = Ne−αr2



2αN
µ

(3− 2αr 2 )e−αr2

−
e2Ne−αr2

4πε0r








 dτ∫  

To actually evaluate the integral, we must write out dτ and the limits of integration explicitly. 
Here dτ = r2 sin θ drdθdφ . Other than in dτ, there is no angular dependence in the integrand, 
so integrating over the angles yields 4π. Thus the integral becomes  

 
   
Etrial = 4πN 2 e−2αr2 3 2αr 2

µ
−

2

2α 2r 4

µ
−

e2r
4πε0







dr

0

∞

∫  

Consult the integral table in the Resource section to find [G.7 and G.8] 
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π
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1/2

  (2n−1)!!= 1× 3×5× ...× (2n−1)  

Apply these to the appropriate terms in the integral to obtain 

 

   

Etrial = 4πN 2 3 2α
µ
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2
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×

3π 1/2
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−
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We must now evaluate N(α). Normalization requires 

 
  
ψ *ψ dτ∫ = 1= N 2 e−2αr2

dτ∫ = 4πN 2 r 2e−2αr2

dr
0

∞

∫  

 
  
1= 4πN 2 ×

π 1/2

27/2α 3/2  or 
  
4πN 2 =

27/2α 3/2

π 1/2  

Thus, 
   
Etrial =

27/2α 3/2

π 1/2

3 2π 1/2

29/2α 1/2µ
−

e2

16πε0α






=

3 2α
2µ

−
e2α 1/2

21/2π 3/2ε0

. 

The variation principle says that the minimum energy is obtained by taking the derivative of 
the trial energy with respect to adjustable parameters, setting it equal to zero, and solving for 
the parameters: 

 
   

dEtrial

dα
=

3 2

2µ
−

e2

23/2π 3/2ε0α
1/2 = 0  

Solving for α yields 
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3 2

2µ
=

e2

23/2π 3/2ε0α
1/2 so α =

2
µe2

3 2ε0







1

2π 3






=

µ2e4

18π 3


4ε0
2  

Substituting this back into the energy expression yields the minimum energy for this trial 
wavefunction: 

 

1/22 2 4 2 2 4

trial 3 4 2 1/2 3/2 3 4 2
0 0 0

4 4 4

3 2 2 3 2 2 3 2 2
0 0 0

3
2 18 2 18

12 6 12

e e eE

e e e
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= −   

   

−
= − =



 

  

 

Notice that the above expression indicates that k2V E= −  in accord with the virial 
theorem for a potential that goes as r−1. Also, compare the above result to the actual 
hydrogenic energy: 

 
   
EH =

−µe4

32π 2ε0
2


2  

Etrial has 12π in the denominator where the true energy has 32. Thus, the trial energy is greater 
than (not as negative as) the true energy, consistent with the variation principle. 

10.6 The equations for studying the amplitudes of the 1σ and 2σ* dihydrogen ion states are found 
in eqn. 10B2 and Brief Illustration 10B.1. This approximate method uses a linear combination 
of atomic 1s orbitals of the hydrogen atoms, which are label A and B. Atom A is placed at the 
point (x,y,z) = (0,0,0) with atom B at (x,y,z) = (0,0,R). Both LCAOs have cylindrical 
symmetrical around the internuclear z-axis so we examine amplitudes as they vary with z 
along a cylinder that is the perpendicular distance r from the z-axis where r2 = x2 + y2. 
Calculations will be setup so that the user can select any desired r/a0 ratio. Identical results are 
obtained should you wish to assign x and/or y to arbitrary values. A Mathcad Prime 2TM setup 
and amplitude plots are shown below. Be sure to explore changes in the coefficients of both R 
and r and explain the observed effects. The antibonding orbital vanishes halfway between the 
nuclei, so we see antibonding associated with low internuclear electron density. Similarly, the 
bonding orbital is substantially non-zero between the nuclei (although not as large in value as 
at each nucleus), so we see bonding associated with high internuclear electron density. 
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          11      Molecular Symmetry   
 

11A  Symmetry Elements 
 

Answers to discussion questions 
 
 
11A.2  
 
  
 
 
 
 
 
 
 
 
 
 
There are three kinds of mirror planes. The 
vertical mirror plane, σv, is parallel to the principal axis while the horizontal mirror plane, σh, is 
perpendicular to the principal axis. A mirror plane that bisects the angle between two C2 axes is called a 
dihedral plane, σd. A vertical mirror plane that bisects bonds is also given the σd designation. 
 
11A.4 A molecule may be chiral, and therefore optically active, only if it does not possess an axis of improper 
rotation, Sn. An improper rotation is a rotation followed by a reflection and this combination of operations 
always converts a right-handed object into a left-handed object and vice-versa; hence an Sn axis guarantees that 
a molecule cannot exist in chiral forms. When discussing optical activity, it is helpful to remember that: 
(a) the presence of both a Cn and a σh is equivalent to an Sn. 
(b) i = S2. 
(c) σ = S1.  
Thus, a molecule cannot be optically active if it possesses a centre of symmetry or a mirror plane. 
 

 
Solutions to exercises 

 
11A.1(b) CCl4 belongs to the point group Td. It has 4 C3 axes (each C–Cl axis), 3 C2 axes (bisecting Cl–C–Cl 
angles), 3 S4 axes (the same as the C2 axes), and 6 dihedral mirror planes (each Cl–C–Cl plane). A sample of 
each symmetry element is shown in Fig. 11A.1. 
 

Symmetry operation Symmetry element 

Identity, E The entire object 

n-fold rotation n-fold axis of symmetry, Cn 

Reflection Mirror plane, σ 

Inversion Centre of symmetry, i 

n-fold improper rotation n-fold improper rotation axis, Sn 
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C

Cl Cl
Cl

Cl

C3

C3

C2 and S4

C2 and S4

σd

 
     Figure 11A.1 
 
11A.2(b) Anthracene belongs to the point group D2h and it has the symmetry elements shown in Fig. 11A.2. 
There are 3C2 axes, a centre of inversion, and 3σh mirror planes. 
 

 
      Figure 11A.2 
 
11A.3(b) Sketch a figure of the object, identify symmetry elements, and use the flow diagram in Figure 11A.7 
of the text when it simplifies the group assignment. 
 
(i) Sharpened pencil: vE C σ∞, , ; therefore vC∞  

(ii) Propellor: 3 23E C C, , ; therefore 3D  

(iii) Square table: 4 v4E C σ, , ; therefore 4vC ; Rectangular table: 2 v2E C σ, , ; therefore 2vC  

(iv) Person with left-right symmetry: E σ, ; therefore sC  

i
C2C2

C2

C2

C2

σh

σhσh
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11A.4(b) Make a sketch of the molecule, identify symmetry elements, and use the flow diagram in Figure 11A.7 
of the text when it simplifies the point group assignment. 

(i) furan: E, C2, σv, vσ ′ ; C2v                

(ii)  γ-pyran: E, C2, σv, vσ ′ ; C2v       

(iii)  1,2,5-trichlorobenzene: E, σh; Cs   
 
11A.3(b) Make a sketch of the molecule, identify symmetry elements, and use the flow diagram in Figure 11A.7 
of the text when it simplifies the point group assignment. 

(i) HF: linear, no i, so vC∞  

(ii) IF7: pentagonal bipyramidal, E, C5, 5C2, S5, σh, σv; 5hD  

(iii) XeO2F2: see-saw, E, C2, σv, vσ ′ ; C2v   

(iv) Fe2(CO)9: E, C3, 2C2, 3C2', S3, σh, σv; 3hD  

(v) Cubane (C8H8): E, 8C3, 6C2, 6C4, i, 6S4, 8S6, 3σh, 6σd; Oh  
(vi) Tetrafluorocubane: E, 8C3, 3C2, 6S4, 6σd; Td  
  
11A.4(b) Only molecules belonging to Cs, Cn, and Cnv groups may be polar, so … 
(i) 3 3vCH Cl ( ) polarC  along the C–Cl bond 

(ii) 2 10 4hHW (CO) ( )D not polar  

(iii) 4 dSnCl ( )T  not polar 
 
11A.5(b) The parent of the dichloroanthracene isomers is shown to the 
right. Care must be taken when determining possible isomers because 
anthracene is a flat molecule that belongs to the point group D2h as 
discussed in Exercise  
 
11A.2(b). It has an inversion centre, mirror planes, and rotational axes that 
cause superficially distinct visual images to actually be the same molecule viewed from different angles. For 
example, Fig. 11A.3 structures are all 1,3-dichloroanthracene. By drawing figures that avoid the redundancy 
caused by the symmetry elements you will find a total of fifteen dichloroanthracene isomers. 

 
Figure 11A.3 
 
The names and point groups of the fifteen isomers are summarized in the following table. 
  

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

C2

C3
C4

C1

C10

C9

C5

C6

C7

C8
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Isomers and Point Groups of m,n-Dichloroanthracene 
m,n 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 2,3 2,6 2,7 2,9 2,10 9,10 
Point Group Cs Cs C2v C2h Cs Cs C2v Cs Cs C2v C2h C2v Cs Cs D2h 

 
 
11A.6(b) A molecule cannot be chiral if it has an axis of improper rotation. The point group Td has 4  axesS  

and 1mirror planes ( )S= , which preclude chirality. The Th group has, in addition, a centre of inversion (= 

S2). Therefore, molecules belonging to these point groups cannot be chiral and cannot be optically active. 
 

 
Solutions to problems 

 
11A.2‡ (a) We work through the flow diagram in the text (Fig. 11A.7) first noting that this complex with freely 
rotating CF3 groups is not linear, no Cn axes with n > 2. It does have three mutually perpendicular C2 axes and 
each has a perpendicular mirror plane. Therefore, the point group is D2h . 
 
(b) The plane shown in Fig. 11A.4 below is a mirror plane so long as the CF3 groups each have a CF bond in the 
plane. (i) If the CF3 groups are staggered, then the Ag–CN axis is an S2 axis. The Ag–CF3 axis is also an S2 axis, 
which means that the Ag atom is at an inversion centre. There is a C2 axes perpendicular to the plane of the 
molecule and the plane of the molecule is a σh. So the point group is C2h. (ii) If the CF3 groups are eclipsed, then 
the axis through the Ag and perpendicular to the plane of the Ag bonds is no longer a C2 axis; however, the Ag–
CN axis is a C2 axis. There is no σh but there are two σv planes (the plane shown and the plane perpendicular to 
it and through the Ag–CN bond). So the point group is 2vC . 

 
 
 

 
 

  
 

 
 

 
 
 
 
 

 
      
Figure 11A.4 
 
 
11B  Group theory 
 

Answers to discussion questions 
 
11B.2 A representative is a mathematical operator (usually a matrix) that represents the physical symmetry 
operation. The set of all these mathematical operators corresponding to all the operations of the group is called a 
representation. 
 
11B.4 A representation is reducible when matrices of the set can be transformed (with a similarity 
transformation) into new matrices that are the direct sum of representations of smaller dimension. The 
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Ag

C

C

CNNC

F

F

F

F

F

F

S2

S2

C2

i

σh

(i) Staggered form, C2h

Ag

C

C

CNNC

FF F

FF
F

C2

σv

(ii) Eclipsed form, C2v



transformation brings each matrix into block-diagonal form 
  0
  0

0 0

 
 
 
  
 

 where only zero elements appear 

outside the blocks. The reduction of a three-dimensional representation to the direct sum of a two-dimensional 
and a one-dimensional representation is denoted symbolically by writing Γ(3) = Γ(2) + Γ(1).  One-dimensional 
representations Γ(1) are necessarily irreducible. 
 
An irreducible representation cannot be transformed into matrices that are a direct sum of representations of 
smaller dimension. The sums of their diagonal elements (the traces) are the characters of the representation 
symmetry operations. The set of characters for an irreducible representation is called the symmetry species of 
that representation.  
 
 

Solutions to exercises 
 
11B.1(b) Since the pz orbitals are perpendicular to the molecular plane, we recognize that the set of pz orbitals 
on each atom of BF3 experience the C3 change B F1 F2 F3 3 B F3 F1 F2(p ,p ,p ,p ) ( ) (p ,p ,p ,p ).C =D  Consequently, 
we find by inspection that 

 3

1 0 0 0
0 0 1 0

( )
0 0 0 1
0 1 0 0

C

 
 
 =
 
 
 

D  

 
11B.2(b) The matrix representations of the operations σh and C3 are deduced in Exercises 11B.1(a) and 
11B.1(b). According to the precepts of group theory, the successive application of these operations yields 
another member of the D3h group to which BF3 belongs and, in fact, by definition the operation C3σh should 
yield the S3 symmetry operation. The matrix representation of S3 can be found by matrix multiplication of the 
component operations. 

 3 h 3

1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0

( ) ( ) ( )
0 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0

C Sσ

− −    
    − −    = = =
    − −
    

− −    

D D D  

The result may be checked by matrix operation on the pz orbital vector where the effort should yield 

B F1 F2 F3 3 B F3 F1 F2(p ,p ,p ,p ) ( ) ( p , p , p , p )S = − − − −D  and, as expected 

 B F1 F2 F3 B F3 F1 F2

1 0 0 0
0 0 1 0

(p ,p ,p ,p ) ( p , p , p , p )
0 0 0 1
0 1 0 0

− 
 −  = − − − −
 −
 

− 

 

Also, the symmetry operations commute in this particular case. 
  
11B.3(b) Consider the equilateral triangle P1P2P3, which belongs to the D3h point group (text Fig. 11A.8). The 
three C2 axes and the three σv mirror planes of this triangle are shown in Fig. 11B.1. 
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Figure 11B.1 
  
The σv and vσ ′  mirror planes belong to the same class if there it a member S of the group such that vσ ′  = S–1 σv 

S [11B.1] where S–1 is the inverse of S. We will work with S = 2C′′ , an operator for which S–1 = 2C′′ . By 

comparison of the action of S–1 σv S upon the vector (P1,P2,P3) with the action of vσ ′  upon the same vector we 

can determine whether or not the equality of eqn. 11B.1 holds. If it does, σv and vσ ′  mirror belong to the same 
class. 

 

( ) ( )
( )

( )
( )

( ) ( )

1
v 1 2 3 2 v 2 1 2 3

2 v 2 1 3

2 2 3 1

3 2 1

v 1 2 3 3 2 1

P ,P ,P P ,P ,P

                        P ,P ,P

                        P ,P ,P

                        P ,P ,P             (i)

P ,P ,P P ,P ,P                 (ii)

S S C C

C

C

σ σ

σ

σ

− ′′ ′′=

′′=

′′=

=

′ =

 

Eqs. (i) and (ii) indicate that 1
v vS Sσ σ−′ =  where 2S C′′=  and we conclude that σv and vσ ′  belong to the 

same class. By either using the same argument or seeing the necessities of symmetry we find that v v and σ σ ′′  
also belong to the same class. Consequently, v v v,  and σ σ σ′ ′′  all belong to the same class.  
 
11B.4(b) Because the largest character is 5 in the column headed E in the I character table, we know that the 
maximum orbital degeneracy is 5. 
 
11B.5(b) 1,4-Dichlorobenzene belongs to the D2h point group. Because the largest character is 1 in the column 
headed E in the D2h character table, we know that the orbitals are nondegenerate. 
 

 
Solutions to problems 

 
11B.1 Consider Fig. 11B.2. The effect of σh on a point P is to generate σhP, and the effect of C2 on σhP is to 
generate the point C2σhP. The same point is generated from P by the inversion i, so C2σhP = iP for all points P. 
Hence, 2 hC iσ = , and i must be a member of the group. 

 
 
 
 
 
 
 

P1

P3 P2

C2

C2'C2"

σv'

σv

σv"
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Figure 11B.2 

 
 
11B.4 We examine how the operations of the C3v group affect lz = xpy – ypx when applied to it. The 
transformation of x, y, and z, and by analogy px, py, and pz components of momentum, are as follows (see Fig. 
11B.3). 
 
Figure 11B.3 

 

 
7:7 



 

 
 ( , , ) ( , , )E x y z x y z→  

 v ( , , ) ( , , )x y z x y zσ → −  

 v ( , , ) ( , – , )x y z x y zσ ′ →  

 v ( , , ) ( , , )x y z x y zσ ′′ → −  

 ( )3
1 1 1 1
2 2 2 2( ,  ,  ) 3 , 3 , C x y z x y x y z+ → − + − −  

 ( )1 1 1 1
3 2 2 2 2( , , ) 3 , 3 , C x y z x y x y z− → − − −  

The characters of all σ operations are the same, as are those of both C3 operations (see the C3v character table); 
hence we need consider only one operation in each class. 
 z y x zEl xp yp l= − =  

 v [(   ) (   )]z y x zl xp yp l x y z x y zσ = − + = − , , → − , ,  

 

1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2

1 1 1 1
2 2 2 2

1
4

( 3 ) ( 3 ) ( 3 ) ( 3 )

              [(   ) ( 3 3  )]

      ( 3 3 3 3 3 3 )

      

z x y x y

x y x y x y x y

y x z

C l x y p p x y p p

x y z x y x y z

xp xp yp yp xp xp yp yp
xp yp l

+ = − + × − − − − − × − +

, , → − + ,− − ,

= + − − − + − +

= − =

 

The representatives of E, σv, and 3C+  are therefore all one-dimensional matrices with characters 1, –1, 1, 
respectively. It follows that lz is a basis for A2 (see the C3v character table). 
 
11B.6 Using the symbolism defined in the solution for Problem 11B.5, we find: 

 ( ) ( ) ( )3A 3A

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1

C C E+ −

    
    
    = = =
    
    
    

D D D  

 ( ) ( ) ( )4AB 3A 4AC

0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 1 0 0 0

S C S+ + −

    
    
    = = =
    
    
    

D D D  

 ( ) ( ) ( )4AB 3C dAC

0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 1

S C σ+ +

    
    
    = = =
    
    
    

D D D  

 
11B.8 The RR' multiplication table, using σ0 = 1, is 
 

R\R' σ0 σx σy σz 
σ0 σ0     σx     σy     σz 
σx σx     σ0   i σz −i σy 
σy σy −i σz     σ0   i σx 
σz σz   i σy −i σx     σ0 

 
The matrices do not form a group since the products i ,  i ,  i xz yσ σ σ  and their negatives are not among the four 
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Pauli spin matrices, σ. 
 
 
11C  Applications of symmetry 
 

Answers to discussion questions 
 
11C.2 Molecular orbitals of specified symmetry can be generated from an arbitrary basis or set of atomic 
orbitals by the application of group theory. The technique involves generating symmetry-adapted linear 
combinations (SALCs), which serve as building blocks of LCAO molecular orbitals. The method makes use of 
a projection operator, P(Γ), an operator that takes one of the basis orbitals and generates from it an SALC of the 
symmetry species Γ: 
  

𝑃(𝛤) =
1
ℎ
�𝜒(𝛤)(𝑅)𝑅
𝑅

   for 𝜓𝑚
(𝛤) = 𝑃(𝛤)𝜒𝑜   [11C. 5] 

 
To perform the projection: 
 

• Write each basis orbital at the head of a column and in successive rows show the effect of 
each operation R on each orbital. Treat each operation individually. 

• Multiply each member of the column by the character, χ(Γ)(R), of the corresponding operation.  
• Add together all the orbitals in each column with the factors as determined in (2). 
• Divide the sum by the order of the group, h.  

 
Text Example 11C.4 illustrates the construction method. We provide a further example by constructing the E 
symmetry-adapted linear combinations of H1s orbitals for NH3, which belongs to the C3v point group. 
 
From the (sN,sA,sB,sC) basis in NH3 we form the following table with each row showing the effect of the 
operation shown on the left.  

 
 

 
sN 

 
sA 

 
sB 

 
sC 

 
E 

 
sN 

 
sA 

 
sB 

 
sC 

 
C3

+ 
 
sN 

 
sB 

 
sC 

 
sA 

 
C3

– 
 
sN 

 
sC 

 
sA 

 
sB 

 
σv 

 
sN 

 
sA 

 
sC 

 
sB 

 
σv′ 

 
sN 

 
sB 

 
sA 

 
sC 

 
σv″ 

 
sN 

 
sC 

 
sB 

 
sA 

 
To generate an E combination, we take the characters for E (2,−1,−1,0,0,0); then multiplication by the 
column under sA leads to ψ ∝ 2sA − sB − sC. Multiplication by the column under sB leads to the second 
E combination: ψ ∝ 2sB − sC − sA. Multiplication by the column under sC leads to a combination that is 
a linear combination of the previous two so it gives no further information. Notice that the first SALC 
minus the second gives ψ ∝ sA − sB so, should we wish, the pair ψ ∝ 2sA − sB − sC and ψ ∝ sA − sB can 
be chosen as the doubly degenerate e orbitals as shown in text Figure 11B.1. 
 
 

Solutions to exercises 
 
11C.1(b) The px orbital spans E' of the D3h point group while z and pz span A2". Following the Section 11C.1(a) 
procedure for deducing the symmetry species spanned by the product f1f2 and hence to see whether it does 
indeed span A1, we write a table of the characters of each function and multiply the rows. 
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The characters of the product pxzpz are those of E' alone, so the integrand does not span A1. It follows that the 
integral must be zero. 
 
11C.2(b) For a D6h molecule, x and y span E1u while z spans A2u. Thus, the x and y components of the dipole 
moment [11C.6] have transition integrands that span E2u × E1u × A1g for the A1g→E2u transition. By inspection of 
the C6h character table we find the decomposition of the direct product to be: E2u × E1u × A1g = B1g + B2g + E1g. 
Since it does not span A1, the x and y components of the transition integral must be zero. The transition 
integrand for the z component spans E2u × A2u × A1g = E2g for the A1g→E2u transition. Consequently, the z 
component of the transition integral must also equal zero and we conclude that the transition is forbidden. 
  
Should these considerations prove confusing, write a character table with rows that correspond to the functions 
of the transition integrand and multiply. Here is the table for the x and y components of the dipole moment: 

 
To see whether the totally symmetric species A1g is present, we form the sum over classes of the number of 
operations times the character of the integrand [11C.2]: 

1g(A ) (4) 2( 1) 2(1) ( 4) 3(0) 3(0) (4) 2( 1) 2(1) ( 4) 3(0) 3(0) 0n = + − + + − + + + + − + + − + + =  

Since the species A1g is absent, the transition is forbidden for x- or y-polarized light. A similar analysis leads to 
the conclusion that A1g is absent from the product A1gE2uz; therefore the transition is forbidden. 
 
11C.3(b) The classes of operations for D2 are: E, C2(x), C2(y), and C2(z). How does the function xyz behave 
under each kind of operation? E leaves it unchanged. C2(x) leaves x unchanged and takes y to –y and z to –z, 
leaving the product xyz unchanged. C2(y) and C2(z) have similar effects, leaving one axis unchanged and taking 
the other two into their negatives. These observations are summarized as follows. 
 

 E C2(x)  C2(y)  C2(z) 
xyz 1   1   1   1 

 
A look at the character table shows that this set of characters belongs to symmetry species A1. 
 
11C.4(b) NO3

– and SO3 both belong to the D3h group. It is often helpful to visualize the possible bonding 
patterns. So, before using the D3h character table we first use our knowledge of wavefunction behavior in the 
view of simple molecular orbital theory. 
 
With three O atoms providing valence pz orbitals (perpendicular to the molecular plane) in the combination 
2pz(A) – pz(B) – pz(C) only π bonding is possible with the N atom. This means that only the valence pz orbital of 
N may possibly have a nonzero overlap with this O combination. Furthermore, only the pz, the dxz and the dyz 
orbitals of S may possibly have nonzero overlap in this π system. To see this, look for nonzero overlap between 
pz(O) and px(N) orbitals in Fig. 11C.1(a). (The orbital has a positive wavefunction sign in shaded lobes and a 
negative wavefunction sign in unshaded lobes.) Clearly, the overlap of positive lobes (constructive interference) 
is exactly cancelled by the overlap of a negative lobe with a positive lobe (destructive interference) to give a net 
zero overlap. The same thing happens with the 2p /dz z

overlap shown in Fig. 11C.1(b). The pz/dxz overlap shown 
in Fig. 11C.1(c) yields a net nonzero overlap because both the overlap of positive lobes and the overlap of 
negative lobes results in constructive interference. 

D3h E σh 2C3 2S3 23C′  3σv 
px 2   2 –1 –1   0 0 
z 1 –1   1 –1 –1 1 
pz 1 –1   1 –1 –1 1 
pxzpz 2   2 –1 –1   0 0 

 E 62C  32C  2C  23C ′  23C ′′  i 
32S  62S  σh 

d3σ  v3σ  
A1g 1   1   1   1 1 1   1   1 1   1 1 1 
E2u 2 −1 −1   2 0 0 −2   1 1 −2 0 0 
(x, y) 2   1 −1 −2 0 0 −2 −1 1   2 0 0 
Integrand 4 −1   1 −4 0 0   4 −1 1 −4 0 0 
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Figure 11C.1 
 
Now, consider the non-normalized combination of oxygen pz orbitals to be: pz,comb = a×pz(A) + b×pz(B) + 
c×pz(C) where a, b, and c are constants. The overlap integral of pz,comb with pz(N) is 

{ },combp p (N) d p (A) p (B) p (C) p (N) d

p (A) p (N) d p (B) p (N) d p (C) p (N) d

z z z z z z

z z z z z z

a b c

a b b

τ τ

τ τ τ

× = × + × + × ×

= × × + × × + × ×

∫ ∫
∫ ∫ ∫

 

The three N─O bond lengths are equivalent so 
 p (A) p (N) d p (B) p (N) d p (C) p (N) dz z z z z zτ τ τ× = × = ×∫ ∫ ∫  
and the overlap integral becomes 

 
( ),combp p (N) d p (A) p (N) d

0 if 0 (as in this exercise, which has 2 1 1 0)
0 if 2

z z z za b c

a b c a b c
a b c

τ τ× = + + × ×

= + + = + + = − − =
≠ + + ≠

∫ ∫
 

Thus, the overlap integral is generally nonzero but it is zero for the very specific combination 2pz(A) – pz(B) – 
pz(C) because the AO’s are in the specific ratio +2:−1:−1. We conclude that no orbital of the central N atom can 
have a nonzero overlap with the combination 2pz(A) – pz(B) – pz(C) of the three O atoms but that the dxz and dyz 
orbitals of S may possibly have nonzero overlap in this π system. We now turn to the application of group 
theory and the use of symmetry-adapted linear combinations (SALCs) to gain a understanding of origin and 
symmetry species of the 2pz(A) – pz(B) – pz(C) combination. 
 
The symmetry species spanned by the oxygen (pz(A),pz(B),pz(C)) basis is easily found with use of these quick 
rules for determining the character of the basis set under each symmetry operation of the group D3h:  
 
Count zero each time a basis function is changed by the operation but count 1 each time a basis function is left 
unchanged by the operation, because only these functions give a nonzero entry on the diagonal of the matrix 
representative. In some cases there is a sign change, ( ) ( )… f … … f …− ← ; then –1 occurs on the diagonal, and so 
count –1. The character of the identity is always equal to the dimension of the basis since each function 
contributes 1 to the trace. Fig. 11C.2 is used to evaluate the effect of the operations on the oxygen 
(pz(A),pz(B),pz(C)) basis.  
 

 
Figure 11C.2 
 
Here is a tabulated summary of the characters: 
  
 
 

(a) pz/px overlap (c) pz/dxz overlap

  (b) p/d overlap
NA

B

C

D3h E σh 2C3 2S3 23C′  3σv 
(pz(A),pz(B),pz(C)) 3 –3   0   0 –1 1 
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Inspection of the D3h character table reveals that the above characters of the oxygen (pz(A),pz(B),pz(C)) basis 
spans 2A E′′ ′′+  because the sum of the 2A  and E′′ ′′  characters yields those of the above table. Further inspection 
of the D3h character table reveals that z belongs to 2A′′  and both xz and yz belong to E′′ . Consequently, as 
expected, only pz, dxz, and dyz orbitals of the central atom may possibly have nonzero overlap with symmetry-
adapted basis formed from (pz(A),pz(B),pz(C)).  
 
We continue by finding the SALCs using the procedure of text Section 11C.2(b). In the process we find why the 
specific combination 2pz(A) – pz(B) – pz(C) has been introduced in this exercise. We use the D3 subgroup for 
convenience and the following table summarizes the effect of point group operations on members of the 
(pz(A),pz(B),pz(C)) basis. 
 

D3, h = 6 pz(A) pz(B) pz(C) 
E pz(A) pz(B) pz(C) 

3C+  pz(C) pz(A) pz(B) 

3C−  pz(B) pz(C) pz(A) 

2 (A N)C′ −  −pz(A) −pz(C) −pz(B) 

2 (B N)C′ −  −pz(C) −pz(B) −pz(A) 

2 (C N)C′ −  −pz(B) −pz(A) −pz(C) 
 
To generate the A2 combination take χ(A2) = (1 1 1 −1 −1 –1) and multiply by any column of table 
transformations, sum terms, and divide by 6. This gives the totally symmetric combination. 
 2A′′ : pz,comb 1 = ⅓×(pz(A) + pz(B) + pz(C)) 
To generate the E combinations take χ(E) = (2 −1 −1 0 0 0) and multiply by each column of table 
transformations, sum terms for each, and divide each by 6. This gives three SALCs. 
 E′′ : pz,comb 2 = 1/6×(2pz(A) − pz(B) − pz(C)) 
  pz,comb 3 = 1/6×(2pz(B) − pz(A) − pz(C)) 
  pz,comb 4 = 1/6×(2pz(C) − pz(B) − pz(A)) 
 
pz,comb 4 is a linear combination of the previous two, pz,comb 4 = −( pz,comb 2 + pz,comb 3), so we discard it and are left 
with the double degenerate, orthogonal pair pz,comb 2 and pz,comb 3. In the process we have shown that the 
combination of the exercise, which is pz,comb 2, belongs to the E′′  symmetry species of D3h. 
 
Finally, inspection of the D3h character table tells us that pz(N) belongs to the 2A′′  symmetry species so the 
integrand of the overlap integral  between pz(N) and pz,comb 2 has the symmetry 2A E E′′ ′′ ′× = . The integrand does 
not span the totally symmetric species 1A′  so the overlap integral is necessarily zero. 
 
11C.4(b) The product ( )f iµΓ ×Γ ×Γ  must contain A1 (Example 11C.5 of text). Then, since i 1BΓ =  and 

2( ) ( ) ByµΓ = Γ =  of the C2v character table, we can draw up the following table of characters. 
 E C2 σv 

vσ ′   

B2 1 −1 −1   1  
B1 1 −1   1 −1  
B1 × B2 1   1 −1 −1 = A2 

 
Hence, the upper state is 2A , because A2 × A2 = A1. 

 
11C.5(b)  

D2, h = 4 E C2
z C2

y
 C2

x
 

A1 1   1   1   1 
B1 1   1 –1 –1 
B2 1 –1   1 –1 
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 ( ) ( ) ( ) ( ) ( )1      [11C.2]     where ( ) 6, 2,0,0
R

n R R R
h

χ χ χΓΓ = = −∑  

 ( ) ( ) ( ) ( ) ( ){ }1
41A 1 1 6 1 1 ( 2) 1 1 0 1 1 0 1n = × + × − + × + × =  

 ( ) ( ) ( ) ( ) ( ){ }1
41B 1 1 6 1 1 ( 2) 1 1 0 1 1 0 1n = × + × − + − × + − × =  

 ( ) ( ) ( ) ( ) ( ){ }1
42B 1 1 6 1 1 ( 2) 1 1 0 1 1 0 2n = × + − × − + × + − × =  

 ( ) ( ) ( ) ( ) ( ){ }1
43B 1 1 6 1 1 ( 2) 1 1 0 1 1 0 2n = × + − × − + − × + × =  

 
Thus, this set of basis functions spans A1 + B1 + 2B2 + 2B3. 
 
11C.6(b) (i) Anthracene belongs to the D2h point group. 
 
 
The components of μ span B3u(x), B2u(y), and B1u(z). The totally symmetric ground state is Ag. Since 

gA ×Γ = Γ  in this group, the accessible upper terms are 3uB  (x-polarized), 2uB  (y-polarized), and 1uB  

(z-polarized). 
 
(ii) Coronene, like benzene, belongs to the D6h group. The integrand of the transition dipole moment must be or 
contain the A1g symmetry species. That integrand for transitions from the ground state is A1gqf, where q is x, y, 
or z and f is the symmetry species of the upper state. Since the ground state is already totally symmetric, the 
product qf must also have A1g symmetry for the entire integrand to have A1g symmetry. Since the different 
symmetry species are orthogonal, the only way qf can have A1g symmetry is if q and f have the same symmetry. 
Such combinations include zA2u, xE1u, and yE1u. Therefore, we conclude that transitions are allowed to states 
with 2u 1uA or E  symmetry. 

 
11C.8(b) The Cs character table indicates that x and y are invariant under the σh symmetry operation while the 
character of z is −1 under σh. Thus, the z-axis is perpendicular to the σh plane, the x and y axes are in the plane. 
The character table also indicates that x2 belongs to the A' irrep so we surmise that x×x2 = x3 also belongs to A' 
(because A'×A' = A') and that any polynomial in x must belong to the totally symmetric A' irrep. Thus, the 
integral of any polynomial in x may be non-zero when integrated over an object of Cs symmetry (methanol, 
bromochloromethane, O=N−Cl, etc.). 
 
Now, consider the odd function f(z) = f1(z)×f2(z) = z×(3z2−1). Being perpendicular to the σh plane, the z 
dimension can exhibit a symmetrical integration interval from one side of the plane to the other side in a Cs 
object so we place the z-axis origin in the plane. The Cs character table indicates that z belongs to A'' while z2 
belongs to the totally symmetric A' irrep. Thus, the function z×(3z2−1) belongs to A'×A'' = A'' and, since it does 
not span the totally symmetric irrep, integration of the function over a symmetric interval around z = 0 is 
necessarily zero: 

      2
1 2 d 3 1 d 0

a a

a a
I f z f z z z z  z

 
        

 
 

Solutions to problems 
 
11C.2 (a) In C3v symmetry the H1s orbitals span the same irreducible representations as in NH3, which is A1 + 

B3 1 –1 –1   1 
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A1 + E. There is an additional A1 orbital because a fourth H atom lies on the C3 axis. In C3v, the d orbitals span 
A1 + E + E [see the final column of the C3v character table]. Therefore, all five d orbitals may contribute to the 
bonding. 
 
(b) In C2v symmetry the H1s orbitals span the same irreducible representations as in H2O, but one “H2O” 
fragment is rotated by 90º with respect to the other. Therefore, whereas in H2O the H1s orbitals span A1 + B2 
[H1 + H2, H1 – H2], in the distorted CH4 molecule they span A1 + B2 + A1 + B1 [H1 + H2, H1 – H2, H3 + H4, H3 – 

H4]. In C2v the d orbitals span 2A1 + B1 + B2 + A2 [C2v character table]; therefore, 2all except A (d )xy may 

participate in bonding. 
Note: The method used to solve Problem 11C.1 also works nicely. 
 
11C.4‡ (a) For a photon to induce a spectroscopic transition, the transition moment (μ) must be nonzero. The 
transition moment is the integral df iψ ψ τ∗∫ μ , where the dipole moment operator has components proportional 
to the Cartesian coordinates. The integral vanishes unless the integrand, or at least some part of it, belongs to the 
totally symmetric representation of the molecule’s point group. We can answer the first part of the question 
without reference to the character table, by considering the character of the integrand under inversion. Each 
component of μ has u character, but each state has g character; the integrand is g × g × u = u, so the integral 
vanishes and the transition is not allowed. 
 
(b) However, if a vibration breaks the inversion symmetry, a look at the I character table shows that the 
components of μ have T1 character. To find the character of the integrand, we multiply together the characters of 
its factors. For the transition to T1: 
 

 E 12C5 
2
512C  20C3 15C2 

A1 1 1 1 1   1 
μ(T1) 3 1

2 (1 5)+  
1
2 (1 5)−  0 –1 

T1 3 1
2 (1 5)+  

1
2 (1 5)−  0 –1 

Integrand 9 1
2 (3 5)+  

1
2 (3 5)−  0   1 

 
The decomposition of the characters of the integrand into those of the irreducible representations is difficult to 
do by inspection, but when accomplished it is seen to contain A1. Therefore the transition to T1 would become 
allowed. It is easier to use the eqn. 11C.2 to determine the coefficient of A1 in the integrand: 

 
( ) ( ) ( )1A

1

1 1
2 2

1

9 12

A ( )

{ [ (3 5)] 12[ (3 5)] 20(0) 15(1)} 60 1
Rh

n R Rχ χ

+

=

= + + − + + / =

∑
 

So the integrand contains A1, and the transition to T1 would become allowed. 
  
For the transition to G: 
 

 E 12C5 
2
512C  20C3 15C2 

A1 1  1  1 1   1 
μ(T1) 3 1

2 (1 5)+  
1
2 (1 5)−  0 –1 

G  4 –1 –1 1   0 
Integrand  12 1

2 (1 5)− +  
1
2 (1 5)− −  0   0 

 
Eqn. 11C.2, the little orthogonality theorem, gives the coefficient of A1 in the integrand as 
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( ) ( ) ( ) ( )1A

1

1 1
2 2

1A

{12 12[ (1 5)] 12[ (1 5)] 20(0) 15(0)} 60 0
Rh

n R Rχ χ=

= + − + + − − + + / =

∑
 

So the integrand does not contain A1, and the transition to G would still be forbidden. 
 
11C.6 Can the Eu excited state be reached by a dipole transition from the A1g ground state? Only if the 
representation of the product f iψ ψ∗µ  includes the totally symmetric species A1g. The z component of the dipole 
operator belongs to symmetry species A2u, and the x and y components belong to Eu. So the products we must 
consider are Eu×A2u×A1g and Eu×Eu×A1g. For z-polarized transitions, the relevant characters are: 
 

 E 2C4 C2 22C′  22C′′  i 2S4 σh 2σv 2σd 
Eu 2 0 –2   0   0 –2   0   2 0 0 
A2u 1 1   1 –1 –1 –1 –1 –1 1 1 
A1g 1 1   1   1   1   1   1   1 1 1 
EuA2uA1g 2 0 –2   0   0   2   0 –2 0 0 

 
To see whether Eu×A2u×A1g contains A1g, we would multiply the characters of the Eu×A2u×A1g by the characters 
of A1g, sum those products, and divide the sum by the order h of the group; since the characters of A1g are all 1, 
we can simply sum the characters of Eu×A2u×A1g. Because they sum to zero, the product Eu×A2u×A1g does not 
contain A1g, and the z-polarized transition is not allowed. 
 
For x- or y-polarized transitions: 
 

 E 2C4 C2 22C′  22C′′  i 2S4 σh 2σv 2σd 
Eu  2 0 –2 0 0 –2 0 2 0 0 
Eu  2 0 –2 0 0 –2 0 2 0 0 
A1g  1 1   1 1 1   1 1 1 1 1 
EuA2uA1g  4 0   4 0 0   4 0 4 0 0 

 
Summing the characters of Eu×A2u×A1g, yields 16, the order of the group. Therefore the product Eu×A2u×A1g 
does contain A1g, and the transition is allowed. 
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12      Rotational and vibrational spectra  
 
Note: The masses of nuclides are listed in Table 0.2 of the Resource section. 

12A  General features of molecular spectroscopy 
 

Answers to discussion questions 
 
12A.2 Doppler broadening. This contribution to the linewidth is due to the Doppler effect which shifts the 
frequency of the radiation emitted or absorbed when the molecules involved are moving towards or away from the 
detecting device. Molecules have a wide range of speeds in all directions in a gas and the detected spectral line is the 
absorption or emission profile arising from all the resulting Doppler shifts. The shape of a Doppler-broadened 
spectral line reflects the Maxwell distribution of speeds in the sample at the temperature of the experiment; hence 
the line broadens as the temperature is increased because the molecules acquire a wider and higher range of speeds. 
Doppler broadening can be significant in gas-phase samples but it can be reduced by decreasing the sample 
temperature. 
 
Lifetime broadening. The Doppler broadening is significant in gas-phase samples, but lifetime broadening occurs in 
all states of matter. This kind of broadening is a quantum mechanical effect related to the uncertainty principle in the 
form δE ≈ ħ/τ (eqn 12A.19) and is due to the finite lifetimes τ of the states involved in emission transitions. When τ 
is finite, the energy of the states is smeared out and hence the transition frequency is broadened. The rate of 
spontaneous emission cannot be changed; hence it is a natural limit to the breadth of a spectral line. 
 
Pressure broadening or collisional broadening. Collisional deactivation, which arises from collisions between 
molecules and from collision of molecules with the walls of the container, affects the rate of transition from an 
upper to a lower energy state. Lowering the pressure can reduce this rate. For a gas phase collisional lifetime of τcol, 
the mean time between collisions, the resulting collisional linewidth is δEcol ~ col/τ . Because τcol = 1/z for gases 
where z is the collision frequency, the kinetic model of gases implies that z is proportional to the pressure and that 
linewidths are proportional to the gas pressure. Thus, gas phase linewidths can be reduced by decreasing the 
pressure. The collisional frequency of liquid phase molecules is more difficult to define but, since pressure has little 
effect upon liquid density and kinetic energy, we expect pressure to have little effect upon the linewidth of liquid 
samples. Estimating that a liquid-phase molecule experiences a deactivating collision in the period of a vibration, the 
collisional linewidth is something like δEcol ~ 13 21

col/ ~ / (1.0 10  s) ~ 1.1 10  Jτ − −× ×   or ~53 cm−1/(τ/ps) [12A.19] 
as a wavenumber. 
 
 

Solutions to exercises 
 
12A.1(b) The ratio of Einstein coefficients A/B is 

(i) 
( ) ( )

( )

334 6 13
32 3

3 38 1

8π 6.626 10 Js 500 10 s8π  [12A.9] 7.73 10 J m s
2.998 10  m s

A hv
B c

− −
− −

−

× × ×
= = = ×

×
 

(ii) 
( )

( )

34
28 3

3 32

8π 6.626 10 J s8π so 3.9 10 J m  s
λ λ 3.0 10  m 

c A hv
B

−
− −

−

×
= = = = ×

×
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12A.2(b) 0

0
3 1 1 3 3

log log [J]    [12A.13 and 12A.14]

( 227 dm  mol  cm ) (2.52 10  mol dm ) (0 200 cm)
0 114

II L
I I

ε

− − − −

= − = −

= − × × × .
= − .

 

Hence, 0.114

0

10 0.769 and the reduction in intensity is 23.1 per cent .I
I

−= = ,  

 

12A.3(b) 0

0

log log [J]   [12A.13 and 12A.14]
II L

I I
ε= − = −  

 

0

3 3 1 1
4 3

6 3 1 1

6 2 1

1 log
[J]

log 0 615 1.2 10 dm mol cm
(7.17 10 mol dm ) (0 25cm)

1.2 10 cm mol cm [1dm 10cm]

1.2 10 cm mol

I
L I

ε

− −
− −

− −

−

= −

− .
= = ×

× × .

= × =

= ×

 

 
12A.4(b) log [J]    [12A.12-14]T A Lε= − = −  

 3 1 1

3

1 log (1 0.483)[J] log
(423 dm  mol  cm ) (0 650 cm)

1.04 mmol dm

T
Lε − −

−

− −
= − =

× .

=

 

 

12A.5(b) 
0

1 log  [12A.13 and 12A.14] with 0.20 cm
[J]

I L
L I

ε = − =  

We use this formula to draw up the following table. 
 
 

[dye] / mol dm–3 0.0010 0.0050 0.0100 0.0500 
I / I0 0.68 0.18 0.037 1.03 × 10–7 
ε / (dm–3 mol–1 cm–1)  670 596 573 559 

  
The table indicates that as the dye concentration increases the molar absorption coefficient does not remain constant. 
Rather, it significantly decreases. The reason for this is not entirely evident but we may hypothesize that the dye 
molecules become associated at the higher concentrations and that the associated state exhibits a lower absorption 
coefficient than that of the unassociated dye molecule. Should this hypothesis be correct, the molar absorption 
coefficient at the low concentration, 670 dm3 mol–1 cm–2, is the molar absorption coefficient of the dye. 
 

12A.6(b) ( ) 3 1 1
3

0

1 1log  [12A.13,  12A.14] log 0 29 58 dm  mol  cm
[J] (0.0185 mol dm ) (0 500 cm)

I
L I

ε − −
−

−
= − = . =

× .
 

 
3 3 1 1

[J]

0

( 0 0185 mol dm ) (58 dm  mol cm ) (0 250 cm) 0 27

10  [12A.12-14]

10 10 0 54  or 54 per cent

LIT
I

ε

− − −

−

− . × × . − .

= =

= = = . ,
 

  

12A.7(b) 
0 0

1log [J] so [J] log   [12A.13 and 12A.14]I IL L
I I

ε
ε

= − = −  

(i) [ ] 3
3 1 1

11J log 0.010 moldm cm
230dm mol cm

L −
− −= − × =  

(ii) [ ] ( ) 3
3 1 1

1J log 0 10 0.033 moldm cm
30dm mol cm

L −
− −= − × . =  
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12A.8(b) A parabolic lineshape, shown in Fig. 12.1 of the text, is symmetrical, extending an equal distance on either 
side of its peak. It is well known, and proven in the note below, that the area under a parabola equals 2/3 × base width 
× height. Let i f and v v   be the initial and final wavenumbers of the absorption band. Then, the base of the band has 
the width f iv v v∆ = −    and the integrated absorption coefficient is the area given by 

 ( ) ( ) ( )f

i

2
3 f i max

band

 d    [12A.15]  d   (See note below.)v v v v v v
ν

ν
ε ε ε= = = × − ×∫ ∫





     A  

Since 1 1 7 and / cm 10 /( / nm)ν λ ν λ− −= =  , the initial and final wavenumbers of the absorption band are: 
1 7 4 1 7 4

i f/ cm 10 / (275) 3.64 10      and     / cm 10 / (156) 6.41 10v v− −= = × = = ×  . So 

 
( ) ( )4 1 4 1 4 3 1 12

3

8 3 1 2

6.41 10  cm 3.64 10  cm 3.35 10  dm  mol  cm

   6.19 10  dm  mol  cm

− − − −

− −

= × × − × × ×

= ×

A
 

 
Note: The formula for the area of a parabola can be derived with the equation for a parabola (see Fig. 12.1 of the 
text): 
 ( ) ( ){ }2

max max1v v vε ε κ= − −    

The symmetry of the parabola means that 1 1
2 2max i fv v v v v= + ∆ = − ∆     . Because ( ) ( )i f 0v vε ε= =  , the constant κ is 

easily determined by examination of the parabola equation at either ( ) ( )i f or v vε ε  . 

 ( ){ } ( ){ } { }2 2 21 1
2 4max i max max i i max 2

40 1 1 1      or     v v v v v v
v

ε κ ε κ ε κ κ= − − = − − − ∆ = − ∆ =
∆

     



 

Thus, 

 

( ) ( )

( ) ( )

( ) ( )

f

i

f
f

i
i

band

2 3
max max max max2 2

3 3
max f f max i i max2 2

max f

 d    [12A.15]  d

4 4   1  d
3

4 4   
3 3

   

v

v

v
v

v
v

v v v v

v v v v v
v v

v v v v v v
v v

v

ν

ν

ε ε

ε ν ε

ε

ε

=

=

= =

   = − − = − −   ∆ ∆   

    = − − − − −    ∆ ∆    

=

∫ ∫

∫













   

    

 

     

 



A

( )( ) ( )( )3 3
1 1

2 2f f i i i2 2

2
3max f i max

4 4
3 3

   
6 6

v v v v v v v
v v

v vv v vε ε

    − − − ∆ − − − + ∆    ∆ ∆    
 ∆ ∆    = − − + = × ∆ ×        

      

 

 

  

 

 
12A.9(b) The integrated absorption coefficient is the area under an absorption peak 
 ( )

band

 d    [12A.15]ε ν ν= ∫  A  

We are told that ε is a Gaussian function, i.e. a function of the form 

 
2

max 2exp x
a

ε ε
 −

=  
 

 

where maxx ν ν= −   and a  is a parameter related to the width of the peak. The integrated absorption coefficient, then, 
is 

 
2

max max2exp d πx x a
a

ε ε
∞

−∞

 −
= = 

 
∫A  

We must relate a to the half-width at half-height, 1 2x / . 

 
2 2
1 2 1 2 1 21 1

max max2 22 2exp so ln and
ln 2

x x xa
a a

ε ε / / / − −
= = = 

 
 

So, ( ) ( )1 2 1 2
4 3 1 1 1 8 3 1 2

max 1 2
π π(1 54 10 dm mol cm ) (4233cm ) 1.39 10 dm mol cm

ln 2 ln 2
xε

/ /
− − − − −

/= = . × × × = ×A  
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12A.10(b) [ ]
1/2

approach
1 /   12A.16a
1 /

s cv v
s c

+ =  − 
 

or 
1/2

8 1 9 1
approach

1 /      where     2.9979 10  m s 1.0793 10  km h
1 /

s c c
s c

λ λ − −− = = × = × + 
 

Solve for s. 

 

( )
( )

( )
( )

2

approach
2

approach

2

2

/ 1

/ 1

680 / 530 1
0.244

680 / 530 1

s

c c

λ λ

λ λ

−
=

+

 −
 = =
 + 

 

For this very large Doppler-shift the traffic light must be approached at 24.4% the speed of light in a vacuum. 
 
12A.11(b) δE ≈ ħ/τ  so, since E = hv, ( ) 1δ 2πv τ −= . Solving for τ : 

(i) ( ) ( )( ) 11 6 12πδ 2π 200 10  s 0.796 nsvτ
−− −= = × =  

(ii)  ( ) ( ) ( ) ( )( ) 11 1 10 1 12πδ 2π δ 2π 2.9979 10  cm s 2.45 cm 2.17 psv c vτ
−− − − −= = = × × =  

 

12A.12(b) δE ≈ ħ/τ  so, since E = hv, ( ) 1 deactivation rateδ 2π   [i.e., 1 / deactivation rate]
2π

v τ τ−= = = . 

(i)  
9 11.0 10  sδ 159 MHz

2π
v

−×
= =  

(ii)  
9 11.0 10  sδ 16 MHz

2π 10
v

−×
= =

×
 

 
 
 

Solutions to problems 
 
12A.2 Solutions that have identical transmittance must have identical values of the absorbance [12A.13] and 
identical values of ε[J]L  [12A.14]. Consequently, 

 
[ ] [ ]

( ) ( )
cell 1 cell 2cell 2 cell 1

3 3

J J /

        25 g dm 1.55 cm / 1.18 cm 33 g dm

L L

µ µ− −

=

= × =
 

 
12A.4 The absorbance's A1 and A2 at wavelengths λ1 and λ2 are the sum of the individual absorbance's in the 
mixture of A and B. 

 1 A1 B1

2 A2 B2

[A] [B]          (i)
[A] [B]         (ii)

A L L
A L L

ε ε
ε ε

= +
= +

 

Solving (i) for [A] gives 

 1 B1

A1

[B]
[A]               (iii)

A L
L

ε
ε

−
=  

Substitution of (iii) into (ii) and solving for [B] gives 

 

( )

1 B1
2 A2 B2

A1

A1 2 A2 1 A2 B1 A1 B2

A1 2 A2 1

A1 B2 A2 B1

[B]
[B]

[B]+ [B]

[B]       (iv)

A LA L L
L

A A L L

A A
L

ε
ε ε

ε
ε ε ε ε ε ε

ε ε
ε ε ε ε

 −
= + 

 
= −

−
=

−

 

Substitution of (iv) into (iii) and simplifying gives 
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( )
( ) ( )

( )

( )

( )

A1 2 A2 1
A1 1 B1

A1 B2 A2 B1

A1 B2 A2 B1 1 B1 A1 2 A2 1

A1 B2 A2 B1

A1 B2 1 A1 B1 2

A1 B2 A2 B1

B2 1 B1 2

A1 B2 A2 B1

[A]

          

          

[A]        (v)

A AL A L
L

A A A

A A

A A
L

ε ε
ε ε

ε ε ε ε

ε ε ε ε ε ε ε
ε ε ε ε

ε ε ε ε
ε ε ε ε

ε ε
ε ε ε ε

 − = −  
−  

− − −
=

−

−
=

−

−
=

−

 

Equations (iv) and (v) are the desired results. 
 
12A.6‡ The integrated absorption coefficient is 
 

band
( )d   [12A.15]v vε= ∫  A  

If we can express ε  as an analytical function of v , we can carry out the integration analytically. Following the hint 
in the problem, we seek to fit ε  to an exponential function, which means that a plot of lnε  versus v  ought to be a 
straight line. So, if ln mv bε = + , then 

 exp( )exp( )mv bε =     and   ( ){ }f ie / exp( ) exp( )b m mv mv= − A  
We draw up the following table, find the best-fit line, and make the plot of Fig. 12A.1. The linear regression fit 
yields the values of m and b for the computation of the integrated absorption coefficient. 
 

/nm 3 1 1/(dm  mol  cm )ε − −  1/cmv −  3 1 1ln /(dm  mol  cm )ε − −  
292.0 1512 34248 4.69 
296.3 865 33748 4.13 
300.8 477 33248 3.54 
305.4 257 32748 2.92 
310.1 135.9 32248 2.28 
315.0 69.5 31746 1.61 
320.0 34.5 31250 0.912 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12A.1 

‡ These problems were supplied by Charles Trapp and Carmen Giunta. 
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So 
3 338 383

3 1 1
3 7 7

5 3 1 2

1 26 10 cm 1 26 10 cme exp exp dm mol cm
1 26 10 cm 290 10 cm 320 10 cm

1.24 10 dm mol cm

− −− .
− −

− − −

− −

    . × . ×
= −    . × × ×    

= ×

A  

 

Gaussian distribution: ( )
21

2
maxe

v

v
µ

σε ε
− −  

 =


  where µ is the mean of v  and σ is the standard deviation of the 
distribution. Dividing by εmax, taking the natural logarithm, and solving for v µ−  gives 

 
1/2

max2 lnv
ε

µ σ
ε

 − = ± 
 

  

The width of the distribution at half-height, 1/2v∆ , equals 2 v µ−  evaluated at ε = εmax/2. Thus, 

 1/2 1/2
1/2 1/22(2 ln 2)      or     

2(2 ln 2)
v

v σ σ
∆

∆ = =


  

We can now evaluate the integrated absorption coefficient, A, in terms of εmax and 1/2v∆ . 

Let  
2½

max
1     and     d d      and     e xvx x vµ ε ε

σ σ
−−

= = =


  

Then ( )2 1/2½
max max

1/2

max 1/2

max 1/2

d  [40.10] e d 2π      [standard integral]

1 π
2 ln 2

1.064467

xv x

v

v

ε ε σ ε σ

ε

ε

∞ ∞ −

−∞ −∞
= = =

 = ∆ 
 

= ∆

∫ ∫





A  

The Gaussian distribution is symmetric about the mean value of v , µ, which is the value of v  at the peak of the 
distribution. The absorption band of text Fig. 12.2 does not quite have this symmetry. It appears to be a skewed 
slightly toward the higher wavenumbers. Never the less, we estimate A by assuming that it can be approximated as a 
single Gaussian characterized by εmax and 1/2v∆  values that are coarsely read off text Fig. F9.2. 

Coarse estimate: ( ) ( )3 1 1 3 1
max 1/2

4 3 1 2

1.064467 1.064467 10 dm  mol  cm 5.4 10  cm

5.7 10  dm  mol  cm

vε − − −

− −

= ∆ = × × ×

= ×

A  

Let us now suppose that the slightly non-Gaussian shape exhibited by text Fig. 12.2 results from two separate 
absorption lines each of which has a molar absorption coefficient that is a Gaussian function of wavenumber. Text 
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Fig. 12.2 is then an 'apparent' molar absorption coefficient that is the sum of two independent Gaussians each 
characterized by an amplitude A, a mean value µ, and a standard deviation σ. That's a total of 6 parameters to be 
adjusted to fit the data of the figure. We label the 3 parameters of the predominate Gaussian, the one with the lower 
mean wavenumber, with a '1'; the low amplitude, higher mean distribution is labeled with a '2'. A lot of ( v ,ε) data 
pairs are needed to determine precise values of the parameters so we expanded text Fig. 12.2 and used Photoshop to 
read a total of 20 data pairs, several of which are displayed in the following Mathcad Prime 2 worksheet. Calling the 
sum of the two Gaussians Gsum, the worksheet uses guess values for the 6 parameters to calculate the difference εobs 
− Gsum at each of the 20 obsv , the difference is squared and summed over all data pairs, which the worksheet calls the 
'sum of the squared errors' SSE. The idea is to systematically adjust the 6 parameters so as to minimize SSE. 
Mathcad performs the minimization process with the 'minerr()' function within a solve block. The symbol 'v' is used 
to represent wavenumber within the worksheet. 
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The plot shows that the sum of two Gaussians with adjusted parameters fits the data very nicely. The values of the 
six parameters are listed just above the plot. The following worksheet section uses the fitted function to calculate the 
integrated absorption coefficient with eqn 12A.15. The earlier, coarse estimate is seen to be rather close to the more 
precise calculation. 

 
 
12A.8‡ (a) The integrated absorption coefficient is (specializing to a triangular lineshape) 

 

maxband
3 1 1 1

5 3 1 2

d ½

½ (150dm mol cm ) (34483 31250)cm

2.42 10  dm mol cm

v vε ε
− − −

− −

= = ∆

= × −

= ×

∫  A

 

  
(b) The concentration of gas under these conditions is 

 4 3
3 total 3 1 1

2 4Torr[CH I] 1 03 10 mol dm
(62 364Torr dm mol K ) (373K)

n p
V RT

− −
− −

.
= = = = . ×

. ×
 

Over 99% of these gas molecules are monomers, so we take this concentration to be that of CH3I (If 1 of every 100 
of the original monomers turned to dimers, each produces 0.5 dimers; remaining monomers represent 99 of 99.5 
molecules.) Beer’s law states 
 
 3 1 1 4 3

3[CH I] (150dm mol cm ) (1 03 10 mol dm ) (12 0 cm) 0 185A Lε − − − −= = × . × × . = . .  
 
(c) The concentration of gas under these conditions is 
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 3 3
3 total 3 1 1

100Torr[CH I] 4 30 10 moldm
(62 364Torr dm mol K ) (373K)

n p
V RT

− −
− −= = = = . ×

. ×
 

Because 18% of these CH3I units are in dimers (forming 9% as many molecules as were originally present as 
monomers), the monomer concentration is only 82/91 of this value or 3.87 × 10–3 mol dm–3. Beer’s law is 
 
 3 1 1 3 -3

3[CH I] (150dm mol cm ) (3 87 10 moldm ) (12 0cm) 6.97A Lε − − −= = × . × × . =  
 
If this absorbance were measured, the molar absorption coefficient inferred from it without consideration of the 
dimerization would be 
 

 
1 3

3

3 1 1

([CH I] ) 6 97 ((4 30 10 moldm ) (12 0cm))

135dm mol cm

A Lε − −

− −

= / = . / . × × .

=
 

 
an apparent drop of 10% compared to the low-pressure value. 
 
12A.10 According to eqn 12A.16a, the Doppler effect obeys 

 recedingv vf=  where 
1/ 21 /

1 /
s cf
s c

− =  + 
 

This can be rearranged to yield: 

 
2

2

1
1

fs c
f

−
=

+
. 

We are given wavelength data, so we use: 

 star

star
.vf

v
λ

λ
= =  

The ratio is: 

 654.2 nm 0.9260,
706.5 nm

f = =  

so  
2

7 1
2

1 0.9260 0.0768 2.30 10 m s
1 0.9260

s c c −−
= = = ×

+
 

The broadening of the line is due to local events (collisions) in the distant star. It is temperature dependent and hence 
yields the surface temperature of the star. Eqn 12A.17 relates the observed linewidth to temperature: 

 
1/2 2

obs
2 2 ln 2 δδ so     ,

2 2 ln 2
kT c mT

c m k
λ λλ

λ
   = =   
   

 

 

28 1 12 27 1

9 23 1

5

(2.998 10 m s ) (61.8 10  m) (47.95 u)(1.661 10  kg u ) ,
2(654.2 10  m) 2(1.381 10 J K ) ln 2

8.34 10 K

T

T

− − − −

− − −

   × × × ×
=    × ×   

= ×

 

 
12A.12 On the assumption that every collision deactivates the molecule we may write 

 
1 2 1 2

col
1 π π

4 4
kT m kT M

z p kT p RT
τ

σ σ

/ /
   ≈ = =   
   

 

For HCl, with MHCl = 36 g mol−1, 

 

1/223 1 3 1

col 18 2 5 1 1

10

(1 381 10 J K ) (298 K) π (36 10  kg mol )
(4) (0 30 10 m ) (1 013 10 Pa) (8.315 J K  mol ) (298 K)

2 3 10 s

τ
− − − −

− − −

−

   . × × × ×
= ×   × . × × . × ×   
= . ×

 

 δ δE h v
τ

= =
  

The width of the collision-broadened line is therefore approximately 
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 col 10
col

1 1δ 700MHz
2π (2π) (2 3 10 s)

v
τ −= = ≈

× . ×
 

To calculate the Doppler width we need the relation 

 
( )

( ) ( ) ( )

1/2 1/2
1

dop HCl

1/21 1

3 18 1

6

2 2 ln 2 2 2 ln 2δ [40.12,  36 g mol ]

2 8.315 J K  mol 298 K ln 22
36 10  kg mol2.998 10  m s

2.1 10

v kT v RTv M
c m c M

v

v

−

− −

− −−

−

   = = ≈   
   

 × × ×
 = ×
 ××  

= ×

 

       
HCl exhibits a microwave, rotational transition at λ ≈ 0.016 cm (v ≈ 1.9 × 1012 Hz) so the Doppler width is 
estimated to be  

 
( ) ( )6 12

dopδ 2.1 10 1.9 10  Hz

4.0 MHz

v −= × × ×

=
 

 
Since the collision width is proportional to   [ 1  and 1 ]p pδν τ τ∝ / ∝ /  and, the pressure must be reduced by a factor 
of about 4.0/700 = 0.006 before Doppler broadening begins to dominate collision broadening. Hence, the pressure 
must be reduced to below (0 006) (760Torr) 5 Torr. × =  
 
12A.14 Our study uses the discrete forms of eqns 12A.21 and 12A.22 for the signal and Fourier transformation. 
These are described in text Example 12A.2. Here's a Mathcad Prime 2 worksheet that is suitable for the study. 
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By changing the values of the signal wavenumbers and intensities it is found that the Fourier transform of the 
interferometer output faithfully reproduces the signal. There is, however, an exception. If the interferometer number 
of p values, N, is set too low (try 20), the Fourier transform becomes a very bad distortion of the original signal and 
spurious peaks appear. 
 
 
 
 

12B  Molecular rotation 
 

Answers to discussion questions 
 
12B.2 A molecule has three principal axes of rotation; label them a, b, and c. The corresponding moments of 

inertia are Ia, Ib, and Ic. A prolate symmetric rotor has a b cI I I≠ =  with a b cI I I I I⊥= < = =


. An 

oblate symmetric rotor has a b cI I I= ≠  with a b cI I I I I⊥= = < =


. An American football and a cigar 
are prolate symmetric rotors, a discus and pancake are oblate symmetric rotors. CH3Cl and CH3CCH are 
prolate. PF3, benzene, C6H6,  and BCl3 are oblate. 

 
 

Solutions to exercises 
 
 
12B.1(b) PH3 is a symmetric rotor similar to NH3; we use 
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2
H

27 10 2
u u

47 2

2 (1 cos )  [Table 12B.1]

2 1.0079 1.66054 10  kg/ (1 cos93.5 ) (1.42 10 )

   7.161 10  kg m

I m R

m m

θ

− −

−

= −

= × × × × − × ×

= ×





  

    The corresponding rotational constant is  

 

34
1 1

8 -1 47 2

1.05447 10  J s 390.9 m 3.909 cm  
4 4 2.998 10  m s 7.161 10  kg m

A
cIπ π

−
− −

−

×
= = = =

× × × ×




 

 
 
12B.2(b) In order to conform to the symbols used in the first symmetric rotor figure of Table 12B.1, we will use the 

molecular formula BA4. I


 is along the internuclear axis, the unique AB bond, and I⊥  is perpendicular to 
both I



 and a molecular face that does not contain I


 (see the symmetric rotor of text Fig. 12B.3). For our 

molecule, mC = mA and  ( )1
tetra / 2 sin 1/ 3θ θ π −= = +  where tetraθ  is the tetrahedral angle (approx. 

109.471°). You can demonstrate that ( ) 1
3tetracos θ = −  and, using the definition AB AB AB/ /R R R Rρ ′ ′= = , 

the equations of Table 12B.1 simplify to 

  
( )

( ) ( ){ }

2 8
3A tetra

2 4
3A A B A B A A B

/ 2 1 cos

/ / 3 3 2 /  where 4 .

I m R

I m R m m m m m m m m m m

θ

ρ ρ⊥

= − =

= + + + + + = +
  

 The 2
A/I m R



 moment of inertia ratio does not depend upon either atomic masses or bond lengths. It is a 

constant 8/3 for all symmetric rotors with tetrahedral angles. However, the 2
A/I m R⊥  moment of inertia 

ratio does have a specific atomic mass dependency so we will plot its ρ dependence for CH4, an important 
fuel and powerful greenhouse gas. The computational equation is 

  ( )2 77
48A/ 15 2 /16I m R ρ ρ⊥ = + +  

 and its plot is found in Fig. 12B.1. As ρ increases, the atom on the axis of I


 moves away from the axis of 
I⊥ , thereby, increasing the moment of inertia around this axis. 

 
 

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 1.2 1.4 1.6 1.8 2

 
 

2
A/I m R

4 all BA  moleculesI


4 for CHI⊥

ρ

    Figure 12B.1 
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12B.3(b) (i) asymmetric, (ii) oblate symmetric, (iii) asymmetric, (iv) linear 
 
12B.4(b) This exercise is analogous to Exercise 12B.4(a), but here our solution will employ a slightly different 

algebraic technique. Let 16 12
OC CS, ,O O,C C.R R R R= = = =′  

 [See the comment in the solution to Exercise 12B.4(a)]
4

I
Bπ

=
  

( )
( ) ( )

34
32 45 2 19 2

9 1 u
1.05457 10 J sOC S 1.3799 10 kg m 8.3101 10   m

4 6.0815 10  s
I m

π

−
− −

−

×
= = × = ×

× ×
 

 ( )
( ) ( )

34
34 45 2 19 2

9 1 u
1.05457 10 J sOC S 1.4145 10 kg m 8.5184 10   m

4 5.9328 10  s
I m

π

−
− −

−

×
= = × = ×

× ×
 

The expression for the moment of inertia given in Table 12B.1 may be rearranged as follows. 

( )22 2
A C A CIm m mR m mR m R m R′ ′= + − −  

2 2 2 2 2 2
A C A A C C2m mR m mR m R m m RR m R′ ′ ′= + − + −  

( ) ( )2 2
A B C C A B A C2m m m R m m m R m m RR′ ′= + + + +  

Let C 32 C 34S S and m m m m= =′  

( ) ( )

( ) ( )

2 2A
C A B AB

C C

2 2A
B C A B A

C C

2                                      (a)

2                                    (b)

mIm m m R m m R m RR
m m

mI m m m R m m R m RR
m m

= + + + +′ ′

′ ′
= + + + +′ ′ ′

′ ′

 

  Subtracting 

 ( ) ( ) 2A A
B C B C

C C C C

m mIm I m m m m m R
m m m m

    ′ ′
′− = + − +    ′ ′     

 

 Solving for R2 

 
( )

( ) ( ) ( ) ( )
C C

A A

C C

2 C C

B A C CB C B C
( - )

Im I m
m m

m m
m m

m Im m I m
R

m m m mm m m m

′ ′
′

′

− −′ ′ ′
= =

′ + − + ′ 
 

 Substituting the masses, with 
S S

,  A O B C C 32 C 34, , and m m m m m m m m′= = = =  

u u(15.9949 12.0000 31.9721) 59.9670 m m m     

u u(15.9949 12.0000 33.9679) 61.9628 m m m      
19 2

2

19 2

u u u

u u u u

u u u

u u u u

(33.9679 ) (8.3101 10   m ) (59.9670 )
(12.0000 ) (15.9949 ) (33.9679 31.9721 )

(31.9721 ) (8.5184 10   m ) (61.9628 )
(12.0000 ) (15.9949 ) (33.9679 31.9721 )

51.64

m m m
R

m m m m

m m m
m m m m





  


  

  


  


19 2

20 246 10 m ) 1.3482 10 m
383.071




 

 

10
OC1.1611 10 m = 116.1 pm  = R R   
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Because the numerator of the expression for R2 involves the difference between two rather large numbers of 
nearly the same magnitude, the number of significant figures in the answer for R is certainly no greater than 
4. Having solved for R, either equation (a) or (b) above can be solved for R′. The result is 

   10
CS1.559 10 m 155.9 pmR R      

 
12B.5(b) The centrifugal distortion constant is given by 

  



3

2
4  [12B.17, also see Integrated Activity I12.2]J

BD
ν

=


 

1 3
8

1 2
4 (0.0809 cm ) 12.028 10  cm

(323.2 cm )JD
−

−
× − −= = ×  

 

  







79

81

3

Br

3 381

3 3 379
Br

uBr

uBr

1
         [Table 12B.1]

(78.9183 )1 ( )
Therefore,  and 0.9277

(80.9163 )( )
Br
Br

J

J
J

J

D B B I m
I

m mD
D

m m mD

∝ ∝ ∝

∝ = = =
 

 We have assumed that the internuclear distance remains constant upon substitution.  
 
 
 
 
 
 
 
 
 
 
 

Solutions to problems 
 
12B.2  

 
Figure 12B.2 

  
      
 

Let us assume atom C is the most massive. Then the center of mass, CM, will be located at a distance, D, 
from atom B. In the notation of Table 12B.1, we must have the relation 

   A B C( ) ( )′+ + = −m R D m D m R D , which may be rearranged into 

  A B C C A( ) ′+ + = −D m m m m R m R   

Atom 
A 

Atom
B 

Atom C 
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 Solving for D, we obtain C A′ −
=

m R m R
D

m
, where A B C= + +m m m m . Expanding   

 2[12B.1]i i
i

I m r= ∑ gives  

  
2 2 2 2 2

A A A B C C C
2 2 2

A C A B C A C

2 2

  ( ) 2 ( )

′ ′= + + + + + −

′ ′= + + + + + −

I m R m D RDm m D m R m D R Dm

m R m R D m m m D m R m R
 

 After substituting the above formula for D, and using A B Cm m m m= + + we obtain 

 

2 2 C A C A
A C A C

2 2 2 2
A C C A C A

2 2 2
A C C A

2 2 2
A C A C

2
2 ( )

1 2  ( ) ( )

1  ( )

1  ( )

 

′ ′− −   ′ ′= + + + × −   
   

′ ′ ′= + + − − −

′ ′= + − −

′ ′= + − −

m R m R m R m R
I m R m R m m R m R

m m

m R m R m R m R m R m R
m m

m R m R m R m R
m

m R m R m R m R
m

 

 QED  

 
 
 
12C Rotational spectroscopy 

 
Answers to discussion questions 

 
12C.2 (1) Rotational Raman spectroscopy. The gross selection rule is that the molecule must be anisotropically 

polarizable, which is to say that its polarizability, α, depends upon the direction of the electric field 
relative to the molecule. Non-spherical rotors satisfy this condition. Therefore, linear and symmetric 
rotors are rotationally Raman active. 

(2) Vibrational Raman spectroscopy. The gross selection rule is that the polarizability of the molecule 
must change as the molecule vibrates. All diatomic molecules satisfy this condition as the molecules 
swell and contract during a vibration, the control of the nuclei over the electrons varies, and the 
molecular polarizability changes. Hence both homonuclear and heteronuclear diatomics are 
vibrationally Raman active. In polyatomic molecules it is usually quite difficult to judge by inspection 
whether or not the molecule is anisotropically polarizable; hence group theoretical methods are relied 
on for judging the Raman activity of the various normal modes of vibration. The procedure is 
discussed in Section 12D.5 and demonstrated in Brief Illustration 12D.5. 

 
 
12C.4 Hydrogen molecules can exist in two forms: the para- form has antiparallel nuclear spins and the ortho- 

form has parallel nuclear spins. Because of these arrangements of the nuclear spins the ortho- form must 
have rotational wavefunctions restricted to odd J values only as discussed in detail in Section 12C.3. Ortho-
hydrogen cannot exist in the J = 0 state. Hence, the lowest energy level of ortho-hydrogen has J = 1 and 
therefore a zero-point energy. The conversion between the two forms is very slow.    
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Solutions to Exercises 

 
12C.1(b) Polar molecules show a pure rotational absorption spectrum. Therefore, select the polar molecules 

based on their well-known structures. Alternatively, determine the point groups of the molecules and 
use the rule that only molecules belonging to Cn, Cnv, and Cs may be polar, and in the case of Cn and 
Cnv, that dipole must lie along the rotation axis. Hence all are polar molecules. 
Their point group symmetries are 
(i) 2 2v 2 2 2 3 3v 2 vH O, , (ii) H O ,  C , (iii) NH ,  , (iv) N O, C C C  

All show a pure rotational spectrum. 

 
 
12C.2(b)   The frequency of the transition is related to the rotational constant by 

   [ ] ( 1) ( 1) 2hv E hc F hcB J J J J hcBJ= ∆ = ∆ = + − − =  

where J here refers to the upper state ( )2J = . The rotational constant is related to molecular structure by  

  

2
eff

-

4 4
B

cI cm Rπ π
= =

   

where I is moment of inertia, effm  is effective mass, and R is the bond length. Putting these expressions 
together yields 

 

2
eff

2
2

Jv cBJ
m Rπ

= =
  

The reciprocal of the effective mass is 

  
( ) ( )1 1

u u1 1 1 25 1
eff C O 27 1

u

12 15.9949
8.78348 10  kg

1.66054 10  kg 
m m

m m m
m

− −
− − − −

− −

+
= + = = ×

×
 

( ) ( ) ( )
( )

25 1 34
11 1

212

8.78348 10  kg 1.0546 10 J s 2
So 2.3169 10  s

2 112.81 10 m
v

π

− −
−

−

× × × ×
= = ×

×
 

When centrifugal distortion is taken into account the frequency decreases as can be seen by considering 
eqn. 12C.8b. 

 
 
 
12C.3(b)  The wavenumber of the transition is related to the rotational constant by 

   [ ] ( 1) ( 1) 2hc E hc F hcB J J J J hcBJν = ∆ = ∆ = + − − =  

where J refers to the upper state (J = 1). The rotational constant is related to molecular structure by 

 

4
B

cIπ
=

  

where I is moment of inertia. Putting these expressions together yields 

 

( ) ( )
( ) ( )

34

10 1 1

1.0546 10 J s 1
2   so  

2 2 2 2.998 10  cm s 16.93 cm
J JBJ I
cI c

ν
π π ν π

−

− −

× ×
= = = =

× ×
 





 

47 23.307 10  kg mI −= ×  

 The moment of inertia is related to the bond length by 

 
1 2

2
eff

eff

 so  II m R R
m

 
= =   
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( ) ( )1 1
u u1 1 1 26 1

eff H Br 27 1
u

1.0078 80.9163 
6.0494 10  kg

1.66054 10  kg 
m m

m m m
m

− −
− − − −

− −

+
= + = = ×

×
 

{ }1 226 1 47 2and (6.0494 10  kg ) (3.307 10  kg m )R − −= × × ×  

101.414 10 m 141.4pm−= × =  

 
12C.4(b) The wavenumber of the transition is related to the rotational constant by 

   [ ] ( 1) ( 1) 2hcv E hc F hcB J J J J hcBJ= ∆ = ∆ = + − − =  

where J refers to the upper state. So wavenumbers of adjacent transitions (transitions whose upper 
states differ by 1) differ by 

 2   so  
2 2

v B I
cI c vπ π

∆ = = =
∆

 





 

where I is the moment of inertia, effm  is the effective mass, and R is the bond length. 

So 
( )

( ) ( )
34

46 2
10 1 1

1.0546 10  J s
5.420 10  kg m

2 2.9979 10  cm s 1.033 cm
I

π

−
−

− −

×
= = ×

× ×
 

The moment of inertia is related to the bond length by 

 
1 2

2
eff

eff

 so  II m R R
m

 
= =   

 

( ) ( )1 1
u u1 1 1 25 1

eff F Cl 27 1
u

18.9984 34.9688 
4.89196 10  kg

1.66054 10  kg 
m m

m m m
m

− −
− − − −

− −

+
= + = = ×

×
 

( ) ( ){ }1 225 1 46 2and 4.89196 10  kg 5.420 10  kg mR − −= × × ×  

101.628 10 m 162.8 pm−= × =  

 
12C.5(b) See eqn 12C.9 and problem 12C.9.The most highly populated rotational level is given by 

  


max
1

 [12C.9]
22

kTJ
hcB

 ≈ − 
 

½

 

 For Br2 after substituting for the constants this expression becomes 

  max
1
2

/ K
0.2328
TJ  ≈ − 

 

½

 

(i) At 25°C = 298.15 K,  max
1

36
2

298.15 / K
0.2328

J ≈≈   − 
 

½

 

(ii) At 100°C = 373.15 K, max
1

40
2

373.15 / K
0.2328

J ≈
 ≈ − 
 

½

 

Answers are rounded off to the nearest integer. 
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12C.6(b) A molecule must be anisotropically polarizable to show a rotational Raman spectrum; all molecules 

except spherical rotors have this property. So 2 2 3 3 2(i)CH CI , (ii)CH CH ,  and (iv)N O  can display 

rotational Raman spectra; SF6 cannot. 
  
12C.7(b) The wavenumber of a Stokes line in rotational Raman is 

 

Stokes i 2 (2 3) [12C.15]B Jν ν     

 where J is the initial (lower) rotational state. So 

   1 1 1
Stokes 20623 cm 2(1.4457 cm ) [2(2) 3] 20603 cmν         

  
12C.8(b) The separation of lines is 4B , so  1 11

4 (3.5312 cm ) 0.88280 cmB      

Then we use 
1 2

eff

 [Exercise 12C.8(a)]
4

R
m cBπ

      

  

with  19 27 1 261 1
eff 2 2 u uF (18.9984 ) (1.6605 10 kg ) 1.577342 10 kgm m m m          

1 234

26 10 1 1

10

1.0546 10  J s
4 (1.577342 10  kg) (2.998 10  cm s ) (0.88280 cm )

1.41785 10  m = 141.78 pm

R
π



  



          

 

 

 
 
12C.9(b) For 12C32S2, all nuclei are spin-0. The symmetry considerations are identical to those of  12C16O2 

discussed in the text; only even values of J are permissible. For 13C32S2, the symmetry of the molecule 
is unchanged, so again only even values of J are permissible. 

 
 

Solutions to problems 
 
 
12C.2 The separations between neighbouring lines are 

120.81,  20.60,  20.64,  20.52,  20.34,  20.37,  20.26 mean:20.51cm−  

  ( ) 1 11
2 (20.51cm ) 10.26cmB − −= × =  and 



34
47 2

10 1 1

1.05457 10 Js 2.728 10 kg m
(4 ) (2.99793 10 cms ) (10.26 cm )4

I
cB ππ

−
−

− −

×
= = = ×

× × ×


 

1/2
27

eff
eff

1/247 2

27

[Table 12B.1] with 1.6266 10 kg  [Exercise 12C.3(a)]

2.728 10 kg m 129.5pm
1.6266 10 kg

IR m
m

−

−

−

 
= = × 

 

 ×
= = × 

 

Comment. Ascribing the variation of the separations to centrifugal distortion, and not by just taking a 
simple average would result in a more accurate value. Alternatively, the effect of centrifugal distortion 
could be minimized by plotting the observed separations against J, fitting them to a smooth curve, and 

extrapolating that curve to 0J = . Since  1B
I

∝  and 

eff
eff

1,  .I m B
m

∝ ∝  Hence, the corresponding lines in 

2 35H Cl  will lie at a factor 
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1 35

eff
2 35

eff

( H Cl) 1.6266 0.5144
3.1622( H Cl)

m
m

= =  

to low frequency of 1 35H Cl  lines. Therefore, we expect lines at 
142.23,  52.79,63.34,  73.90,  84.46,  95.02,  and 105.57 cm .−  

 
 

12C.4 


1/2

4
R

cBπµ
 

= 
 

  and 2 ( 1) [12C.8a, with ]v cB J v cv= + =   

We use u u
(63.55) (79.91)(CuBr) =35.40  
(63.55) (79.91)

m mµ ×
≈

+
 

and draw up the following table: 
J 13 14 15 

/ MHzv  84421.34 90449.25 96476.72 



1/ cmB −  0.10057 0.10057 0.10057 

 

1/ 234

27 10 1 1

1.05457 10 JsHence, 
(4 ) (35.40) (1.6605 10 kg) (2.9979 10 cms ) (0.10057cm )

218 pm

R
−

− − −

 ×
=  × × × × × × 

=

π  

 
 

12C.6  The data given is analyzed in the Excel® worksheet below in which a linear regression is performed  on the  
 left hand side of the equation provided in the problem. See Fig. 12C.1 below: 

  
J (J+1) 2(J+1) (J+1)2 ν(J+1←J)/cm-1 ν(J+1←J)/2(J+1)/cm-1  
       
0 1 2 1 3.845033 1.9225165  
1 2 4 4 7.689919 1.92247975  
2 3 6 9 11.53451 1.922418333  
3 4 8 16 15.378662 1.92233275  
4 5 10 25 19.222223 1.9222223  

 
 
   

 
    

 
Figure 12C.1 
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The intercept 1.9225287 cm-1 is the value of the rotational constant B . The slope −1.2257 x 10-5 cm-1 gives 
2 JD− . Therefore  JD = 6.1285 x 10-6 cm-1. The equilibrium bond length is calculated from 



1/ 2

4
R

cBπµ
 

= 
 

 . We use 12 16
u u

(12.0000) (15.9949)( C O) = 6.8562
(12.0000) (15.9949)

m mµ ×
=

+
 

261.13850 10  kg−= ×   
1/234

26 10 1 1

1.05457 10 JsHence, 
(4 ) (1.13850 10 kg) (2.99793 10 cms ) (1.9225287 cm )

113.09 pm

R
π

−

− − −

 ×
=  × × × × × 

=

 

Comment: these values for the rotational constant are slightly different from the values given in data table 
12D.1.  

 
 
12C.8 If we apply the selection rules 1,  0∆ = ± ∆ =J K to the formula for the rotational terms given in the problem 

  we obtain for the frequencies of the allowed transitions the expression 

1, ,
3 2( 1, ) ( , ) 2 ( 1) 4 ( 1) 2 ( 1)ν + ← = + − = + − + − +J K J K J JKF J K F J K B J D J D J K    

In terms of wavenumbers, the expression is similar   

   

1, ,
3 2( 1, ) ( , ) 2 ( 1) 4 ( 1) 2 ( 1)ν + ← = + − = + − + − + 

J K J K J JKF J K F J K B J D J D J K  

 To work with the latter expression one must convert the data given in frequency units to wavenumbers. 
 Here we solve the problem in frequency units using the former expression. We note that A and DK drop out 
 of the expression for the transition frequencies, hence these constants cannot be determined from the 
 data given. 
 Examination of the data suggests that the identification of the transitions as shown in the table below can be 
 made. 
 
  

transition 1 2 3 4 5 

transition 
frequency, 
ν/GHz 

51.0718 102.1426 102.1408 153.2103 153.2076 
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transition 
quantum 
numbers 

0 
0 1

=
= →

K
J

 0 
1 2

=
= →

K
J

 1 
1 2

=
= →

K
J

 0 
2 3

=
= →

K
J

 1 
2 3

=
= →

K
J

 

transition 
frequency 
expression 

2 4− JB D  4 32− JB D  4 32 4− −J JKB D D  6 108− JB D  6 108 6− −J JKB D D  

  
 Examination of these expressions reveals that the difference in transition frequencies between 
 transitions 3 and 2 and between transitions 5 and 4 yield the value of DJK directly.  

     DJK  = 4.5 × 102 kHz 

B and DJ can be found from simultaneous solution of the equations for transitions 1 and 2 and also from 
transitions 2 and 4. The average value of DJ obtained in this way is DJ = 56 kHz. The value of B obtained 
from transition 1 is then B = 25.5360 GHz. If desired, these results in frequency units, Hz, can be converted 
to units of wavenumber, cm-1, by division by c, the velocity of light, expressed in units of cm s-1.  

 
 
12C.10  The question of whether to use CN or CH within the interstellar cloud of constellation Ophiuchus for the  

determination of the temperature of the cosmic background radiation depends upon which one has a 
rotational spectrum that best spans blackbody radiation of 2.726 K. Given  1

0 (CH) 14.190 cmB −= , the 
rotational constant that is needed for the comparative analysis may be calculated from the 226.9 GHz 
spectral line of the Orion Nebula. Assuming that the line is for the 12 14C N  isotopic species and 

1 1J J+ ← = , which gives a reasonable estimate of the CN bond length (117.4 pm), the CN rotational 
constant is calculated as follows.   

   0 /
2 ( 1) 4

B B c
c J c

ν ν
= = =

+
    

 11.892 cm−=     
Blackbody radiation at 2.726 K may be plotted against radiation wavenumber with suitable transformation 
of the equation for ( , )Tρ λ  in section 7A.2(b) 

   
3

/

8( )
e 1hc kT

hc
ν

π νρ ν =
−



     

Spectral absorption lines of 12 14C N  and 12 1C H are calculated with eqn 12C.8a.  
 
  ( )  ( )1 2 1            = 0, 1, 2, 3.......J J B J Jν + ← = +  

The cosmic background radiation and molecular absorption lines are shown in the graph, Fig. 12C.2. It is 
evident that only CN spans the background radiation.    

 
 
 
 
 
 
Figure 12C.2 
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12C.12 Rotation about any axis perpendicular to the C6 axis may be represented in its essentials by rotation of 

the pseudolinear molecule in Fig. 12.3(a) about the x-axis in the figure. 
 
Figure 12C.3(a) 

 
The data allow for a determination of CR  and H(D)R  which may be decomposed into CCR  and CH(D)R . 

2 2 47 2
H H H C C

2 2 47 2
D D D C C

4 +4 =147.59 10 kg m

=4 +4 =178.45 10 kg m

I m R m R
I m R m R

−

−

= ×

×
 

Subtracting HI  from DI  ( )H Dassume R R=  yields 

( ) 2 47 2
D H H4 30.86 10 kg mm m R −− = ×  

( ) ( ) ( )27 1 2 47 2
Hu u u4 2.01410 1.0078 1.66054 10  kg 30.86 10 kg mm m m R− − −− × × × = ×  

2 20 2 10
H H4.6169 10 m 2.149 10 mR R− −= × = ×  

47 2 2
H H2

C
C

47 2 27 1 20 2

27 1

20 2

10
C

u u

u u

(147 59 10 kg m ) (4 )
4

(147 59 10 kg m ) (4) (1 0078 ) (1 66054 10 kg ) (4 6169 10 m )
(4) (12 011 ) (1 66054 10 kg )

1 4626 10 m
1 209 10 m

m RR
m

m m
m m

R

−

− − − −

− −

−

−

. × −=

. × − × . × . × × . ×=
× . × . ×

= . ×

= . ×

 

Figure 12C.3(b) shows the relation between HR , CR , CCR , and CH .R  

 
 
 
Figure 12C.3(b) 
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10

10C
CC

1.209 10 m 1.396 10 m 139.6 pm
0.8660cos30

R
R

−
−×

= = = × =


 

10
10H C

CH
0.940 10 1.085 10 108.5 pm

0.8660cos30
R R

R
−

−− ×
= = = × =



 

CD CHR R=  
Comment. These values are very close to the interatomic distances quoted by Herzberg in Electronic 
Spectra and Electronic Structure of Polyatomic Molecules, p 666, which are 139.7 and 108.4 pm 
respectively. 

 

 

12D  Vibrational spectroscopy of diatomic molecules 
 

Answers to discussion questions 
 
12D.2  The rotational constants in vibrationally excited states are smaller than in the vibrational ground state and 

continue to get smaller as the vibrational level increases. Any anharmonicity in the vibration causes a 
slight extension of the bond length in the excited state. This results in an increase in the moment of inertia, 
and a consequent decrease in the rotational constant. The equation that describes how the rotational 

constant of a diatomic molecule changes with increasing vibrational level is  

1
)2(ev a vB B − += , where 

eB  is a constant and  vB  is the rotational constant in level ν.  

 
12D.4 Isotopic substitution can change the spin of the nuclei in the molecule and the appearance of the rotational 

spectra of molecules is determined by the nuclear spin of the atoms in the molecule. Hence, in general we 
expect that isotopic substitution will change rotational spectra. See Section 12C.3 and Brief Illustration 
12C.2.Vibrational frequencies are determined by the effective masses of the group of atoms participating in 
the mode of vibration. Since isotopes have different masses, isotopic substitution changes the effective 
mass of the molecule; hence, in general, the vibrational frequencies are changed and the vibrational 
spectrum will be (slightly) different. But not all vibrational frequencies are necessarily changed by isotopic 
substitution. For example, since the mass of 13C is greater than the mass of 12C, in general we expect that 
vibrational frequencies would be slightly different in 13CO2 than in 12CO2. However, in the symmetric 
stretch of CO2, the C atom is stationary, and the effective mass of the mode depends only on the O atoms. 
Consequently we expect that the vibrational frequency of this mode would be independent of the mass of 
the carbon atom. 
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Solutions to exercises 

 
12D.1(b) The angular frequency is 

   
1 2

2 2 1 2 3f
f2 so (2 ) (2 ) (3.0 s ) (2.0 10  kg)

k
k m

m
ω πν πν π           

 

1
f 0.71 N mk   

 
 

12D.2(b) 
1 2 1 2

2 37f f

eff eff

[prime  H CI]
k k

m m
ω ω

                
 

The force constant, k, is assumed to be the same for both molecules. The fractional difference is 
1 2 1 2 1 2 1 2

f f
1 2

eff eff eff eff eff
1 2 1 2

efff

eff eff

1 1

1
1

k k
m m m m m

mk
m m

ω ω
ω

                                                                  

 

H Cl

H Cl

1 21 2
2 37eff H Cl

eff H Cl 2 37

u u u u

u u u u

( ) 
1 1

( )

(1.0078 ) (34.9688 ) (2.0140 )+(36.9651 )
(1.0078 ) + (34.9688 ) (2.0140 )  (36.9651 )

m mm m m
m m m m m

m m m m
m m m m

ω ω
ω

                        
     

1 2

1

0.284

 




 

Thus the difference is 28.4 per cent 

 
12D.3(b) The fundamental vibrational frequency is 

 
1 2

2f
f eff

eff

2 2 so (2 )
k

c k c m
m

ω πν π ν π ν
        

   

We need the effective mass 

  
eff 1 2

1 1 1 1 1 1
u u u(78.9183 ) (80.9163 ) 0.0250298 m m m m m m           

  

10 1 1 2 27 1

f 1

1

u

u

[2 (2.998 10  cm s ) (323.2 cm )] (1.66054 10  kg )
0.0250298 

245.9 N m

m
k

m
π    





   




 

 
12D.4(b) The relation between vibrational frequency and wavenumber is 

( )1 21 2 1 2 1
eff

ff eff

12 2 so
2 2

 

e

kmk kv cv v
m c m c

ω π π
π π

−   
= = = = =      

 

The reduced masses of the hydrogen halides are very similar, but not identical 
1 1 1

eff D Xm m m− − −= +  

We assume that the force constants as calculated in Exercise 12D.4(a) are identical for the deuterium 
halide and the hydrogen halide. 

For DF 
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( ) ( )1 1
u u1 26 1

eff 27 1
u

2.0140 18.9984
3.3071 10  kg

1.66054 10 kg 
m m

m
m

− −
− −

− −

+
= = ×

×
 

( ) ( ){ }
( )

1/ 226 1 2

1
10 1

3 3071 10 kg 967 04kgs
3002 3cm

2 2 9979 10 cms
ν

π

− −

−
−

. × × .
= = .

. ×
  

For DCl 

( ) ( )1 1
u u1 26 1

eff 27 1
u

2.0140 34.9688
3.1624 10  kg

1.66054 10 kg 
m m

m
m

− −
− −

− −

+
= = ×

×
 

{ }1 226 1 2
1

10 1

(3 1624 10 kg ) (515.59kgs )
2143 7cm

2π(2 9979 10 cms )
ν

− −
−

−

. × ×
= = .

. ×
  

For DBr 
1 1

1 26 1u u
eff 27 1

u

(2.0140 ) (80.9163 )
3.0646 10  kg

1.66054 10 kg 
m m

m
m

− −
− −

− −

+
= = ×

×
 

{ }1 226 1 2
1

10 1

(3 0646 10 kg ) (411.75kgs )
1885 8cm

2π(2 9979 10 cms )
ν

− −
−

−

. × ×
= = .

. ×
  

For DI 
1 1

1 26 1u u
eff 27 1

u

(2.0140 ) (126.9045 )
3.0376 10  kg

1.66054 10 kg 
m m

m
m

− −
− −

− −

+
= = ×

×
 

{ }1 226 1 2
1

10 1

(3 0376 10 kg ) (314.21kgs )
1640.1cm

2π(2 9979 10 cms )
ν

− −
−

−

. × ×
= =

. ×
  

 
 
12D.5(b) The ratio of the population of the second excited state (N2) to the first excited state (N1) is 

   2

1

exp exp
N hv hc
N kT kT

ν              


 

( ) ( ) ( )
( ) ( )

2

1

34 10 1 1

23 1

6 626 10 J 2 998 10 cms 321cm
(i) exp 0 212

1 381 10 J K 298K
N
N

s− − −

− −

 − . × × . × ×
 = = .
 . × × 

 

( ) ( ) ( )
( ) ( )

2

1

34 10 1 1

23 1

6 626 10 J s 2 998 10 cms 321cm
(ii) exp 0 561

1 381 10 J K 800K
N
N

− − −

− −

 − . × × . × ×
 = = .
 . × × 

 

12D.6(b) Data on three transitions are provided. Only two are necessary to obtain the value of e and  xν  The 
third datum can then be used to check the accuracy of the calculated values. 



1
e( 1 0) 2 2329.91 cm [12D.14]G v xν ν −∆ = ← = − =   



1
e( 2 0) 2 6 4631.20 cm [12D.15]G v xν ν −∆ = ← = − =   

Multiply the first equation by 3, then subtract the second. 
1 1 1(3) (2329.91 cm ) (4631.20 cm ) 2358.53 cmν − − −= × − =  

Then from the first equation 
1 1

3
e 1

2329.91 cm (2358.53 2329.91)cm 6.067 10
2 (2) (2358.53 cm )

x ν
ν

− −
−

−

− −
= = = ×

×
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ex data are usually reported as ex ν  which is 
1

e 14.31 cmx ν −=  



1 1
e

1

( 3 0) 3 12 (3) (2358.53 cm ) (12) (14.31 cm )

6903.87 cm

G v vxν − −

−

∆ = ← = − = × − ×

=



 

      Very close to the given experimental value. 
 
12D.7(b)     1 2 1 2e2( 1)  [12D.14] where ( 1) ( )v vG v x G G v G vν ν+ +∆ = − + ∆ = + −   

Therefore, since 
 1 2 e e(1 2 ) 2vG x vxν ν+∆ = − −   

a plot of 1 2vG +∆  against v should give a straight line which gives e(1 2 )x ν−   from the intercept at v = 0 
and e2x ν−   from the slope. We draw up the following table 

v 0 1 2 3 4 



1( ) cmG v −  1144.83 3374.90 5525.51 7596.66 9588.35 



1
1 2 cmvG −

+∆  2230.07 2150.61 2071.15 1991.69  
 

The points are plotted in Fig. 12D.1. 
 

 Figure 12D.1 

 
 

The intercept lies at 2230.51 and the slope 176.65 cm−= − ; hence 1
e 39.83 cmx ν −=  

Since 1
e2 2230.51 cmxν ν −− =   it follows that 12310.16 cmν −=  

The dissociation energy may be obtained by assuming that a Morse potential describes the molecule and 

that the constant  eD  in the expression for the potential is an adequate first approximation for it. Then 



( ) ( )
2 1 2

3 1
1e

e e

(2310 16 cm )[12D.12] 33 50 10  cm 4 15 eV
4 4 4 39.83 cm  

D
x x

ν
ν

ν −
−

−

.
= = = = . × = .

×





  

However, the depth of the potential well De differs from D0, the dissociation energy of the bond, by the 
zero-point energy; hence 
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  ( )3 1 11
20

4 1

e
1 (33.50 10  cm ) (2310 16 cm )
2

= 3.235 10  cm 4 01 eV

D D ν − −

−

= − = × − × .

× = .



 

 
 

Solutions to problems 
 
12D.2 In order to plot this potential function define the variable /y x a≡  and rewrite the potential function as

( )21/

0

( )( ) e 1yV yv y
V

−= = − . Figure 12D.2 shows a plot of this function against y. 

  
 
 
 
 
 
Figure 12D.2 
 

  
    
 
 Note that for small displacements from y = 0 (x = 0) the potential energy function is flat (independent of x). 

Therefore the first and second derivatives of V(x) are zero and the force constant is zero. There is no 
restoring force for small displacements from the equilibrium position. The particle cannot undergo simple 
harmonic motion.  

 
 
12D.4  

1 1
e2 40 e with  [Section 12D.3]D D xν ν ν ν′ ′= − = −     

(a) ( ) ( ) ( ){ }1 1 11
4HCl: 1494 9 52 05 cm 1481 8cm or 0 184eVν − −= . − × . , = . , .′  

Hence,  0 5 33 0 18 5.15 eVD = . − . =  
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(b) 2 2eff e2
HCl:  [12D.12]

m x
a

ω
=



, so e
eff

1x
m

ν ∝  as a  is a constant. We also have 
2

e
e 4

D
x

ν
ν

=




; so 

2

eff

1
m

ν ∝


, implying 1 2
eff

1
m

ν /∝ . Reduced masses were calculated in Exercises 12D.4(a) and 12D.4(b), 

and we can write 

 
1 21

2 1 1 1eff
2

eff

( HCl)
( HCl) ( HCl) (0 7172) (2989 7cm ) 2144 2cm

( HCl)
m
m

ν ν
/

− − 
= × = . × . = . 

 
   

 
1

2 1 1 1eff
e e2

eff

( HCl)
( HCl) ( HCl) (0 5144) (52 05cm ) 26 77cm

( HCl)
m

x x
m

ν ν − − 
= × = . × . = . 

 
   

 ( ) ( )2 1 11 1
2 4( HCl) (2144 2) (26 77cm ) 1065 4cm 0 132eVν − −= × . − × . = . , .′  

Hence,  2
0 ( HCl) (5 33 0 132)eV 5.20 eVD = . − . =  

 
12D.6 (a) In the harmonic approximation 

   

23 26

1
20 0

1
34 8 1

e e  so  2( )

2(1.51 10 J 2 10 J) 152 m
(6.626 10 J s) (2.998 10 m s )

D D v v D D

v
− −

−
− −

= + = −

× − ×
= =

× × ×

 



 

The force constant is related to the vibrational frequency by 

2
1 2

f
f eff

eff

[12D.7] 2 2    so   (2 )
k v cv k cv m

m
ω π π π

 
= = = = 

 
   

The effective mass is 
27 1 271 1

eff 2 2 u u(4.003 ) (1.66 10 kg ) 3.32 10 kgm m m m− − −= = × × = ×  
28 1 1 27

f

4 2

2 (2.998 10  ms ) (152 m ) (3.32 10 kg)

2.72 10 kg s

k π − − −

− −

 = × × × × 

= ×
 

The moment of inertia is 
2 27 12 2 46 2

eff e (3.32 10 kg) (297 10 m) 2.93 10 kg mI m R − − −= = × × × = ×  

The rotational constant is 



34
1

8 1 46 2

1.0546 10 J s 95.5 m
4 4 (2.998 10 ms ) (2.93 10 kg m )

B
cIπ π

−
−

− −

×
= = =

× × ×
  

(b) In the Morse potential 



  



e e0 0e
e e

1 1 1 and 1 1
2 2 24 8

v vx D D x v D v
D D

  = = + − = + −       

 

   

This rearranges to a quadratic equation in v  



 

( )  





e 0

e

2 4( )1 12 2 2 16

0 1e
e e

1 0  so  
216 2(16 )

D D
Dv v D D v

D D

−

−

− −
− + − = =
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0

23 26

34 8 1 23

1

e
e

4 1

4(1.51 10 J) 2 10 J1
(6.626 10 J s) (2.998 10  m s ) 1.51 10 J

293 m

D
v D

D

− −

− − −

−

 
 = −
 
 

 × ×
 = −
 × × × × 

=



 

and 
1 34 8 1

e 23

(293 m ) (6.626 10 J s) (2.998 10 m s ) 0.96
4(1.51 10 J)

x
− − −

−

× × × ×
= =

×
 

 
 
12D.8 See Fig. 12D.3 for a plot of 

e( ) 2( 1)  [12D.14]G v v xν ν∆ = − +  against v + 1.  
 
  
 
 
 
 
 
 
 
 
Figure 12D.3 
 

 
       
   
 The intercept gives ν = 2170.8 cm-1 and the slope gives e2x ν  = 27.4 cm-1; thus,  1

e 13.7 cm .ν −=x  
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12D.10  We note first that only two data are provided; yet we have four distances to calculate: R(CC), for both C2H2 

and C2D2, R(CH), and R(CD). Consequently we must make some reasonable approximations in order to 
solve this problem. We will assume that the CC and CH distances are the same in both molecules. Our 
procedure will be first to calculate the moments of inertia of the molecules from the given rotational 
constants and then from the moments of inertia and the known masses of the atoms to calculate the 
interatomic distances. 

 

  



 hence 
4 4

B I
cI cBπ π

= =
 

 

 The formulas for the moments of inertia in terms of the masses and distances are: 
 
  2 2 2 2

2 2 C H 2 2 C D(C H ) 2 2  (eqn 1) and (C D ) 2 2  (eqn 2)I m a m b I m a m b= + = +  
 where a is the distance from the center of mass to the C atom, which is half the CC interatomic distance, and b 

is the distance from the center of mass to the H or D atom.  

   

1 1
1 1

2 2 2 2
2.352 cm 1.696 cm(C H ) 1.176 cm  and (C D ) 0.848cm

2 2
B B

− −
− −= = = =  

 Therefore, 

  

46 2
2 2 1

46 2
2 2 1

(C H ) 2.3804 10  kg m  and
4 1.176 cm

(C D ) 3.3010 10  kg m
4 0.848 cm

I
c

I
c

π

π

−
−

−
−

= = ×
×

= = ×
×





 

 
 The masses are mC = 12.0000 u, mH = 1.0078 u, and mD = 2.0140 u; u is the atomic mass unit. Substituting these 

values into eqns. 1 and 2 above and solving the equations simultaneously for distances a and b we obtain: 

  

10 10

10

10

0.6049 10  m and 1.6598 10  m

(CC) 2 1.2098 10  m 121.0 pm  and 

(CH) (CD) 1.055 10  m 105.5 pm

a b

R a

R R b a

− −

−

−

= × = ×

= = × =

= = − = × =

 

 
 
12D.12  Here we make use of results that have been obtained in Chapter 8 for the average value of ex R R= −   

and 2 2)e(x R R= − .  

    12
2 )0      (   [8B.12a & b]

( )
x x v

mk
= = +



½  

 Consider first 
21/ R . We need to evaluate R . 

   
2

e e e e e

2
e

 [  is a constant] 0

1/ 1/

R R x R R x R R

R R

== + = + = +

=
 

 Next consider 21/ R . We need to evaluate 2R . 21/ R is the reciprocal of this quantity. 

 2 22 2 2 2 2 22 2) 2 2e e e e e e e e( 2x x x x x xR R R R R xR x R R R+ + + + + = += = = + + =  

   2
22 2

e e

1 11/
1 /

R
R x R

 
 =
 + 

 

 Finally consider 21/ R . We need to evaluate 21/ R and then take the average of this quantity. 
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2

2 2 2 2 2) 2 ee e e1e e

1 1 1 1 1 2 3 ...
( x x

R

x x
R RR R RR  +

+  
 

 
 = = = − + +
 
 

 

 We have expanded 
2

1
e
x

R

− 
+  

 
in a binomial series and dropped terms beyond the second power of 

e

x
R

. 

Noting again that 0x = we finally obtain 
2

2 2 2
e e

1 1 1 3
x

R R R

 
 = +
 
 

. Examination of these three 

results shows that 2 22

1 1 1
R R R

> > . 

 
 
12D.14  For IF, the rotational constant eB  = 0.27971 cm-1 and a = 0.187 m-1 = 0.00187 cm-1. Values for  0 1 and B B  

are calculated from  

1
)2(e − +=v a vB B . 

   
 

 

1 1 1
0

1 1 1
1

1 1
e 2 2

3 3
e 2 2

0.27971 cm (0.00187 cm ) 0.278775 cm

0.27971 cm (0.00187 cm ) 0.276905 cm

− − −

− − −

= − = − =

= − = − =

a

a

B B

B B
 

 The wavenumbers of the 3J ′ →  transitions of the P and R branches of the spectrum are given by eqns. 
12D.18 & 12D.19a. 

           

2 2
1 0 1 0 1 0 1 0P R( ) ( ) ( ) and ( ) ( )( 1) ( )( 1)= − + + − = + + + + − +   v J v B B J B B J v J v B B J B B J   

  When anharmonicities are present ν  in the formulas above is replaced by 
    

e( ) 2( 1)  [12D.14]G v v xν ν∆ = − +  .   
  For v = 0, 
    

1 1 1
e( ) 2 610.258 cm 2 3.141 cm 603.976 cmν ν − − −∆ = − = − × = G v x  

  For the P branch J′ = J = 4, and for the R branch J′ = J = 2. Substituting all of these values into eqns 12D.18 
 & 12D.19a we obtain 

       

2 1
1 0 1 0P ( ) ( ) ( ) ( ) 601.723 cm−= ∆ − + + − =v J G v B B J B B J  

       

2 1
1 0 1 0R ( ) ( ) ( )( 1) ( )( 1) 605.626 cm−= ∆ + + + + − + =v J G v B B J B B J  

 The dissociation energy of the IF molecule may be obtained from 
2

e
e [12D.12]

4
D

x
ν

ν
=




and the relation 

  

0
1 1

e e2 4
ν ν−= + D D x   if  a Morse potential energy is assumed. 

  Substituting the values given for e and xν ν   we obtain  

   

1 1
0e 29641 cm  and 29337 cm− −= =D D  

 
 
12D.16  We work with eqns. 12D.22 which give the transition energies for the S and O branches of the vibrational 

Raman spectra. Transitions having S O( 2) and ( 2)ν ν− + J J have a common upper state; hence the 

corresponding combination difference, Δ0, is a function of B0 only. Likewise, transitions S O( ) and ( )ν ν J J
have a common lower state and the combination difference, Δ1, is a function of B1 only.  Using eqns. 
12D.22 we obtain 
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0S i 0

0O i 0

( 2) 4 ( 2) 6

( 2) 4 ( 2) 2

ν ν ν

ν ν ν

− = − − − −

+ = − + + −

  

  

J B J B

J B J B
 

 Taking the difference between O S( 2) and ( 2)ν ν+ − J J we obtain for the combination difference 

  00 O S
1
2

( 2) ( 2) 8 ( )ν ν∆ = + − − = + J J B J .  

 In a similar manner we can obtain   

  11 O S
1
2

( ) ( ) 8 ( )ν ν∆ = − = + J J B J  

 

 

 
12E Vibrational spectroscopy of polyatomic molecules 
 

Answers to discussion questions 
 
12E.2 The gross selection rule is that the polarizability of the molecule must change as the molecule vibrates. All 

diatomic molecules satisfy this condition as the molecules swell and contract during a vibration, the control 
of the nuclei over the electrons varies, and the molecular polarizability changes. Hence both homonuclear 
and heteronuclear diatomics are vibrationally Raman active. In polyatomic molecules it is usually quite 
difficult to judge by inspection whether or not the molecule is anisotropically polarizable; hence group 
theoretical methods are relied on for judging the Raman activity of the various normal modes of vibration. 
The procedure is discussed in Section 12E.4 and demonstrated in the Brief Illustration in that section. 

 
 

Solutions to exercises 
 
12E.1(b)  See Section 12E.2. Select those molecules in which a vibration gives rise to a change in dipole moment. 

It is helpful to write down the structural formulas of the compounds. The infrared active compounds are 
 (i) CH3 CH3 (ii)CH4 (iii) CH3Cl 

Comment. A more powerful method for determining infrared activity based on symmetry considerations 
is described in Section 12E.4(a). 

 
 
12E.2(b) A nonlinear molecule has 3 6N −  normal modes of vibration, where N is the number of atoms in the 

molecule; a linear molecule has 3 5N − . 

6 6i  C H  has 3(12) 6 30  normal modes.− =( )  

6 6 3ii  C H CH  has 3(16) 6 42  normal modes.− =( )  

iii  HC C C CH is linear; it has 3(6) 5 13  normal modes.≡ − ≡ − =( )  

 
12E.3(b)  This molecule is linear, and the number of vibrational modes is 3N-5. N = 36 in this case; therefore, the 

number of vibrational modes is 103 . 
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12E.4(b) 

1
2

1( ) ( )           [12E.1]
2

q
q q q

q

k
G v v

c m
ν ν

π
 

= + =   
 

 

½
 

 The lowest energy term is 2ν corresponding to the normal mode for bending. For this mode the sulfur 

atom may be considered to remain stationary and the effective mass is approximately O S

O S

2
2q

m mm
m m

=
+

. 

For the other modes the effective mass expression is more complicated and is beyond the scope of this 
text.  SO2, like H2O, is a bent molecule so it has three normal modes (3N – 6 = 3) that have the same 
motions as the normal modes of H2O shown in text Fig. 12E.3. However, because of differences in bond 
strengths and effective masses, the wavenumbers of the two molecules differ. In the ground vibrational 
state all normal modes have υ = 0. Thus, like H2O, the ground vibrational term of SO2 is the sum of eqn. 
12E.1 normal mode terms:    

    ( )  ( )  ( ) ( )1ground 1 2 3 2 1 2 30 0 0G G G G v v v= + + = + +    

 
 
12E.5(b) (i) A planar AB3 molecule belongs to the D3h group. Its four atoms have a total of 12 displacements, of 

which 6 are vibrations. We determine the symmetry species of the vibrations by first determining the 
characters of the reducible representation of the molecule formed from all 12 displacements and then 
subtracting from these characters the characters corresponding to translation and rotation. This latter 
information is directly available in the character table for the group D3h. The resulting set of 
characters are the characters of the reducible representation of the vibrations. This representation can 
be reduced to the symmetry species of the vibrations by inspection or by use of the little orthogonality 
theorem. 

3hD  E  hσ  32C  32S  23C′  v3σ  

(translation)χ  3 1 0 –2 –1 1 

Unmoved atoms 4 4 1 1 2 2 

(total, product)χ  12 4 0 –2 –2 2 

(rotation)χ  3 –1 0 2 –1 –1 

(vibration)χ  6 4 0 –2 0 2 

(vibration)χ  corresponds to 1 2A +A +2E .′ ′′ ′  

Again referring to the character table of 3h ,D we see that E′  corresponds to x and y, 2A  to z;′′  hence 

2A  and E  are IR active.′′ ′  We also see from the character table that 1E  and A′ ′  correspond to the quadratic 

terms; hence 1A  and E  are Raman active.′ ′  

(ii) A trigonal pyramidal AB3 molecule belongs to the group C3v. In a manner similar to the analysis in part 
(i) we obtain 

3VC  E  32C  V3σ  

(total)χ  12 0 2 

(vibration)χ  6 –2 2 
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χ  (vibration) corresponds to 12A 2E+ . We see from the character table that 1A and E  are IR active 

and that 1A E+  are also Raman active. Thus all modes are observable in both the IR and the Raman 

spectra. 

 
 
12E.6(b) (i) The boat-like bending of a benzene ring clearly changes the dipole moment of the ring, for the moving 

of the C—H bonds out of the plane will give rise to a non-cancelling component of their dipole 
moments. So the vibration is IR active. 

(ii) Since benzene has a centre of inversion, the exclusion rule applies: a mode which is IR active (such 
as this one) must be Raman inactive. 

 
 
12E.7(b) The displacements span 1g 1u 1u 1gA 2A 2E E+ + + . The rotations xR  and yR  span 1gE , and the 

translations span 1u 1uE A+ . So the vibrations span 1g 1u 1uA A E+ +  

 
12E.8(b) CS2 is a linear AB2 molecule similar to CO2; therefore (see the solution to Exercise 12E.5(a)); the 

symmetric stretch, A1g, is infrared inactive but Raman active. The antisymmetric stretch, A1u, is infrared 
active, and (by the exclusion rule) Raman inactive. The two bending modes, E1u, are infrared active and 
therefore Raman inactive. 

 
 

Solutions to problems 
 
12E.2 The Lewis structure is 

[O== N== O]+
 

 

 

VSEPR indicates that the ion is linear  and has a centre of symmetry. The activity of the modes is 
consistent with the rule of mutual exclusion; none is both infrared and Raman active. These transitions may 
be compared to those for CO2 (Fig. 12E.2 of the text) and are consistent with them. The Raman active 
mode at 1400 cm−1 is due to a symmetric stretch 1( )v , that at 2360 cm−1 to the antisymmetric stretch 3( )v  
and that at 540 cm−1 to the two perpendicular bending modes 2( )v . There is a combination band, 1 3v v+ = 

3760 cm−1 ≈ 3735 cm−1, which shows a weak intensity in the infrared. 
 
12E.4 Summarize the six observed vibrations according to their wavenumbers 1( / cm ) :v −

  

IR 870 1370 2869 3417 

Raman 877 1408 1435 3407. 

 

(i) If 2 2H O  were linear, it would have 3 5 7N − =  vibrational modes. 

(ii) Follow the flow chart in Fig. 11.7. Structure 1 is not linear, there is only one nC  axis (a 2C ), and there 

is a hσ ; the point group is 2hC  Structure 2 is not linear, there is only one nC  axis (a 2C ), no hσ , but 

two vσ ; the point group is 2vC . Structure 3 is not linear, there is only one nC  axis (a 2C ), no hσ , 

no vσ ; the point group is 2C .  
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(iii) The exclusion rule applies to structure 1 because it has a center of inversion: no vibrational modes can 

be both IR and Raman active. So structure 1 is inconsistent with observation. The vibrational modes of 
structure 2 span 1 2 23A A 2B+ + . (The full basis of 12 cartesian coordinates spans 

1 2 1 24A 2A 2B 4B+ + + ; remove translations and rotations.) The 2vC  character table says that five of 

these modes are IR active 1 2(3A 2B )+  and all are Raman active. All of the modes of structure 3 are 
both IR and Raman active. (A look at the character table shows that both symmetry species are IR and 
Raman active, so determining the symmetry species of the normal modes does not help here.) Both 
structures 2 and 3 have more active modes than were observed. This is consistent with the 
observations. After all, group theory can only tell us whether the transition moment must be zero by 
symmetry; it does not tell us whether the transition moment is sufficiently strong to be observed under 
experimental conditions. 

 
 

Integrated activities 
 
 
12.2 Because the centrifugal force and the restoring force balance, 
 2

c ef eff c( )k r r m rω− = ,  

we can solve for the distorted bond length as a function of the equilibrium bond length: 

 e
c 2

eff f1
r

r
m kω

=
− /

 

Classically, then, the energy would be the rotational energy plus the energy of the stretched bond: 

 
2 2 2 2 22 2 2

f c e f c e eff c

f

( ) ( ) ( )
2 2 2 2 2 2

k r r k r r m rJ J JE
I I k I k

ω− −
= + = + = + .  

 
How is the energy different form the rigid-rotor energy? Besides the energy of stretching of the bond, the larger 
moment of inertia alters the strictly rotational piece of the energy. Substitute meff rc

2 for I  and substitute for rc in 
terms of re throughout: 

So
2 2 2 2 4 2

eff f eff e
2 2 2

eff e f eff f

(1 )
2 2 (1 )

J m k m r
E

m r k m k
ω ω

ω
− /

= + .
− /

 

Assuming that meff ω2/kf is small (a reasonable assumption for most molecules), we can expand the expression and 
discard squares or higher powers of meff ω2/kf: 

 
2 2 2 4 2

eff f eff e
2

feff e

(1 2 )
22

J m k m r
E

km r
ω ω− /

≈ + .  

(Note that the entire second term has a factor of meff ω2/kf even before squaring and expanding the denominator, so 
we discard all terms of that expansion after the first.) Begin to clean up the expression by using classical definitions 
of angular momentum: 

 22
eff eff eso /J I m r J m rω ω ω= = = ,  

which allows us to substitute expressions involving J for all ω s: 

 
2 4 4

2 6 62 2
eff e eff e f eff e f2 2
J J JE

m r m r k m r k
≈ − + .  

(At the same time, we have expanded the first term, part of which we can now combine with the last term.) Continue 
to clean up the expression by substituting I/meff for r2, and then carry the expression over to its quantum mechanical 
equivalent by substituting 2( 1)J J +   for J2: 
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4 2 2 42 2

eff eff
3 3

f f

( 1)( 1)
2 22 2

J m J J mJ J JE E
I II k I k

++
≈ − ⇒ ≈ − .

  

Dividing by hc  gives the rotational term, ( )F J : 

 

2 2 4 2 2 32
eff eff

3 3
f f

( 1) ( 1)( 1) ( 1)( )
2 4π2 4π

J J m J J mJ J J JF J
hcI cIhcI k cI k

+ ++ +
≈ − = − ,


   

where we have used / 2h π=  to eliminate a common divisor of h . Now use the definition of the rotational 
constant, 

    

2 2
32 2 eff

f

16π
( ) ( 1) ( 1)

4π
c m

B F J J J B J J B
cI k

= ⇒ ≈ + − + .
  

Finally, use the relationship between the force constant and vibrational wavenumber: 

 
1 2

efff
vib 2 2 2

eff f

12π 2π so
4π

mk v cv
m k c v

ω
/

 
= = = = 

 




 

leaving  



 

3
2 2 2 2

2

4( ) ( 1) ( 1) ( 1) ( 1) whereJ
BF J BJ J J J BJ J D J J
v

≈ + − + = + − +






3

2

4 .J
BD
v

=


 

 
12.4 Figure I12.1 is a plot of the total electronic energy (w/r/t the free atoms) profile for each of the hydrogen 
halides. Calculations are performed with Spartan '10 using the MP2 method with the 6-311++G** basis set. In a 6-
311G basis set each atomic core basis function is expanded as a linear combination of six Gaussian functions. 
Valence orbitals are split into three basis set functions consisting of three, one, and one Gaussians. The 6-311++G 
basis set adds both an s-type and three p-type diffuse functions for each atom other than hydrogen and one s-type 
diffuse function for each hydrogen atom. The 6-311++G** basis set adds a set of five d-type polarization functions 
for each atom other than hydrogen and a set of three p-type polarization functions for each hydrogen atom. 
 
The plot clearly shows that in going down the halogens from HI to HBr to HCl to HF the equilibrium bond length 
decreases and the depth of the potential well decreases. The equilibrium properties of each molecule are summarized 
in the following table. The calculated bond lengths and enthalpies of formation are in excellent agreement with 
experimental values. The dipole moments of HCl, HBr, and HI are surprisingly high. 
 

Equilibrium Properties of Hydrogen Halides 
Calculated with Spartan '10 using 

MP2/6-311++G** 
 HF HCl HBr HI 
Re / pm 91.7 127.3 141.3 161.2 
Re(exp) / pm 91.680 127.45 141.44 160.92 
v / cm−1 4198.162 3086.560 2729.302 2412.609 
ELUMO / eV 1.16 1.09 1.14 1.50 
EHOMO / eV −17.72 −12.99 −11.83 −10.54 
∆fHθ / kJ mol−1 −272.55 −92.31 −36.44 +26.36 
∆fHθ(exp) / kJ mol−1 −271.1 −92.31 −36.40 +26.48 
Dipole / D 1.97 1.38 1.10 0.79 
Dipole(exp) / D 1.91 1.08 0.80 0.42 
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Figure I12.1 
 
(b) The calculated fundamental vibrational wavenumbers, reported in the above table, increase in going down the 
halogens from HI to HBr to HCl to HF. Since the bonding force constant kf is proportional to 2v  by eqn 43.8, kf and 
the bond strength also increase in going down the halogens from HI to HBr to HCl to HF. 
 
12.6 These calculations were performed with Spartan ’06 using the both MP2 and DFT(B3LYP) methods with both 
6-31G* and 6-311G* basis sets (see problems F9.4 and F9.5 for an explanation of these basis sets).  
 
(a) and (b) The following tables summarize the calculated equilibrium properties of H2O and CO2 and present 
experimental values for comparison. 

  
H2O Ground State 

 MP2/6-31G* MP2/6-311G* DFT/6-31G* DFT/6-311G* Exp. 
Basis fns 19 24 19 24  
R / pm 96.9 95.7 96.8 96.3 95.8 
E0 / eV –2073.4 –2074.5 –2074.6 –2079.9  

Angle / ° 104.00 106.58 103.72 105.91 104.45 
1v  / cm–1 3774.25 3858.00 3731.72 3764.70 3652 

2v  / cm–1 1735.35 1739.88 1709.79 1705.47 1595 

3v  / cm–1 3915.76 3994.30 3853.53 3877.60 3756 
μ / D n.s. n.s. 2.0950 2.2621 1.854 

    
CO2 Ground State 

 MP2/6-31G* MP2/6-311G* DFT/6-31G* DFT/6-311G* Exp. 
Basis fns 45 54 45 54  
R / pm 118.0 116.9 116.9 116.0 116.3 
E0 / eV –5118.7 –5121.2 –5131.6 –5133.2  

Angle / ° 180.00 180.00 180.00 180.00 180 
1v  / cm–1 1332.82 1341.46 1373.05 1376.55 1388 

2v  / cm–1 636.22 657.60 641.47 666.39 667 

3v  / cm–1 2446.78 2456.16 2438.17 2437.85 2349 
μ / D n.s. n.s. 0.0000 0.0000 0 

 
(c) Except for the dipole moment, all calculations are typically within a reasonable 1-3% of the experimental value. 
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The dipole moment is very sensitive to the distribution of charge density. The significant difference between the 
dipole moment calculations and the experimental dipole moment may indicate that the computation methods do not 
adequately account for charge distribution in the very polar water molecule. 
 

12.8   

1( ) ( 1)  [12D.18]
2

S J v BJ J , = + + + 
 

υ υ  

  

O
  2 (2 1)     [  = 1,  = 2]JS v B J J∆ = − − ∆ ∆ − υ  

  

S
2 (2 3)       [ 1,  2]JS v B J J∆ = + + ∆ = ∆ = + υ  

The transition of maximum intensity corresponds, approximately, to the transition with the most probable value of 
J ,  which was calculated in Problem 12C.9. 

 


1 2

max
1
22

kTJ
hcB

/
 = − 
 

 

The peak-to-peak separation is then 

 

      ( )







max max

O 1
max max max 2

1 21 2

2 (2 3) { 2 (2 1)} 8

328
2

S
J JS S S B J B J B J

kT BkTB
hchcB

∆ = ∆ − ∆ = + − − − = +

  = =   
   

 

To analyze the data we rearrange the relation to 

 



2( )
32

hc SB
kT

∆
=  

and convert to a bond length using 
4

B
cIπ

=
 , with 2

X2I m R=  (Table 12B.1) for a linear rotor. This gives 

 
 

1/2 1/2

XX

1 2 =  =  × 
8π π

kTR
mcm B c S

    
      ∆    

  

We can now draw up the following table. 
 

 HgCl2 HgBr2 HgI2 

T / K 555 565 565 

mX / u 35.45 79.1 126.90 

S∆ / cm–1 23.8 15.2 11.4 

R / pm 227.6 240.7 253.4 
 
Hence, the three bond lengths are approximately 230  240  and 250pm, , . 
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13      Electronic transitions  

13A  Electronic spectra 
 

Answers to discussion questions 
 
13A.2 The Franck–Condon principle states that because electrons are so much lighter than nuclei, an electronic 
transition occurs so rapidly compared to vibrational motions that the internuclear distance is relatively unchanged as 
a result of the transition. This implies that the most probable transitions f i  v v← are vertical in the sense that bond 
lengths do not change during the transition. This vertical line (Fig. 13A.7) will, however, intersect any number of 
vibrational levels vf in the upper electronic state. Hence transitions to many vibrational states of the excited state will 
occur with transition probabilities proportional to the Franck–Condon factors. These are in turn proportional to the 
overlap integral of the wavefunctions of the initial and final vibrational states. This creates the band structure, a 
progression of vibrational transitions that is observed in electronic spectra. The band shape is determined by the 
relative horizontal positions (Fig. 13A.7) of the two electronic potential energy curves. The most probable 
transitions are those to excited vibrational states with wavefunctions having a large amplitude at the internuclear 
position eR . 
 
13A.4 Color can arise by emission, absorption, or scattering of electromagnetic radiation by an object. Many 
molecules have electronic transitions that have wavelengths in the visible portion of the electromagnetic spectrum. 
When a substance emits radiation, the perceived color of the object will be that of the emitted radiation, and it may 
be an additive color resulting from the emission of more than one wavelength of radiation. When a substance 
absorbs radiation its color is determined by the subtraction of those wavelengths from white light. For example, 
absorption of red light results in the object being perceived as green. Scattering, including the diffraction that occurs 
when light falls on a material with a grid of variation in texture or refractive index having dimensions comparable to 
the wavelength of light (for example, a bird’s plumage) may also form color. 
 
 

Solutions to exercises 
 
13A.1(b) The 1σg

21σu
21πu

21πg
2 valence configuration has four unpaired electrons because both the u1π  and g1π  

levels are doubly degenerate (see text Figure 13C.11); each with two electrons. Although Hund’s rule does not apply 
to excited states, we examine the state of maximum spin multiplicity. Thus, S = ½ + ½ + ½ + ½ = 2 and the spin 
multiplicity is given by 2S + 1 = 2(2) + 1 = 5. Because u × u = g and g × g = g, the net parity of two electrons paired 
in an orbital is always gerade. Consequently, the overall parity is found by multiplying the parity of unpaired 
electrons. For this configuration, u × u × g × g = g. 
 
13A.2(b) The electronic spectrum selection rules concerned with changes in angular momentum are (eqn 13A.4): 

0,  1     0     0     0,  1     where   Λ = S Σ Ω Ω Λ Σ∆ ± ∆ = ∆ = ∆ = ± = + . Λ gives the total orbital angular momentum 
about the internuclear axis and Σ gives the total spin angular momentum about the internuclear axis. The ± 
superscript selection rule for reflection in the plane along the internuclear axis is +↔+ or –↔– (i.e., +↔– is 
forbidden). The Laporte selection rule states that for a centrosymmetric molecule (those with a center of inversion) 
the only allowed transitions are transitions that are accompanied by a change of parity: u↔g. 
(i) The changes in the transition 1 + 1 +

g uΣ ↔ Σ  are 0,  0,  0,  0Λ = S Σ Ω∆ ∆ = ∆ = ∆ = , u↔g, and +↔+ so the transition 
is allowed. 
(ii) The changes in the transition 3 + 3 +

g uΣ ↔ Σ  are 0,  0,  0,  0Λ = S Σ Ω∆ ∆ = ∆ = ∆ = , u↔g, and +↔+ so the transition 
is allowed. 
(iii) The transition π n* ↔  is forbidden. For example, in a carbonyl group, where the non-bonding orbital of the 
lone pair on the oxygen does not change sign (+) under reflection in the plane that contains the σ bond while the π* 
orbital does change sign (–), the +↔– transition is forbidden.  
 
13A.3(b) We begin by evaluating the normalization constants N0 and N𝑣𝑣. 
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 Γ  ∫
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Furthermore, we can easily check that 
 

 ( ) ( )
( ) ( )

2 1/ 22 2 2
0 0 01/ 2 1/ 2

1     where          and     d dab bax b x x z x z a b x x x z
a b a b a b

+ − = + = + − =
+ + +

 

Then, the vibration overlap integral between the vibrational wavefunction in the upper and lower electronic states is: 
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The integral of the above expression is necessarily zero because on the z axis the function z has ungerade symmetry 
while the function 

2

e z−  has gerade symmetry. Thus, u × g = u and the integral over the complete z axis of an 
ungerade function equals zero. 

 
( ) ( )

2 2
0 0

2
0

1/23/21/2 1/4 1/2
0 0 0

1/2
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1/4 7/4
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ab abx x
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bN N bx bxaS
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For the case b = a/2, this simplifies to 
  

 ( ) 2 2
0 0

3/2 7/4 1/4
/3 /31/4 1/2

0 0
4 32,0 e e

3 2 729
ax axaS a x a x

a
− −     = =     

     
υ  

The Franck-Condon factor is 

 ( ) 2
0

1/2
2 2 /32

0
32,0 e
729

axS ax − =  
 

υ  

 
 

13A.4(b) 
1/2

0
2 πsin      for 0  and 0 elsewhere.x x L
L L

ψ    = ≤ ≤   
   

 

 
1/22 π 3sin      for  and 0 elsewhere.

2 2 2
L L Lx x

L L
ψ     = − ≤ ≤    

    
v  

 

 ( )
/ 2

2 π π,0 | 0 sin sin d
2
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x LS x x
L L L
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The above integral is recognized as the standard integral (see math handbook): 

 ( ) ( ) ( )sin 2
sin sin d cos( )

2 4
ax bxax ax b x b
a
+

+ = −∫  with the transformations a = π/L and b = –π/2. Thus, 

 ( ) ( ) ( )

( ) ( )
/ 2 /2

sin 2π / π / 2 sin 2π / π / 22 π 2,0 cos
2 2 4π / 4π /

1 sin 3π / 2 sin π / 2
2π

1
π

x L x L

x L x L

x L x LxS
L L L L

= =

= =

− −    = − − = −    
    

= − −  

=

v  

The Franck-Condon factor is 

 ( ) 2

2

1,0
π

S =v  

 
 
13A.5(b) ( ) ( ) ( )( ) ( )( )2

RR branch 1 :   ' 1 ' 1   [13A.8c]J v J v B B J B B J∆ = + = + + + + − +   

   

When the bond is longer in the excited state than in the ground state, 'B B<   and 'B B−   is negative. In this case, the 
lines of the R branch appear at successively increasing energies as J increases, begin to converge, go through a head 
at Jhead, begin to decrease with increasing J, and become smaller than v  when ( ) ( ) ( )1 ' / 'J B B B B+ > + −     (see 

Section 13A.1(d) and Discussion question 13A.3; the quadratic shape of the Pv  against J curve is called the Fortrat 
parabola). This means that ( )Rv J  is a maximum when J = Jhead. It is reasonable to deduce that Jhead is the closest 

integer to ( ) ( )1
2 ' / ' 1B B B B+ − −     because it takes twice as many J values to reach the maximum line of the R 

branch and to return to v . We can also find Jhead by finding the maximum of the Fortrat parabola: 
R headd / d 0 when v J J J= = . 

 

( )( ) ( ) ( ){ } ( ) ( ) ( )
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d d

' 2 ' 1 0
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v v B B J B B J B B B B J
J J

B B B B J

B B
J

B B

= + + + − − + = + + − − +

+ − − + =

+
= −

−



       



   

 

 

 

 
13A.6(b) Since 'B B>   and 'B B−   is positive, the P branch shows a head at the closest integer to the value of 

( ) ( )1
2 ' / 'B B B B+ −     (see Exercise 13A.5(a)). 

 

( )
( )

( )
( )

head

' 10.470 10.308
64.2

2 10.470 10.3082 '

64

B B

B B

J

+ +
= =

−−

=

 

   

 

13A.7(b) When the P branch has a head, Jhead is the closest integer to ( ) ( )1
2 ' / 'B B B B+ −     (see Exercise 13A.5(a)). 

Thus, if we are only given that Jhead = 25 and 15.437 cmB −= , we know only that 
 ( ) ( )1

224.5 ' / ' 25.5B B B B< + − <     

because the fractional value of a ( ) ( )1
2 ' / 'B B B B+ −     calculation must be rounded-off to give the integer value Jhead. 

Algebraic manipulation of the inequality yields 
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When 'B B>  , the bond length in the electronically excited state is shorter than that in the ground state. 
 
Below is an alternative solution that gives the same answer with insight into the band head concept: At the head of a 
P band, 

head head1J Jv v+ >   where 
head 1Jv +  is the transition head head 1J J J← = + . Substitution of eqn. 13A.8(a) into this 

inequality yields the relationship head head' ( 1) /B J B J> +  . Similarly, 
head head 1J Jv v −<   where 

head 1Jv −  is the transition

head head2 1J J J− ← = − . Substitution of eqn. 13A.8(a) into this inequality yields the relationship

head head' /( 1)B J B J< −  . Consequently, head head head head( 1) / ' /( 1)J B J B J B J+ < < −   . 
 

13A.8(b) The transition wavenumber is 3 11 1 32.8 10  cm
305 nm

v
λ

−= = = × . 

The cyano ligand (CN–) is a strong  ligand field splitter, so we expect the d5 electrons of Fe3+ to have the 5
2gt  low 

spin ground state configuration in the octahedral [Fe(CN)6]3– complex. The d-orbital electron spins are expected to 
be paired in two of the orbitals of the t2g level with one unpaired electron in the third orbital. This gives S = 1/2 and 
2S + 1 = 2 in the ground state. We also expect that P < ΔO where P is the energy of repulsion for pairing two 
electrons in an orbital.  
 
Hypothesis 1. A d−d transition to the 4 1

2g gt e  octahedral excited state with S = 1/2 and 2S + 1 = 2 is expected to be 
parity forbidden and, therefore, have a small molar absorption coefficient. This transition requires the energy ΔO and 
releases the energy P because the excited electron will come from a t2g orbital that has paired electrons in the ground 
state. Thus, O O     and     v P v P= ∆ − ∆ = +  . Using the typical value P ~ 28 × 103 cm–1 yields the estimate ΔO ~ 63 
× 103 cm–1. See F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th ed., (New York: Wiley-
Interscience Publishers, 1980), p. 646, for electron-pairing energies. This ΔO value is much too large so we conclude 
that this transition is unlikely to be a satisfactory description of the observed transition. 
 
Hypothesis 2. Bonding molecular orbitals may form from the LUMOs of the CN– ligands and the t2g orbitals of Fe3+ 
to produce complex-wide MOs that drastically reduce the electron pairing energy. Assuming that CN– has a ground 
electronic configuration that is similar to that of N2, 1σ22σ*21π42σ21π*0 (see text Fig. 10C.12), we see that the 
cyanide ligand has an antibonding 1π* MO LUMO that has the correct symmetry to form a π bond with an Fe3+ t2g 
orbital. This possibility is depicted in Fig. 13A.1 with the LUMO polarized toward the carbon as expected for an 
antibonding MO. Fig. 13A.2 depicts a reasonable energy level diagram for the Fe3+−CN− π bond. 
 

    

C N

dxy
π∗ LUMO of CN−

Fe

 
 

Figure 13A.1 
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Figure 13A.2 
 
Since the Fe3+−CN− π bond electron pair are more disperse than either a t2g electron or a 2σ ligand electron, it now 
seems reasonable to assume that the electron pairing energy is small enough to ignore yielding the estimate ΔO ~ 33 
× 103 cm–1. This value seems acceptable. 
 
13A.9(b) The normalized wavefunctions are: 
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Thus, the dipole transition integral is a concave-down function of c with a maximum at c = 1/3.  
 
13A.10(b) The normalized wavefunctions are: 
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The factors within the integral have ungerade and gerade symmetry. Because u × g = u, the integrand has ungerade 
symmetry and the dipole transition integral is necessarily zero (the integral of an ungerade function over a 
symmetric interval equals zero). 
 
 
13A.11(b) The weak absorption at 320 nm is typical of a carbonyl chromophore of an enol. The assignment is π*←n 
where a non-bonding electron comes from one of the two lone pair of the oxygen valence. The two lone pair of 
oxygen are in sp2 hybrid orbitals, which define the xy plane that contains the σ bond of the carbonyl. The π* 
molecular orbital is perpendicular to this plane. There is little overlap between the n and π* orbitals, thereby, 
producing a low value for the dipole transition integral and a low molar absorption coefficient. 

e g e g 
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C N − 
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The strong absorption at 213 nm has the π*←π assignment. The conjugation of the π bonds of the ethenic 
chromophore and the carbonyl chromophore causes this transition to be shifted to lower energies w/r/t both the 
π*←π transition of ethene (165 nm) and the π*←π transition of propanone (190 nm). This shift can be understood in 
terms of the simple Hückel theory of π molecular orbitals using the butadiene π energy model shown in text Fig. 
10E.2 and the simple MO energy diagram for C=C─C=O in Fig. 13A.3 below. The figure demonstrates a broad 
principle: the difference between neighboring energy levels becomes smaller as the number of adjacent, overlapping 
orbitals becomes larger. 

  
 

Figure 13A.3 
 
 
Problems 
 
13A.2 The potential energy curves for the 3

gX −Σ  and 3
uB −Σ  electronic states of O2 are represented schematically in 

Fig. 13A.4 along with the notation used to represent the energy separation of this problem. Curves for the other 
electronic states of O2 are not shown. Ignoring rotational structure and anharmonicity we may write 

 
( ) ( )

1
11 1

2 200 e

1

8065.5 cm6.175 eV 700 1580  cm
1 eV

    49364 cm

v T v v
−

−

−

 
′≈ + − = × + − 

 

≈

  

 

Comment: Note that the selection rule ∆v = ±1 does not apply to vibrational transitions between different electronic 
states. 
Question: What is the percentage change in 00v  if the anharmonicity constants ex v ,  12.0730 cm–1 and 8.002 cm–1 

for the ground and excited states, respectively, are included in the analysis? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C=C C=C−C=O C=O

pz(C) pz(C) pz(C)
pz(O)sp2(O) sp2(O)

165 nm
213 nm 320 nm 190 nm
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Figure 13A.4 

 
  
 
13A.4 The ionization is HBr → HBr+ + e– with the accompanying electronic energy change given by the equation

21
2 e ' 0ihv m I E ← == + + ∆v υ υ . This modified form of eqn 10C.6 accounts for the possibility of an excitation change in 

the vibrational energy in going from the ground electronic vibrational state 𝑣𝑣 = 0, in which a majority of molecules 
start, to the ionized electronic vibrational state 𝑣𝑣' = 0,1,2... The vibrational transition 𝑣𝑣'=0←𝑣𝑣=0 is called an 
adiabatic transition. Fig. 13A.5 shows the potential energy relationships between the ground electronic state and 
two possible ionized electronic states. 
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Figure 13A.5 
 
(a) The photoelectron spectrum band between 15.2 eV and 16.2 eV is the ejection of a bonding σ electron of HBr 
(see text Fig. 13.1). Loss of this electron reduces the bond order from 1 to ½, reduces the magnitude of the bond 
force constant, and lengthens the equilibrium bond length of the ionized molecule. The electronic transition is 
labeled as Iσ in Fig. 13A.5. The longer bond length of the ionized state cause the Franck-Condon factor for the 
adiabatic transition (𝑣𝑣'=0←𝑣𝑣=0) to be small. This is the lowest energy transition of the band at about 15.3 eV. The 
increasing spectral intensity for the 𝑣𝑣'=1←𝑣𝑣=0 and 𝑣𝑣'=2←𝑣𝑣=0 transitions indicates that these vertical transitions 
have successively larger Franck-Condon factors. The separation of lines (~0.162 eV) corresponds to an ionized 
vibrational wavenumber of about 1300 cm–1, which is considerably lower than the 2648.98 cm–1 of the neutral 
ground state. The presence of one unpaired electron in the bonding σ orbital means that the ionized molecule is in a 
2 +Σ  state. 
(b) The lines between 11.6 eV and 12.3 eV involve transitions of a non-bonding electron of the chlorine p valence 
subshell to two very closely spaced electronic states of the ionized molecule. The ionization energy of these states is 
labeled as In in Figure 13A.5. The unpaired electron of the ionized state makes it a doublet with spin-orbit coupling 
producing j = |l+s|,...,|l–s| = |1 + ½|, |1 – ½| = 3/2, 1/2. Consequently, the term symbols of these states are 
2 2

1/ 2 3 / 2 and Π Π  and Hund's rule predicts that 2
3/ 2Π  is lowest in energy because the subshell is more than half-

filled. Excitation of a non-bonding electron does not affect the molecular bond, nor does it affect the bonding force 
constant or the equilibrium bond length. Only the vertical, adiabatic transition (𝑣𝑣'=0←𝑣𝑣=0) has an appreciable 
Franck-Condon factor. The transition 𝑣𝑣'=1←𝑣𝑣=0 of the 2

3/ 2Π  transition has a very small vertical, vibrational 
overlap integral; it cannot be seen in the spectrum because it lies below the 2

1/ 2Π  adiabatic transition at 12.0 ev. The 
transition 𝑣𝑣'=1←𝑣𝑣=0 of the 2

1/ 2Π transition has a very small vertical, vibrational overlap integral and it is located at 
12.3 eV. The 0.3 eV line separation corresponds to an ionized vibrational wavenumber of about 2400 cm−1. This is 
consistent with the vibrational wavenumber of the ground state (2648.98 cm–1) and confirms the expectation that 
excitation of a non-bonding electron does not affect the σ bond. 
 
13A.6 The spectrum gives the peak and half-height points: 

 
( )

( ) ( )

3 1 1 1
peak peak

3 1 1 1 1
1/2 1/2 1/2

250 dm  mol  cm ,  284 nm 35200 cm

125 dm  mol  cm ,  305 nm 32800 cm  and 265 nm 37700 cm

v

v v

ε λ

ε λ λ

− − −

− − − −

= = =

= = = = =



 

 

We estimate that the wavenumber band has a normal Gaussian shape: 
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( ) ( )

2 2
peak / 1 1

max 1/2e  where  is a constant related to the half-width 37700 32800  cm 4900 cmv v a a vε ε − − − −= ∆ = − =
 



( ) ( )2 2
peak /

max
band

max

 d    [12A.15] e  d

  π      (standard integral)

v v av v v

a

ε ε

ε

∞ − −

−∞
= =

=

∫ ∫
 

  A
 

The relationship between the half-width and a is found by evaluation of the line shape at ε( 1/ 2v ) = εmax/2. 

 

( )

( )
( ) ( )

2 2
1/ 2 peak /

max max
2 2

1/ 2 peak

2 2
1/ 2 peak 1/ 22

1/ 2

/ 2 e

ln(1/ 2) /

/ 2
ln(2) ln(2)

2 ln 2

v v a

v v a

v v v
a

va

ε ε − −=

= − −

− ∆
= =

∆
=

 

 

 





 

Thus,  

 1
2 1/2 max 1/2 maxπ / ln(2) 1.0645v vε ε= ∆ = ∆ A  

 ( ) ( )1 3 1 1 6 3 1 21
2 4900 cm 250 dm  mol  cm π / ln(2) 1.30 10  dm  mol  cm− − − − −= × = ×A  

Since the dipole moment components transform as 1 1A ( )  B ( )z x, , and 2B ( )y , excitations from 1A  to 1A , 1B , and 

2B  terms are allowed. 
 
13A.8 Modeling the π electrons of 1,3,5-hexatriene as free electrons in a linear box yields non-degenerate energy 
levels of 

 
2 2

2
e

  [8A.7b]
8n
n hE
m L

=  

The molecule has six π electrons, so the lowest energy transition is from 3n =  to 4n = . The length of the box is 5 
times the C C−  bond distance R. So 

 
2 3 2

linear 2
e

(4 3 )
8 (5 )

hE
m R
−

∆ =  

Modeling the π electrons of benzene as free electrons on a ring of radius R yields energy levels of 

 
2 2

2
e  [8C.5]  where the moment of inertion is 

2l

l
m

m
E I m R

I
= =

  

These energy levels are doubly degenerate, except for the non-degenerate 0lm = . The six π electrons fill the 0lm =  
and 1 levels, so the lowest-energy transition is from 1lm =  to 2lm =  

 
2 2 2 2 2 2

ring 2 2 2
e e

(2 1 ) (2 1 )
2 8π

hE
m R m R
− −

∆ = =
  

Comparing the two shows 

 
2 2

linear ring2 2 2
e e

7 3
25 8 π 8

h hE E
m R m R

   
∆ = < ∆ =   

   
 

Therefore, the lowest-energy absorption will rise in energy when the molecule is converted from a linear to a ring 
structure. 
  
13A.10 Tryptophan (Trp) and tyrosine (Tyr) show the characteristic absorption of a phenyl group at about 280 nm. 
Cysteine (Cys) and glycine (Gly) lack the phenyl group as is evident from their spectra. 
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13B  Decay of excited states 
 

Answers to discussion questions 
 
13B.2 The characteristics of fluorescence which are consistent with the accepted mechanism are: (1) it ceases as 
soon as the source of illumination is removed; (2) the time scale of fluorescence, ~10–9 s, is typical of a process in 
which the rate determining step is a spontaneous radiative transition between states of the same multiplicity; slower 
than a stimulated transition, but faster than phosphorescence; (3) it occurs at longer wavelength (lower frequency) 
than the inducing radiation; (4) its vibrational structure is characteristic of that of a transition from the ground 
vibrational level of the excited electronic state to the vibrational levels of the ground electronic state; and (5) the 
observed shifting and in some instances quenching of the fluorescence spectrum by interactions with the solvent. 
 
 

Solutions to exercises 
 
13B.1(b) After some vibrational decay the benzophenone (which does absorb near 360 nm) can transfer its energy to 
naphthalene. The latter then emits the energy radiatively. 
 
13B.2(b) When the steeply repulsive section of the H2 potential energy curve for the excited state lies slightly 
toward the short side of the equilibrium bond length and the minimum of the excited state lies to the longer side (as 
shown in text Fig. 13B.7), a great many excited vibrational states overlap with the lowest energy vibration of the 
ground state thereby making the Franck-Condon factor appreciable for many vertical transitions (see text Fig. 
13A.7). This, combined with continuous absorption above the dissociation limit, yields a relatively broad absorption 
band. Furthermore, predissociation to the unbound 1

u
+Σ  state shortens the lifetime of excited vibrational states. This 

causes the high resolution lines of rotational transitions to be broad through the Heisenberg uncertainty principle
/ 2E t∆ ∆ ≥  . 

 

13C  Lasers 
 

Answers to discussion questions 
 
13C.2 Strong and short radiation pulses from a Q-switched or mode-locked laser can be used to study ultrafast 
chemical reactions by promoting a molecule A to an excited state A*, which may either emit a photon or react with 
another molecule B to form an intermediate species AB. AB may even be an activated complex. A second pulse of 
radiation that is synchronized to pass through the sample at a specific time after the excitation pulse is used to 
monitor the appearance and disappearance of the various species. Reaction progress and rates on the nanosecond-to-
picosecond scale can be examined by varying the time delay between the excitation pulse and the monitor pulse. 
 
Text 13C.10 is a schematic of a time-resolved absorption spectrometer. A beamsplitter directs a portion of the 
excitation beam to a continuum generator, which converts the monochromatic laser pulse to a wide-frequency pulse 
suitable for monitoring reaction species. The time delay is selected by changing the position of the motorized stage 
in the directions shown by the double arrow. The monitor pulse is directed through the sample to the 
monochromator along a path, which avoids coincidence with the intense excitation pulse, to the monchromator and 
detector. 
 
 
 

Solutions to exercises 
 
13C.1(b) Only an integral number of half-wavelengths fit into the cavity. These are the resonant modes. 
 2 /  [13C.1]     where  is an integer and  is the length of the cavity.L n n Lλ =  
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The resonant frequencies are given by / / 2v c nc Lλ= = . The lowest energy resonant modes (n = 1) in a 3.0 m 
cavity are λ = 6.0 m (v = 50.0 MHz). 
 
13C.2(b) Referring to Example 13C.1, we have  
 Ppeak= Epulse/tpulse     and     Paverage= Etotal/t = Epulse× vrepetition 
 where vrepetition is the pulse repetition rate. 

 pulse pulse peak
20 μJ/ 200 ps

100 kW
t E P= = =  

 repetition average pulse
0.40 mW/ 20 Hz
20.0 μJ

v P E= = =  

 
 

Solutions to problems 
 
13C.2 This Mathcad Prime 2 worksheet simulates the output of a mode-locked laser. The radiation intensity is 
analyzed in text Justification 13C.1 and we take the constant of proportionality to equal 1 (see eqn 13C.3). The 
worksheet plots for N = 5, 20, and 75 demonstrate that the superposition of many modes creates very narrow spikes 
separated by t = 2L/c = 2 nm. 
 

 

 

Integrated activities 
 
13.2 (a) Ethene (ethylene) belongs to D2h. In this group the x, y, and z components of the dipole moment transform 
as B3u, B2u, and B1u respectively. The π orbital is B1u (like z, the axis perpendicular to the plane) and π* is B3g. Since 
B3g × B1u = B2u and B2u × B2u = A1g, the transition is allowed (and is y-polarized). 
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(b) Regard the CO group with its attached groups as locally C2v. The dipole moment has components that transform 
as A1(z), B1(x), and B2(y), with the z-axis along the C==O  direction and x  perpendicular to the R2CO plane. The n 
orbital is py (in the R2CO plane), and hence transforms as B2. The π* orbital is px (perpendicular to the R2CO plane), 
and hence transforms as B1. Since Γf × Γi = B1 × B2 = A2, but no component of the dipole moment transforms as A2, 
the transition is forbidden. 
 
13.4 EHOMO calculations, performed with Spartan '10 using the DFT/B3LYP/6-31G* method, are reported in the 
following table along with the energy of experimentally determined I2−aromatic hydrocarbon charge transfer bands. 
Figure 13.1 is a plot of the charge transfer energy against EHOMO along with the linear regression fit.  
 

Hydrocarbon hvmax(exp) / eV EHOMO / eV 

Benzene 4.184 −6.70 

Biphenyl 3.654 −5.91 

Naphthalene 3.452 −5.78 

Phenanthrene 3.288 −5.73 

Pyrene 2.989 −5.33 

Anthracene 2.890 −5.23 

 
The plot shows a clear correlation between the energy of charge transfer and the HOMO of hydrocarbon electron 
donor: as EHOMO increases, the energy of charge transfer decreases. The correlation appears to be linear and the 
correlation coefficient (R = 0.988) indicates that about 98.8% of the variation is explained by the linear correlation. 
This supports the hypothesis that for π-donor hydrocarbons hvmax = ELUMO(I2) – EHOMO(π). 

   
Figure 13.1 
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14      Magnetic Resonance  

14A   General principles 
 

Answers to discussion questions 
 
D14A.2 The magnetogyric ratio of the electron is much larger in magnitude than the magnetogyric ratios of nuclei; 
therefore, the magnetic moment of the electron is much larger than the magnetic moments of nuclei. Compare the 
Bohr magneton to the nuclear magneton. Hence the energy of interaction of an electron with a magnetic field is 
much greater than the energies of interaction of nuclei with a magnetic field, on the order of magnitude by a factor 
of 1000. 
 

Solutions to exercises 
 
E14A.1(b) Since 27 -1

N p/ 2 5.051 10  J Te mµ −= = ×  and knowing the SI base units of p,  ,  and e m , we can   
solve for the units of T in terms of the base units of the SI system. In terms of units, the above equation 
for µN can be written  

(A s J s)/kg = (J T-1). Or T = kg s-2 A-1. In the solution to E47.1(a) it is shown that 1 1
N s Tγ − −= ; 

therefore, 1
N A s kgγ −=  

E14A.2(b) The magnitude of the angular momentum is given by 1/ 2{ ( 1)}I I +  . For a 14 N nucleus I = 1, hence  

 Magnitude = 342 1.491 10  J s−= × . The components along the z – axis are  

 340,  0,  1.055 10  J s−± = ± × . The angles that the projections of the angular momentum make 
with the z-axis are 

  10,  cos 0,  0.7854 rad 0 ,  45
2

θ −= ± = ± = ±


 



 

 
E14A.3(b) For 19

N
F, 2 62887  5 2567gµ

µ = . , = .  

N 0 N
L N with 2

Igγ µν ν γπ= = =


  

Hence, 
27 1

N 0
34

(5 2567)  (5 0508  10 J T )  (17.1T)
(6 626  10 J s)

Ig
h
µν

− −

−

. × . × ×= = . ×
  

8 16 85 10 s 685 MHz−= . × =  

 
E14A.4(b) N 0 N 0 N N[eqns 14A.4c  ]

Im I I I IE m g m gγ µ γ µ= − = − , =    

1 0  1Im = , , −  

( )

27 1

26

(0 404) (5 0508 10 J T ) (10 50T)

2 1425 10 J

m II

I

E m

m

− −

−

= − . × . × × .

= − . ×
 

      26 262 14 10 J 0 2 14 10 J− −= − . × , ,+ . ×  
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E14A.5(b)  The energy separation between the two levels is 

  
7 1 1

N 0

7 1

(1 93 10 ) (14 4 )where
2 2

4 42 10 44.2 MHz

T s TE h

s

γ
ν ν

π π

− −

−

. × × .
∆ = = =

= . × =


  

E14A.6(b) A 600 MHz NMR spectrometer means 600 MHz is the resonance field for protons for which the  
magnetic field is 14.1 T. In high-field NMR it is the field, not the frequency, that is fixed. 

  (i) A 14N nucleus has three energy states in a magnetic field corresponding to 1 0 1Im = + , ,− . But 
( 1 0) (0 1)E E∆ + → = ∆ → −  

N 0 N 0

N 0 N 0

( )

( )
I Im m I I

I I I

E E E m m

m mm

γ γ

γ γ
′ ′∆ = − = − − −

′= − − = − ∆

 

 

 

 
 

The allowed transitions correspond to 1Im∆ = ± ; hence 

( ) ( ) ( )27 1
N 0 0

26 

0.4036 5.051 10 JT 14.1 T

2.88 10 J

I NE h gν γ µ − −

−

∆ = = = = × × ×

= ×

 
 

 (ii)  We assume that the electron g-value in the radical is equal to the free electron g-value, 
 ge = 2.0023. Then 

24 1
e B 0

24

[14A.12] (2 0023) (9 274 10 J T ) (0 300T)

5.57 10 J

E h gν µ − −

−

∆ = = = . × . × × .

= ×

 
 

Comment. The energy level separation for the electron in a free radical in an ESR spectrometer is far 
greater than that of nuclei in an NMR spectrometer, despite the fact that NMR spectrometers normally 
operate at much higher magnetic fields. 

 
E14A.7(b) The relative population difference for spin 1

2  nuclei is given by 

[ ]

( )
( ) ( )

( )

0 N 0

27 1
0 7

023 1

δ  14A.1 and E14A.7(a)
2 2

1.405 5.05 10 J T
8.62 10 /

2 1.381 10 JK 298 K

IN N gN Justification
N N N kT kT

T

α β

α β

γ µ

− −
−

− −

−
= ≈ =

+

×
= = ×

× ×

 




 

(i) For 7 7δ0 50T (8 62 10 ) (0 50) 4.3 10N
N

− −. = . × × . = ×  

(ii) For 7 6δ2 5T (8 62 10 ) (2 5) 2.2 10N
N

− −. = . × × . = ×  

(iii) For 7 5δ15 5T (8 62 10 ) (15 5) 1.34 10N
N

− −. = . × × . = ×  

  

E14A.8(b)  N 0 [Exercises 14A.7(a) & (b)]
2 2
INg NhvN
kT kT
µ

δ ≈ =
  

 Thus,   N vδ α  

  (450MHz) 450MHz 7.5
(60MHz) 60MHz

N
N

δ
δ

= =  

  This ratio is not dependent on the nuclide as long as the approximation E kT∆  holds.  
 (Exercise 14A.7(a)) 
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E14A.9(b)  0
e B e Bλ
h hc

g g
ν
µ µ

= =  

      
34 8 1

24 1 3

(6 626 10 J s) (2 998 10 ms ) 1.3 T
(2.0023) (9 274 10 J T ) (8 10 m)

− −

− − −

. × × . ×
= =

× . × × ×
 

  
Solutions to problems 

 
P14A.2 (a) 27 1

N| | [ 5 05079 10  JT ]I Ng Iµ µ µ − −= = . ×  

  Using the formulas 

 1 1

(nuclide) 2 (nuclide)Sensitivity ratio( ) ( 1)
3( H) ( H)

v

v

R
v I

R
µ
µ

 
= = +  

 
 

 
3

1 2 1

(nuclide) 1 1 (nuclide)Sensitivity ratio( )
6( H) ( H)

R I
R I

µ
µ

 + = =    
   





  

We construct the following table: 

Nuclide Spin I Nµ µ  Sensitivity ratio( v ) Sensitivity ratio ( ) 

2 H  1 0.85745 0.409 0.00965 

13C  1
2  0.7023 0.251 0.01590 

14N  1 0.40356 0.193 0.00101 

19F  1
2  2.62835 0.941 0.83350 

31P  1
2  1.1317 0.405 0.06654 

1H  1
2  2.79285   

 
(b) N N | |II g Iµ γ µ= =  

 Hence N I
µγ =


 

  At constant frequency 
 2

0 0( 1)  or ( 1) [  is constant between the nuclei]R I R Iν νµω µ ω∝ + ∝ +  

Thus 

 
1

N2 2
3 31 1

N

(nuclide)
Sensitivity ratio( )

( H)

(nuclide)(nuclide)( 1) ( 1)
( H) ( H)

R
v

R

I I

ν

ν

µ µµ
µ µ µ

=

  
= + = +   

   

 

 as above. Substituting 0
0 N 0 N 0 and  

B
B

I I
µµω γ γ ω= = , =

 

 so 

 
3 2

0
2

( 1)
B

I B
R

I
µ+

∝  
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3

1
61 2 1

3

N1
6 2 1

N

(nuclide) 1 (nuclide)Sensitivity ratio( )
( H) ( H)

(nuclide) /1
( H) /

R I
R I

I
I

µ
µ

µ µ
µ µ

 + = =    
   

 + =   
   







 

   as in part (a).  

14B  Features of NMR spectra 
 

Answers to discussion questions 
 
D14B.2 Detailed discussions of the origins of the local, neighbouring group, and solvent contributions to the 

shielding constant can be found in Sections 14B.2(a), (b), and (c) as well as books on NMR. Here we will 
merely summarize the major features. 

The local contribution is essentially the contribution of the electrons in the atom that contains the 
nucleus being observed. It can be expressed as a sum of a diamagnetic and paramagnetic parts, that is 

d p(local)σ σ σ= + . The diamagnetic part arises because the applied field generates a circulation of charge 
in the ground state of the atom. In turn, the circulating charge generates a magnetic field. The direction of 
this field can be found through Lenz’s law which states that the induced magnetic field must be opposite in 
direction to the field producing it. Thus it shields the nucleus. The diamagnetic contribution is roughly 
proportional to the electron density on the atom and it is the only contribution for closed shell free atoms 
and for distributions of charge that have spherical or cylindrical symmetry. The local paramagnetic 
contribution is somewhat harder to visualize since there is no simple and basic principle analogous to 
Lenz’s law that can be used to explain the effect. The applied field adds a term to the hamiltonian of the 
atom which mixes in excited electronic states into the ground state and any theoretical calculation of the 
effect requires detailed knowledge of the excited state wave functions. It is to be noted that the 
paramagnetic contribution does not require that the atom or molecule be paramagnetic. It is paramagnetic 
only in the sense in that it results in an induced field in the same direction as the applied field. 

The neighbouring group contributions arise in a manner similar to the local contributions. Both 
diamagnetic and paramagnetic currents are induced in the neighbouring atoms and these currents result in 
shielding contributions to the nucleus of the atom being observed. However, there are some differences: 
The magnitude of the effect is much smaller because the induced currents in neighbouring atoms are much 
farther away. It also depends on the anisotropy of the magnetic susceptibility (see Chapter 18) of the 
neighbouring group as shown in eqn 14B.10(b). Only anisotropic susceptibilities result in a contribution. 

Solvents can influence the local field in many different ways. Detailed theoretical calculations of the 
effect are difficult due to the complex nature of the solute-solvent interaction. Polar solvent–polar solute 
interactions are an electric field effect that usually causes deshielding of the solute protons. Solvent 
magnetic anisotropy can cause shielding or deshielding, for example, for solutes in benzene solution. In 
addition, there are a variety of specific chemical interactions between solvent and solute that can affect the 
chemical shift.  

 
D14B.4 See Section 14B.3(d) for a detailed discussion of chemical and magnetic equivalence as applied to NMR 

and the distinction between them. Here we will summarize the basic concepts. Two nuclei are chemically 
equivalent if they are related by a symmetry operation of the molecule. Symmetrically equivalent nuclei 
will have the same resonance frequency, i.e. the same chemical shift. Examples are the protons in benzene 
and the protons meta- to each other (H-2, H-6 and H-3, H-5) in para-nitrophenol. In benzene the protons 
are related by a C6 operation (as well as others) and in para-nitrophenol the protons are related by a plane 
of symmetry and a C2 operation. Two nuclei are magnetically equivalent if in addition to being chemically 
equivalent they have identical spin-spin interactions with all other magnetic nuclei in the molecule. 
Examples are CH2CF2 and 1,2,3-trichlorobenzene. Chemical equivalence does not imply magnetic 
equivalence. In the case of para-nitrophenol, the protons H-2 and H-6, though chemically equivalent, are 
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not magnetically equivalent because the coupling of H-2 to H-3 is different from the coupling of H-6 to H-
3. 

 
 

Solutions to exercises 
 
E14B.1(b)   See the solution to Exercise 14B.1(a).  
   (i) δ is independent of both   and v.  
   (ii) Rearranging [48.4] we see v – vº = vºδ × 10–6 and the relative chemical shift is 

                 ( )
( )

( )
( )

º 450 MHz 450 MHz
7.5

º 60 MHz 60 MHz
ν ν
ν ν
−

= =
−

   

 
E14B.2(b)   loc 0(1 )σ= −   

6
loc 0 3 2 0

6 6
0 0

( ) [ (CH ) (CH )] 10

1 16 3 36 10 2 20 10

σ δ δ −

− −

| ∆ |=| ∆ | ≈| − | ×

=| . − . | × = . ×

  

 
 

(i) 6 6
0 loc1 9T    (2 20 10 ) (1 9T) 4.2 10 T− −= . ,| ∆ |= . × × . = ×   

(ii) 6 5
0 loc16 5T    (2 20 10 ) (16 5T) 3.63 10 T− −= . , | ∆ |= . × × . = ×   

  
E14B.3(b) v – vº = vºδ × 10–6 

2 3 2 3
6

2 3
6 6

  ( º )(CH ) ( º )(CH ) (CH ) (CH )

 º[ (CH ) (CH )] 10

 (3 36 1 16) 10 º 2 20 10 º

ν ν ν ν ν ν ν

ν δ δ

ν ν

−

− −

| ∆ | ≡ − − − = −

= − ×

= . − . × = . ×

 

 (i) 6º 400MHz (2 20 10 ) (400MHz) 880Hz [Fig 14B 1]ν ν −= | ∆ |= . × × = . .  

 (ii) 6º 650MHz (2 20 10 ) (650MHz) 1 43kHzν ν −= | ∆ |= . × × = .  

 
Figure 14B.1 

 
 

 At 650 MHz, the spin–spin splitting remains the same at 6.97 Hz, but as Δν has increased to 1.43 kHz, 
the splitting appears narrower on the δ scale 

 
E14B.4(b)  See section 14B.3 of the text for the splitting pattern of the A resonance of an AXn NMR spectrum. Here 

A = 31P and n = 6. The 6 fluorine nuclei split the A resonance into a septet of lines with intensities in the 
ratio 1:6:15:20:15:6:1. See Fig. 14B.2. 
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 Figure 14B.2 
 
 

   
 
       

E14B.5(b)  [ ]N 0  Solution to exercises 14A.3(a) & (b)Ig
h
µ

ν =
  

Hence, 
31 31( ) ( )
1 1( ) ( )

v g

v g
=

P P

H H
 

or 31 2 2634( P) 500MHz 203MHz
5 5857

ν .
= × =

.
 

The proton resonance consists of 2 lines 1
2(2 1)× +  and the 31P resonance of 5 lines 1

2[2 (4 ) 1]× × + . 

The intensities are in the ratio 1:4:6:4:1 (Pascal’s triangle for four equivalent spin 1
2  nuclei, Section 

48.3). The lines are spaced 5 5857 2 47
2 2634
.

= .
.

 times greater in the phosphorus region than the proton 

region. The spectrum is sketched in Fig. 14B.3. 
 

Figure 14B.3 

 
  
E14B.6(b) See Section 14B.3(a), Example 14B.3 and Figs. 14B.12 and 14B.13 for the approach to the solution to 

this exercise. Also see Example 14D.1 and Figs. 14D.4 and 14D.5. That latter example and those 
figures are applied specifically to EPR spectra, but the process of determining the intensity pattern in 
the fine structure of an NMR spectrum is the same. See the table below for the version of Pascal’s 
triangle for up to 3 spin-5/2 nuclei. Each number in the table is the sum of the six (I = 5/2, 2I + 1 = 6) 
numbers above it (3 to the right and 3 to the left).  

δΑ
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E14B.7(b) Look first at A and M, since they have the largest splitting. The A resonance will be split into a widely 

spaced triplet (by the two M protons); each peak of that triplet will be split into a less widely spaced 
sextet (by the five X protons). The M resonance will be split into a widely spaced triplet (by the two A 
protons); each peak of that triplet will be split into a narrowly spaced sextet (by the five X protons). The 
X resonance will be split into a less widely spaced triplet (by the two A protons); each peak of that 
triplet will be split into a narrowly spaced triplet (by the two M protons). (See Fig. 14B.4.) Only the 
splitting of the central peak of Fig. 14B.4(a) is shown in Fig. 14B.4(b). 
 

Figure 14B.4 

 
E14B.8(b) (i) Since all JHF are equal in this molecule (the CH2 group is perpendicular to the CF2 group), the H and 

F nuclei are both chemically and magnetically equivalent. 
(ii) Rapid rotation of the PH3 groups about the Mo–P axes makes the P and H nuclei chemically and  
     magnetically equivalient in both the cis- and trans-forms. 

 

E14B.9(b) 2 [4B.16, with  written as ]
v

τ δν ν
π

≈ ∆
∆

 

 6º ( ) 10 [Exercise 14B.3(a)]ν ν δ δ −′∆ = − ×  

 Then
6

0

4
6 6

2
( ) 10

2 9.9 10 s
( ) (350 10 Hz) (5.5 4.2) 10

τ
πν δ δ

π

−

−
−

≈
′ − ×

≈ ≈ ×
× × × − ×

 

Therefore, the signals merge when the lifetime of each isomer is less than about 0.99 ms, corresponding 
to a conversion rate of about 3 11.0 10 s−×  

 
 

Solutions to problems 
 

               1                

          1  1  1  1  1  1           

     1  2  3  4  5  6  5  4  3  2  1      

1  3  6  10  15  21  25  27  27  25  21  15  10  6  3  1 
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P14B.2  See Figures 14B.5(a), 14B.5(b), and 14B.5(c). In Figure 14B.5(a), J1 has A = +7.0 Hz, B  = −1.0 Hz, and C 
= +5.0 Hz. These are the suggested initial values of the parameters A, B, and C. For J2 in the figure, we 
have changed C to +6.0 Hz. We see that a small change in C makes a relatively large change in J, but the 
overall shape of the curve remains similar; the crossover point remains at π/2. In Figure 14B.5(b), we have 
changed B from its initial value of −1 Hz to −2 Hz. This curve is shown in the figure as J3. There is not a 
large change in J and the shape remains the same, as does the crossover point. In Figure 14B.5(c), we have 
changed A to +8.0 Hz from its initial value of +7.0 Hz. This curve is shown in the figure as J4. Here we see 
that a small change in A eliminates the crossover of the curves, although again the general shape of the 
curve is similar. 

 
 
Figure 14B.5(a) 
 

 
Figure 14B.5(b) 
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Figure 14B.5(c) 
 

 
 
 
P14B.4 (a) The Karplus equation [14B.14] for 3

HHJ  is a linear equation in cosφ  and cos 2φ . The experimentally 
determined equation for 3

SnSnJ  is a linear equation in 3
HHJ . In general, if ( )F f  is linear in f , and if ( )f x  

is linear in x, then ( )F x  is linear. So we expect 3
SnSnJ  to be linear in cosφ  and cos 2φ . This is 

demonstrated in (b). 
(b) 3 3

SnSn HHHz 78 86( Hz) 27 84J J/ = . / + .  

Inserting the Karplus equation for 3
HHJ  we obtain 

3
SnSn Hz 78 86{ cos cos 2 } 27 84J A B Cφ φ/ = . + + + . . Using A = 7, B = –1, and C = 5, we obtain 

3
SnSn Hz 580 --  79cos 395cos 2J φ φ/ = +  

The plot of 3
SnSnJ  is shown in Fig.14B.6. 
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Figure 14B.6 

 
(c) A staggered configuration (Fig.14B.7) with the SnMe3 groups trans to each other is the preferred 

configuration. The SnMe3 repulsions are then at a minimum. 
 
Figure 14B.7 

 
  
P14B.6 Equation 14B.15 may be written 

 2
nuc (1 3cos )k θ= −  

where k  is a constant independent of angle. Thus 

   

22
nuc 0 0

1 2

1
13

1

( ) (1 3cos )sin d d

(1 3 )d 2π [ cos d sin d ]

( ) 0

x x x x

x x

π π
θ θ θ φ

θ θ θ
−

−

∝ −

∝ − × = , = −

∝ − =

∫ ∫
∫
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14C  Pulse techniques in NMR 
 

Answers to discussion questions 
 
 
D14C.2 Both spin–lattice and spin–spin relaxation are caused by fluctuating magnetic and electric fields at the 

nucleus in question and these fields result from the random thermal motions present in the solution or other 
form of matter. These random motions can be a result of a number of processes and it is hard to summarize 
all that could be important. In theory every known nuclear interaction coupled with every type of motion 
can contribute to relaxation and detailed treatments can be exceedingly complex. However, they all depend 
on the magnetogyric ratio of the atom in question and the magnetogyric ratio of the proton is much larger 
than that of 13C. Hence the interaction of the proton with fluctuating local magnetic fields caused by the 
presence of neighboring magnetic nuclei will be greater, and the relaxation will be quicker, corresponding 
to a shorter relaxation time for protons. Another consideration is the structure of compounds containing 
carbon and hydrogen. Typically the C atoms are in the interior of the molecule bonded to other C atoms, 
99% of which are nonmagnetic, so the primary relaxation effects are due to bonded protons. Protons are on 
the outside of the molecule and are subject to many more interactions and hence faster relaxation. 

 
 
D14C.4 In the nuclear Overhauser effect (NOE) in NMR, spin relaxation processes are used to transfer the 

population difference typical of one species of nucleus X to another nucleus A, thereby enhancing the 
intensity of the signal produced by A. Eqns. 14C.8 and 14C.9 show that the signal enhancement is given by 

   A X
0
A A

1 1
2

I
I

γη
γ

= + = +    

 NOE can be used to determine interproton distances in biopolymers. This application makes use of the fact 
that when the dipole-dipole mechanism is not the only relaxation mechanism, the NOE is given by   

  A X 1
0
A A 1,dip-dip

1 1
2

I T
I T

γη
γ

= + = + ×  

 where T1 is the total relaxation time and T1,dip-dip is the relaxation time due to the dipole-dipole mechanism. 
Here A and X are both protons. The enhancement depends strongly on the separation, r, of the two spins, 
for the strength of the dipole-dipole interaction is proportional to 1/r3 , and its effect depends on the square 
of that strength and therefore on 1/r6.This sharp dependence on separation is used to build up a picture of 
the conformation of the biopolymer by using NOE to identify which protons can be regarded as neighbors. 

 
 
 

Solutions to exercises 
 
E14C.1(b) Analogous to precession of the magnetization vector in the laboratory frame due to the presence of 0  

that is 

 N 0
L [14A.7],

2
v

γ
π

=
  

there is a precession in the rotating frame, due to the presence of 1 , namely 

N
L 1 N 1

1 or2
γ

ν ω γπ= =


  

Since ω is an angular frequency, the angle through which the magnetization vector rotates is 
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N
N 1 1

Igt tµθ γ= =


   

So 
34

3
1

1 6N

( / 2) (1 0546 10 J s) 1.08 10 T
27(5 586) (5 0508 10 J T ) (5 10 s)Ig t

πθ
µ

−
−

− −

× . ×
= = = ×

−. × . × × ×
  

a 180º pulse requires 2 5 μs 10 μs× =  

 
E14C.2(b)  The effective transverse relaxation time is given by 

   *
2 1

1 1 [14C.7] 0.027 s
π π 12 s

T
ν −= = =

∆ ×½

  

 
E14C.3(b) The maximum enhancement is given by 

  
1

19

7 1 1
H

7 1 1
F

26.752 10 T s[14C.9] [Table 14A.2] 0.5312
2 2 25.177 10 T s
γ

η
γ

− −

− −

×
= = =

× × ×
 

 
 
  
E14C.4(b) See Fig. 14C.1. Only the H(N) and H(Cα) protons and the H(Cα) and H(Cβ) protons are expected to show  
     coupling.  This results in a simple COSY spectrum with only two off-diagonals, one at (8.25 ppm, 4.35   
     ppm) and the other at (4.35 ppm, 1.39 ppm).  
 

 
 
     Figure 14C.1 

 
 
 

 

δ

δ

NH

C Hα

C Hβ
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Solutions to problems 
 
P14C.2 The FID signals from the three nuclei are all of the form of eqn 14C.1 which we will write as  

 2/
0 L( ) cos(2 )e jt T

j j
j

F t S tπν −=∑ . For simplicity we will assume that all T2 values are the same at 1.0 s 

and that the maximum signal intensity S0j is the same for each nucleus.  No information is given in the 
problem statement about the number of nuclei with the specific values of δ given, so again for simplicity 
we will assume only one nucleus corresponds to each value of δ. The total FID can then be expressed as 

   2/
0 L( ) cos(2 )e t T

j
j

F t S tπν −= ∑  

 The solution is contained in the following MathCad worksheet. 
 

 
 

 

 
 

 

 
 

 

 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 

 Definitions:    

 

Time domain:   

Relaxation time:  

Chemical shifts:    

Spectrometer frequency:  

Relative intensities:    

Larmor frequencies: 
   

FID of signal 1: 
 

FID of signal 2:  

FID of signal 3:  

Total FID signal:  

MHz 106 Hz⋅:= N 212
:=

m 0 1, N 1−..:=

tmax 10 s⋅:= tm
m
N

tmax⋅:=

T2 1 s⋅:=

δ1 3.2:= δ2 4.1:= δ3 5.0:=

ν0 800 MHz⋅:=

S1 1:= S2 1:= S3 1:=

ν1 1
δ1

106
+






ν0⋅:= ν2 1

δ2

106
+






ν0⋅:= ν3 1

δ3

106
+






ν0⋅:=

F1m
S1 cos 2 π⋅ ν1⋅ tm⋅( )⋅ e

t m−

T2
⋅:=

F2m
S2 cos 2 π⋅ ν2⋅ tm⋅( )⋅ e

t m−

T2
⋅:=

F3m
S3 cos 2 π⋅ ν3⋅ tm⋅( )⋅ e

t m−

T2
⋅:=

F F1 F2+ F3+:=
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Figure 14C.2(a) 

 
 
Figure 14C.2(b) 
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 The FIDs of the signal from this compound with the values of the chemical shifts given in this problem are 

just a jumble of lines with intensities decreasing with time; the FIDs themselves contain very little direct 
information about the compound. The desired information is extracted by Fourier transformation of the 
FIDs from the time domain to the frequency domain. Increasing the frequency of the spectrometer from 
200 MHz to 800 MHz has no effect upon the chemical shift expressed as δ values, but does increase the 
chemical shift expressed as (νL – ν0) values and that is the main reason for building spectrometers operating 
at higher and higher frequencies. Increasing the frequency (and hence the field) allows for greater 
resolution of spin-spin splittings in the spectrum as the chemical shift (νL – ν0) increases. That would not be 
obvious in this example because no information is given about spin-spin splittings. As an example of this 
problem in a real substance, ethanol, where spin-spin splittings occur, examine Figures 14C.7 and 14B.2 of 
the text 

 
 
 
P14C.4  (a) The Lorentzian function in terms of angular frequencies is 

  0 2
L 2 2

2 0

( )
1 ( )

S TI
T

ω
ω ω

=
+ −

 

 The maximum in this function occurs when ω = ω0. Hence IL,max = S0T2 and  

  L,max 0 2 0 2 0 2
L 1/ 2 2 2 2 2

2 1/ 2 0 2

( )
2 2 1 ( ) 1 ( )

I S T S T S TI
T T

ω
ω ω ω

∆ = = = =
+ − + ∆

 

 where 2 2
2 2

1
;  hence 

2
2 1 ( )  and 1/T Tω ω ω ω∆ = ∆ = + ∆ ∆ =½ . Therefore 

2

2
T

ω∆ =
½

 

 (b) The Gaussian function in terms of angular frequencies is 

  
2 2

2 0( )
G 0 2( ) e TI S T ω ωω − −=  

 The maximum in this function occurs when ω = ω0. Hence IG,max = S0T2 and  

  
2 2 2 2

2 0 2G,max ( ) ( )0 2
G 1/ 2 0 2 0 2( ) e e

2 2
T TI S TI S T S Tω ω ωω − − − ∆∆ = = = =½  

 where 2 2
2 2

1
;  hence ln

2
2 ( )  and (ln 2) /T Tω ω ω ω∆ = ∆ = ∆ ∆ = ½

½   

 Therefore 
2

2(ln 2)
T

ω∆ =
½

½
 

 
 (c) If we choose the same values of S0, T2, and ω0 for both functions we may rewrite them as  

  L G 2 02

21( ) ( )  and ( ) ( ) e  where ( )
1

xI L x I G x x T
x

ω ω ω ω−= ∝ = ∝ = −
+

 

 These functions are plotted against x in the following Mathcad worksheet. Note that the Lorentzian 
function is slightly sharper in the center, although this is difficult to discern with the scale of x used in the 
figure, and decreases much more slowly in the wings beyond the half amplitude points. Also note that the 
functions plotted in the figure are not normalized but are matched at their peak amplitude in order to more 
clearly display the differences in their shapes. If the curves had been normalized the areas under the two 
curves would be equal, but the peak height in the Lorentzian would be lower than the Gaussian peak height. 
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Figure 14C.3 
    

 

x 5− 4.95−, 5..:=

L x( )
1

1 x2
+

:= G x( ) e x2−
:=

6 4 2 0 2 4 6
0

0.5

1

L x( )

G x( )

x  
      
        

P14C.6 We have seen (Problem 14C.5) that if ( )
( )

0 2 2
0

1cos , then 
1

G t Iω ω
ω ω τ

∝ ∝
 + − 

 which peaks at ω ≈ ω0. 

Therefore, if 

1 2( ) cos cosG t a t b tω ω∝ +  

we can anticipate that 

2 2 2 2
1 2

( )
1 ( ) 1 ( )

a bI ω
ω ω τ ω ω τ

∝ +
+ − + −

 

and explicit calculation shows this to be so. Therefore, I(ω) consists of two absorption lines, one peaking at 
ω ≈ ω1 and the other at ω ≈ ω2. 
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P14C.8  Methionine-105 is in the vicinity of both tryptophan-28 and tyrosine-23 but the latter two residues are not 
in the vicinity of each other.  The methionine residue may lay between them as represented in figure 14C.4 

 
Figure 14C.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

14D  Electron paramagnetic resonance 
 

Answers to discussion questions 
 
D14D.2 The hyperfine parameter a due to a nucleus in an aromatic radical, which is easily measured from the 

splittings of the lines in the EPR spectrum of the radical, as illustrated in Fig. 14D.3 of the textbook, for the 
benzene anion radical, can be related to the spin density ρ of the unpaired electron on the nuclei in the 
aromatic radical. For the hyperfine splitting due to protons in aromatic systems, the relationship required is 
the McConnell equation, eqn. 14D.5. The process of obtaining ρ from the McConnell equation is illustrated 
in Brief Illustration 14D.3 following eqn. 14D.5 in the text. For nuclei other than protons in aromatic 
radicals similar, although more complicated equations arise; but in all cases the spin densities can be related 
to the coefficients of the basis functions used to describe the molecular orbital of the unpaired electron. 

 
Solutions to exercises 

 
E14D.1(b) The g factor is given by 

34
11 1 1

24 1
B 0 B

6.62608 10 J s;    7.1448 10 T Hz 71.448 mT GHz
9.2740 10 J T

h hg ν
µ µ

−
− − −

− −

×
= = = × =

×
 

171.448 mT GHz 9.2482GHz 2.0022
330.02 mT

g
− ×

= =   

 
E14D.2(b) The hyperfine coupling constant for each proton is 2.2mT , the difference between adjacent lines in the 

spectrum. The g value is given by 

.....C

......N

S

O
methionine residue

.....C

.....N

HN

O

tryptophan residue

......C

.....N

OH

O
tyrosine residue

H

H

H
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( )1

B 0

(71.448mT GHz ) 9.332GHz
1.992

334.7 mT
hg ν
µ

− ×
= = =


 

   
E14D.3(b)  If the spectrometer has sufficient resolution, it will see a signal split into eight equal parts at ±1.445 ± 

 1.435 ± 1.055 mT from the centre, namely 

328.865,  330.975,  331.735,  331.755,  333.845,  333.865,  334.625 and 336.735mT  

If the spectrometer can only resolve to the nearest 0.1 mT, then the spectrum will appear as a sextet 
with intensity ratios of 1:1:2:2:1:1. The four central peaks of the more highly resolved spectrum 
would be the two central peaks of the less resolved spectrum.  

 
E14D.4(b) (i) If the CH2 protons have the larger splitting there will be a triplet (1:2:1) of quartets (1:3:3:1). 

Altogether there will be 12 lines with relative intensities 1(4 lines), 2(2 lines), 3(4 lines), and 6(2 
lines). Their positions in the spectrum will be determined by the magnitudes of the two proton 
splittings which are not given. 

 
 (ii) If the CD2 deuterons have the larger splitting there will be a quintet (1:2:3:2:1) of septets 

(1:3:6:7:6:3:1). Altogether there will be 35 lines with relative intensities 1(4 lines), 2(4 lines), 3(6 
lines), 6(8 lines), 7(2 lines), 9(2 lines), 12(4 lines), 14(2 lines), 18(2 lines),and 21(1 line). Their 
positions in the spectrum will determined by the magnitude of the two deuteron splittings which are 
not given. 

  
E14D.5(b) The g value is given by 

1
0

B 0 B B

 so ,    71.448 mT GHzh h hg
g

ν ν
µ µ µ

−= = =


 

(i) 
( )1

0

(71.448 mT GHz ) 9.501GHz
339.0 mT

2.0024

− ×
= =  

(ii) 
( )1

0

(71.448 mT GHz ) 34.77GHz
1241mT

2.0024

− ×
= =  

E14D.6(b) Two nuclei of spin 1I =  give five lines in the intensity ratio 1:2:3:2:1 (Fig. 14D.1). 

 
 

       Figure 10D.1 

                  
 
E14D.7(b) The X nucleus produces four lines of equal intensity. Three H nuclei split each into a 1:3:3:1 quartet. 

 The three D nuclei split each line into a septet with relative intensities 1:3:6:7:6:3:1 (see Exercise 
 14D.4(a). (see Fig. 14D.2.) 
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Figure 10D.2 

 
 

 
Solutions to problems 

 
P14D.2  

11

B 0 0
11 9

0 0

(7 14478 10 T) ( Hz) [14D.2]

(7 14478 10 T) (9 302 10 ) 0 66461

hg

T

ν ν
µ

−

−

. × × /
= =

. × × . × .
= =

/

 

 

 

0 66461 0 664611 992 2 002
0 33364 0 33194

g g⊥

. .
= = . = = .

. .

 

  
P14D.4 Construct the spectrum by taking into account first the two equivalent 14 N  splitting (producing a 

1 2 3 2 1 quintet: : : : ) and then the splitting of each of these lines into a 1 4 6 4 1 quintet: : : :  by the four 
equivalent protons. The resulting 25-line spectrum is shown in Fig.14D.3. Note that Pascal’s triangle does 
not apply to the intensities of the quintet due to 14 N , but does apply to the quintet due to the protons. 

 
 
 
 
 
 
Figure 10D.3 
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P14D.6 Write ( ) ( )5.7mTN2 0.10  10 percent of its time
55.2mT

P s = =  

( ) ( )z
1.3mTN2 0.38  38 percent of its time
3.4mT

P p = =  

The total probability is 

(a) ( )(N) 0 10 0 38 0 48  48 percent of its time .P = . + . = .  

(b) ( ) ( )(O) 1 N 0 52  52 percent of its timeP P= − = . . 

The hybridization ratio is 

( )N2 0.38 3.8
(N2 ) 0.10

P p
P s

= =  

The unpaired electron therefore occupies an orbital that resembles an sp3 hybrid on N, in accord with the 
radical’s nonlinear shape. 
From the discussion in Section 10A we can write 

2 1 cos
1 cos

a φ
φ

+
=

−
 

2 2 2cos1
1 cos

b a φ
φ

−
= − =

−
 

2

2

1cos λλ ,  implying that cos
1 cos 2

b
a

φ φ
φ

′ −
= = =

′ + + 
 

Then, since λ 3 8  cos 0 66,  so 131φ φ= . , = − . = °  

Integrated activities 
 
I14.2 (a) The first figure displays spin densities computed by molecular modeling software (ab initio, density 

functional theory, Gaussian TM98 ). 
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(b) First, note that the software assigned slightly different values to the two protons ortho to the oxygen and 
to the two protons meta to the oxygen. This is undoubtedly a computational artifact, a result of the 
minimum-energy structure having one methyl proton in the plane of the ring, which makes the right and 
left side of the ring slightly non-equivalent. (See second figure.) In fact, fast internal rotation makes the two 
halves of the ring equivalent. We will take the spin density at the ortho carbons to be 0.285 and those of the 
meta carbons to be –0.132. Predict the form of the spectrum by using the McConnell equation (14D.5) for 
the splittings. The two ortho protons give rise to a 1:2:1 triplets with splitting 0.285 2 25 mT 0 64 mT× . = . ; 
these will in turn be split by the two meta protons into 1:2:1 triplets with splitting 
   0.132 2 25 mT 0 297 mT 0.297 mT× . = . =   
And finally, these lines will be seen to be further split by the three methyl protons into 1:3:3:1 quartets with 
splittings 1.045 mT. Note that the McConnell relation cannot be applied to calculate these latter splittings, 
but the software generates them directly from calculated spin densities on the methyl hydrogens. The 
computed splittings agree well with experiment at the ortho positions (0.60 mT) and at the methyl 
hydrogens (1.19 mT) but less well at the meta positions (0.145 mT). 

 
I14.4 The desired result is the linear equation: 

[ ] 0
0

[ ]
I

E
K

ν
δν
∆

= − ,  [Note: the intercept turns out to be  –K, not K as K is defined in the problem 

statement.] 
Our first task is to express quantities in terms of [I]0, [E]0, Δν, δν, and K, eliminating terms such as [I], [EI], 
[E], ν1, νEI, and ν. [Note: symbolic mathematical software is helpful here.] Begin with v: 

0
I EI I EI

0 0

[I] [EI][I] [EI] [EI]
[I] [EI] [I] [EI] [I] [I]

ν ν ν ν ν
−

= + = + ,
+ +

 

where we have used the fact that total I (i.e., free I plus bound I) is the same as initial I. Solve this so it 
must also be much greater than [EI]: 

( )0 I 0

EI I

[I] [I]
[EI] ,

v v v
v v v

δ−
= =

− ∆
 

where in the second equality we notice that the frequency differences that appear are the ones defined in the 
problem. Now take the equilibrium constant: 

( )( ) ( )0 0 0 0[E] [EI] [I] [EI] [E] [EI] [I][E][I] .
[EI] [EI] [EI]

K
− − −

= = ≈  

We have used the fact that total I is much greater than total E (from the condition that 0 0[I] [E] ), so it 
must also be much greater than [EI] , even if all E binds I. Now solve this for [E]0: 

0 0 0 0
0

0 0

[I] [I] [I] ( [I] )[E] [EI] .
[I] [I]

K K Kδν δν
ν ν

 + + + = = =  ∆ ∆  
 

The expression contains the desired terms and only those terms. Solving for [I]0 yields: 
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0
0

[E][I] v K
vδ
∆

= −  

which would result in a straight line with slope [E]0Δν and y-intercept –K if one plots [I]0 against 1/δν. 
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15 Statistical thermodynamics 

15A The Boltzmann distribution 

Answers to discussion questions 
15A.2 The principle of equal a priori probabilities is the assumption that the population of any 

physical state depends only on its energy and not how that energy is distributed. For 
example, a state in which the molecule’s energy ε is all in translational motion is just as 
likely as a state where all its energy is in rotational motion or in vibrational motion or in any 
combination of these modes of motion—provided, of course, that the distribution is 
consistent with the molecule’s quantized energy levels. 

15A.4 Because the Boltzmann distribution gives the ratio of populations of states of different 
energy as a function of temperature, it accounts for the temperature dependence of many 
physical and chemical phenomena. In this chapter, reference was made to the intensities of 
spectral transitions (Topics 12A and 14A) as one phenomenon governed by the Boltzmann 
distribution. Chemical equilibrium is governed by the Boltzmann distribution: the 
equilibrium distribution of reactant and product species is determined by a single 
Boltzmann distribution of states of the system regardless of whether those states belong to 
reactant or product species (Topi 15F.2). The Maxwell-Boltzmann distribution of molecular 
speeds in the kinetic model of gases is an application of the Boltzmann distribution to 
translational motion (Topic 1B). Collision theory explains the temperature dependence of 
reaction rates through the Boltzmann distribution (Topic 21A). 

Solutions to exercises 

15A.1(b) The weight is given by 

 
   
W =

N !
N0 !N1 !N2 ! ⋅ ⋅ ⋅

=
21!

6!0!5!0!4!0!3!0!2!0!0!1!
= 2.04 ×1012  

15A.2(b) (i) 10! = 10×9×8×7×6×5×4×3×2×1 = 3628800 exactly. 
(ii) According to Stirling’s simple approximation [15A.2b], 
 ln x! ≈ x ln x – x 
so ln 10! ≈ 10 ln 10 – 10 = 13.026 and 10! ≈ e13.026 = 4.54×105  
(iii) According to Stirling’s better approximation [15A.2a], 
 x! ≈ (2π)1/2xx+1/2e–x so 10! ≈ (2π)1/21010.5e–10 = 3.60×106  

15A.3(b) For two non-degenerate levels,  

 
  

N2

N1

=
e−βε2

e−βε1
= e−β (ε2−ε1) = e−β∆ε = e−∆ε /kT 15A.7a with β =

1
kT









  

Hence, as T approaches 0, the exponent becomes infinitely large and negative: 

 
  
lim
T→0

N2

N1

= 0  

That is, only the lower state would be populated. 

15A.4(b) For two non-degenerate levels,  

 
  

N2

N1

=
e−βε2

e−βε1
= e−β (ε2−ε1) = e−β∆ε = e−∆ε /kT 15A.7a with β =

1
kT









  

so 
  
ln

N2

N1

= −
∆ε
kT

 and 

  

T = −
∆ε

k ln
N2

N1

 

Thus 
  
T = −

6.626 ×10−34  J s × 2.998 ×1010  cm s−1 × 300 cm−1

1.381×10−23  J K−1 × ln(1 / 2)
= 623 K  
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15A.5(b) See Example 15A.1. The ratio of populations of a particular state at the J = 5 level to the 
population of the non-degenerate J = 0 level is 

 
  

N2

N1

=
e−βε2

e−βε1
= e−β (ε2−ε1) = e−β∆ε = e−∆ε /kT 15A.7a with β =

1
kT









  

Because all of the states of a degenerate level are equally likely, the ratio of populations of a 
particular level is 

 
  

N5

N0

=
g5e

−βε5

g0e
−βε0

=
g5

g0

e−(ε5−ε0 )/kT  

The degeneracy of spherical rotor energy levels are  
 gJ = (2J+1)2 , 
and its energy levels are [12B.8] 
 ( 1)J hcBJ Jε = +  
Thus, using kT/hc = 207.224 cm–1 at 298.15 K, 

 
1 1

2
5(5 1) / 5(5 1) 2.71 cm /207.224 cm5 5

2
0 0

(2 5 1)e = e
(2 0 1)

81.7  .

hcB kTN g
N g

− −− + − + ×× +
=

× +

=

  

15A.6(b) In fact there are two upper states, but one upper level. And of course the answer is different 
if the question asks when 15% of the molecules are in the upper level, or if it asks when 
15% of the molecules are in each upper state. The solution below assumes the former. 
If the levels were non-degenerate, then  

 
  

N2

N1

=
e−βε2

e−βε1
= e−β (ε2−ε1) = e−β∆ε = e−∆ε /kT 15A.7a with β =

1
kT









  

Because each state at a given level is equally likely, the population ratio of the levels is 

 
  

N2

N1

=
g2e

−βε2

g1e
−βε1

[15A.7b] =
g2

g1

e−∆ε /kT  

Assuming that other states (if any) are negligibly populated, 

 
  
ln

N2

N1

= ln
g2

g1

−
∆ε
kT

 and 

  

T = −
∆ε

k ln
N2g1

g2 N1

 

Thus 

  

T = −
6.626 ×10−34  J s × 2.998 ×1010  cm s−1 × 360 cm−1

1.381×10−23  J K−1 × ln 15×1
(100 −15) × 2







= 213 K  

Solutions to problems 
15A.2 For a configuration to resemble an exponential decay, populations of successively higher 

states must be no greater than the previous state. In this entire list, the only configuration that 
meets this criterion is {4,2,2,1,0,0,0,0,0,0}. This is the configuration we anticipate will be 
most likely. 
We draw up the following table: 

0 ε 2ε 3ε 4ε 5ε 6ε 7ε 8ε 9ε W 

8 0 0 0 0 0 0 0 0 1 9 

7 1 0 0 0 0 0 0 1 0 72 

7 0 1 0 0 0 0 1 0 0 72 

7 0 0 1 0 0 1 0 0 0 72 

7 0 0 0 1 1 0 0 0 0 72 

6 2 0 0 0 0 0 1 0 0 252 

6 0 2 0 0 1 0 0 0 0 252 
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6 0 0 3 0 0 0 0 0 0 84 

6 1 0 0 2 0 0 0 0 0 252 

6 1 1 0 0 0 1 0 0 0 504 

6 1 0 1 0 1 0 0 0 0 504 

6 0 1 1 1 0 0 0 0 0 504 

5 3 0 0 0 0 1 0 0 0 504 

5 0 3 1 0 0 0 0 0 0 504 

5 2 1 0 0 1 0 0 0 0 1512 

5 2 0 1 1 0 0 0 0 0 1512 

5 1 2 0 1 0 0 0 0 0 1512 

5 1 1 2 0 0 0 0 0 0 1512 

4 4 0 0 0 1 0 0 0 0 630 

4 3 1 0 1 0 0 0 0 0 2520 

4 3 0 2 0 0 0 0 0 0 1260 

4 2 2 1 0 0 0 0 0 0 3780 

3 5 0 0 1 0 0 0 0 0 504 

3 4 1 1 0 0 0 0 0 0 2520 

2 6 0 1 0 0 0 0 0 0 252 

2 5 2 0 0 0 0 0 0 0 756 

1 7 1 0 0 0 0 0 0 0 72 

0 9 0 0 0 0 0 0 0 0 1 
 
Indeed, the “most exponential” distribution, {4,2,2,1,0,0,0,0,0,0}, is the most likely: 

 
   
W =

N !
N0 !N1!N2 ! ⋅⋅⋅

[15A.1] = 9!
4!2!2!1!

= 3780  

15A.4 If the electronic states were in thermal equilibrium with the translational states, then the 
temperature would be the same for both. The ratio of electronic states at 300 K would be 

 
   

N1

N0

=
g1e

−ε1/kT

g0e
−ε0 /kT [15A.7b] = 4

2
× e−∆ε /kT = 2e−hcν /kT = 2e−{(1.4388×450)/300} = 0.23  

The observed ratio is 
 
0.30
0.70

= 0.43 . Hence the populations are not at equilibrium. 

15A.6 (a) The probability of finding a molecule in state j is 

 
   
p j =

N j

N
=

e−βε j

q
[15A.6] 

In the systems under consideration, ε is both the mean energy and the energy difference 
between adjacent levels, so 

 
   
p j =

e− jβε

q
, 

which implies that 

 –jβε = ln Nj – ln N + ln q  and 
   
ln N j = ln N − lnq − jβε = ln N

q
−

jε
kT

 

Thus, a plot of ln Nj against j should be a straight line with slope –ε/kT . 
We draw up the following table using the information in Problem 15A.2 
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j 0 1 2 3  

Nj 4 2 2 1 [most probable configuration] 

ln Nj 1.39 0.69 0.69 0  
 
These are points plotted in Figure 15A.1 (full line). The slope is –0.416, and since 

  
ε
hc

= 50cm−1 , the slope corresponds to a temperature 

 
  
T =

(50cm−1) × (2.998 ×1010 cm s−1) × (6.626 ×10−34 J s)
(0.416) × (1.381×10−23 J K−1)

= 163 K  

 
Figure 15A.1 

 
(b) Choose one of the weight 2520 configurations and one of the weight 504 
configurations, and draw up the following table 

 J 0 1 2 3 4 

W = 2520 Nj 4 3 1 0 1 

 ln Nj 1.39 1.10 0 –∞ 0 

W = 504 Nj 6 0 1 1 1 

 ln Nj 1.79 –∞ 0 0 0 
Inspection confirms that these data give very crooked lines—even without considering the 
points represented by the unoccupied states. 

15A.8 If the atmosphere were at equilibrium, then the Boltzmann distribution would apply, so the 
relative populations per unit volume would be 

 
  

Ni

N j

=
e−βε i

e−βε j
= e−(ε j−ε i )/kT 15A.7a with β =

1
kT









  

What distinguishes the states and energies of molecules in a planet’s gravitational field is the 
distance r from the center of the planet. The energy is gravitational, measured from the 
ground-state energy 

 
  
ε(r) = V (r) −V (r0 ) = −GMm 1

r
−

1
r0







 

Note that the ground-state energy is literally the energy at the ground—or more precisely at 
the lowest point of the atmosphere, r0 . 
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so 
  

N (r)
N (r0 )

= e−{V (r )−V (r0 )}/kT  

Far from the planet, we have 

 
  
lim
r→∞

ε(r) = −GMm 0 − 1
r0







=

GMm
r0

 

and 
  
lim
r→∞

N (r)
N (r0 )

= e−GMm/r0kT  

Hence, if the atmosphere were at equilibrium, the farther one ventured from the planet, the 
concentration of molecules would tend toward a non-zero fraction of the concentration at the 
surface. This is obviously not the current distribution for planetary atmospheres where the 
corresponding limit is zero. Consequently, we may conclude that no planet’s atmosphere, 
including Earth’s, is at equilibrium. 

 

15B Molecular partition functions 

Answers to discussion questions 
15B.2 For two non-degenerate levels, see Brief Illustration 53.1. The mean energy is 

 
 
ε =

ε
1+ eβε

 

where ε is the energy of the upper level (and zero the energy of the lower level). At low 
temperatures, the  e

βε  in the denominator makes the denominator very large and the average 
energy close to zero. At high temperatures, the average energy levels off at a value of ε/2 as 
the  e

βε  term comes down to approach 1. 

15B.4 The symmetry number, σ, of a molecule is the number of its indistinguishable orientations. 
See Table 15B.2, Justification 15B.4, and Brief illustration 15B.4. We can think of 
including the symmetry number in the calculation of partition functions as a way of 
avoiding “double counting” or “multiple counting,” because one divides by σ. But double 
counting is not, strictly speaking, what is prevented. Indistinguishable configurations rule 
out certain rotational states because of the Pauli principle. (See Topic 12C.3.) The 
symmetry number need not be included in calculation of the rotational partition function by 
direct summation over states, as long as only allowed states are included in the sum; 
furthermore, using the symmetry number to correct a direct sum that includes forbidden 
states is not exact. If the high-temperature expression for the partition function is a good 
approximation, though, the inclusion of the symmetry number in that expression is also a 
good approximation. 

 
Solutions to exercises 

15B.1(b) (i) The thermal wavelength is [15B.7b] 

 
  
Λ = h

(2πmkT )1/2  

We need the molecular mass, not the molar mass: 

 
  
m =

20.18 ×10−3  kg mol−1

6.022 ×1023  mol−1 = 3.351×10−26  kg  

So 
  
Λ = 6.626 ×10−34 J s

(2π × 3.351×10−26 kg ×1.381×10−23 J K−1 × T )1/2 =
3.886 ×10−10 m

(T / K)1/2  

T = 300 K: 
 
Λ = 3.886 ×10−10 m

(300)1/2 = 2.243×10−11  m = 22.43 pm  
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T = 3000 K: 
 
Λ = 3.886 ×10−10 m

(3000)1/2 = 7.094 ×10−12  m = 7.094 pm  

(ii) The translational partition function is 

 
   
q T =

V
Λ3

 [15B.10b] 

T = 300 K: 
  
q T =

(1.00 ×10−2  m)3

(2.243×10−11  m)3 = 8.86 ×1025  

T = 3000 K: 
  
q T =

(1.00 ×10−2  m)3

(7.094×10−12  m)3 = 2.80 ×1027  

15B.2(b)  
   
q T =

V
Λ3

 [15B.10b], implying that
  

q
′q
=

′Λ
Λ







3

 

However, 
  
Λ = h

(2πmkT )1/2 [52.7b]∝ 1
m1/2  so 

   

q
′q
=

m
′m







3/2

 

Therefore,
  

q Ar

q Ne

=
39.95
20.18







3/2

= 2.785  

15B.3(b) The high-temperature expression for the rotational partition function of a linear molecule is 

 R 2[15B.13b]  [12B.7],    [Table 12B.1]
4

kT B I R
cIhcB

µ
πσ

= , = =






q  

Hence 
   
q =

8π 2kTI
σh2 =

8π 2kTµR2

σh2
  

For N2,   µ = 1
2 m(N) = 1

2 ×14.007 mu = 7.00 mu , and σ = 2; therefore 

 

  

q =
(8π 2 )×(1.381×10−23 J K−1)×(300 K)×(7.00×1.6605×10−27 kg)×(1.0975×10−10 m)2

(2)×(6.626×10−34 J s)2

= 52.2
 

15B.4(b) The high-temperature expression for the rotational partition function of a non-linear 
molecule is [15B.14]  

  

3/2 1/2
R

3/2 1/223 1

34 10 1 3

3/2

1

1.381 10  J K
6.626 10  J s 2.998 10  cm s 27.877 14.512 9.285 cm

0.01676 ( K)

kT
hc ABC

T

T

π
σ

π− −

− − −

   =    
   

 × ×  =    × × × × ×  
= × /

 

q

 

(i) At 25˚C,   q
R = 0.01676 × (298)3/2 = 86.2  

(ii) At 100°C,   q
R = 0.01676 × (373)3/2 = 121  

15B.5(b) The rotational partition function of a nonsymmetrical linear molecule is 

 R ( 1)/ 1(2 1)e 15B.11 with hcBJ J kT

J
J

kT
β− +  = + =  

∑ 

q  

Use 
34 10 1 1

23 1

6.626 10  J s 2.998 10  cm s 6.511 cm 9.366 K
1.381 10  J K

hcB
k

− − −

− −

× × × ×
= =

×



 

so 
   
q R = (2J +1)e−9.366 K×J ( J+1)/T

J
∑  

Use a spreadsheet or other mathematical software to evaluate the terms of the sum and to 
sum the terms until they converge. The high-temperature expression is 

 R

9.366 K
kT T
hcB

= =


q  
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The explicit and high-temperature expressions are compared in Figure 15B.1. The high-
temperature expression reaches 95% of the explicit sum at 62 K. 

 
Figure 15B.1 
 

 
15B.6(b) The rotational partition function of a spherical rotor molecule, ignoring nuclear statistics, is 

 
R /R 2 ( 1)/e [15B.1b] (2 1) e [12B.8]J kT hcBJ J kT

J
J J

g Jε− − += = +∑ ∑ 

q  

Use 
34 10 1 1

23 1

6.626 10  J s 2.998 10  cm s 0.0572 cm 0.0823 K
1.381 10  J K

hcB
k

− − −

− −

× × × ×
= =

×



 

so 
   
q R = (2J +1)2 e−0.0823 K×J ( J+1)/T

J
∑  

Use a spreadsheet or other mathematical software to evaluate the terms of the sum and to 
sum the terms until they converge. The high-temperature expression is eqn. 15B.14, with 
A B C= =  : 

 
3/2 3/2

R 1/2 1/2

0.0823 K
kT T
hcB

π π   = =   
   

q  

The explicit and high-temperature expressions are compared in Figure 15B.2. The high-
temperature expression reaches 95% of the explicit sum at 0.4 K. 

 
Figure 15B.2 
 

 
15B.7(b) The rotational partition function of a symmetric rotor molecule, ignoring nuclear statistics, 

is 

 
R 2

, /R ( 1)/ ( ) /
,

, 0 1
e [15B.1b] (2 1)e 1 2 e  [12B.13]J K

J
kT hcBJ J kT hc A B K kT

J K
J K J K

g Jε− − + − −

= =

 = = + + 
 

∑ ∑ ∑  

q  
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Use 
34 10 1 1

23 1

6.626 10  J s 2.998 10  cm s 9.444 cm 13.585 K
1.381 10  J K

hcB
k

− − −

− −

× × × ×
= =

×



, and 

34 10 1 1

23 1

( ) 6.626 10  J s 2.998 10  cm s (6.196 9.444) cm 4.672 K
1.381 10  J K

hc A B
k

− − −

− −

− × × × × −
= = −

×

 

 

so 
   
q R = (2J +1)e−13.585 K×J ( J+1)/T 1+ 2 e+4.672 K×K 2 /T

K=1

J

∑





J=0
∑  

 Write a brief computer program or use other mathematical software to evaluate the 
terms of the sum and to sum the terms until they converge. Nested sums are straightforward 
to program in languages such as BASIC or FORTRAN, whereas spreadsheets are more 
unwieldy. Compare the results of the direct sum with the high-temperature expression, eqn. 
15B.14, with B C=  : 

 
1/2 3/2

R 1kT
hc BA

π   =    
    

q  

The explicit and high-temperature expressions are compared in Figure 15B.3. The high-
temperature expression reaches 95% of the explicit sum at 55 K. 

 
Figure 15B.3 
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15B.8(b) The symmetry number is the order of the rotational subgroup of the group to which a 

molecule belongs (except for linear molecules, for which σ = 2 if the molecule has 
inversion symmetry and 1 otherwise). The rotational subgroup contains only rotational 
operations and the identity. See Problem 15B.9. 
(i) CO2: Full group D∞h; subgroup C2; hence σ = 2 
(ii) O3: Full group C2v; subgroup C2; σ = 2 
(iii) SO3: Full group D3h; subgroup {E, C3, C3

2, 3C2}; σ = 6 
(iv) SF6: Full group Oh; subgroup O; σ = 24 
(v) Al2Cl6: Full group D2d; subgroup D2; σ = 4 

15B.9(b) Pyridine belongs to the C2v group, the same as water, so σ = 2. The high-temperature 
expression for the rotational partition function of a non-linear molecule is [15B.14] 

 

3/2 1/2
R

3/2 1/223 1

34 10 1 3

4

1

1 1.381 10  J K 298.15 K
2 6.626 10  J s 2.998 10  cm s 0.2014 0.1936 0.0987 cm

4.26 10

kT
hc ABC

π
σ

π− −

− − −

   =    
   

 × ×  =    × × × × ×  
= ×

 

q

 

15B.10(b) The partition function for a mode of molecular vibration is 

 V /
/

1e
1 e

vhc kT
hc kT

v

ν
ν

−
−= =

−∑ 



q  [15B.15 with β = 1/kT] 
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Use 
34 10 1 1

23 1

6.626 10  J s 2.998 10  cm s 214.5 cm 308.5 K
1.381 10  J K

hc
k
ν − − −

− −

× × × ×
= =

×


 

so V /
308.5 K/

1e
1 e

vhc kT
T

v

ν−
−= =

−∑ q  

The high-temperature expression is 

 V

464.9 K
kT T
hcν

= =


q [15B.16] 

The explicit and high-temperature expressions are compared in Figure 15B.4. The high-
temperature expression reaches 95% of the explicit sum at 3000 K. 

 
Figure 15B.4 
 

 
15B.11(b) The partition function for a mode of molecular vibration is 

 V
/

1
1 e hc kTν−=
− 

q  [15B.15 with β = 1/kT] 

and the overall vibrational partition function is the product of the partition functions of the 
individual modes. (See Example 15B.2.) We draw up the following table: 
 

mode 1 2 3 4 

  ν / cm−1  3311 712 712 2097 

   hcν / kT  5.292 1.138 1.138 3.352 
qV

mode 1.005 1.472 1.472 1.036 
 
The overall vibrational partition function is 
 qV = 1.005 × 1.472 × 1.472 × 1.036 = 2.256  

15B.12(b) The partition function for a mode of molecular vibration is 

 V
/

1
1 e hc kTν−=
− 

q  [15B.15 with β = 1/kT] 

and the overall vibrational partition function is the product of the partition functions of the 
individual modes. (See Example 15B.2.) We draw up the following table, including the 
degeneracy of each level: 
 

mode 1 2 3 4 

  ν / cm−1  178 90 555 125 

gmode 1 2 3 3 

   hcν / kT  0.512 0.259 1.597 0.360 
qV

mode 2.50 4.38 1.254 3.31 
The overall vibrational partition function is 
 qV

mode = 2.50 × 4.382 × 1.2543 × 3.313 = 3.43×103 
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15B.13(b)  1 2/ / /

levels levels
e [15B.1b] e 4 e 2ej jhc kT hc kT hc kT

j jg g νβε ν ν− − − −= = = + +∑ ∑ 

 q  

where 
34 10 1

4 1
23 1

6.626 10  J s 2.998 10  cm s
7.192 10 ( cm )

1.381 10  J K 2000 K
j j

j

hc
kT
ν ν

ν
− −

− −
− −

× × × ×
= = × × /

× ×

 

  

Therefore, 

   q = 3+ e−7.192×10−4×850 + 5e−7.192×10−4×1100 = 3+ 0.543+ 5× 0.453 = 5.809  
The individual terms in the last expression are the relative populations of the levels, namely 
5×0.453 to 0.543 to 3 (second excited level to first to ground) or 0.756:0.181:1 . 

 
Solutions to problems 

15B.2 According to the “integral” approximation 

 
   
q T =

X
Λ
=

(2πmkT )1/2 X
h

 [15B.10b], 

and hence, for an H atom in a one-dimensional 100-nm box, when qT = 10, 

 ( )

2T

234

927 23 1

1
2

1 10 6.626 10  J s
100 10  m2 1.008 1 6605 10 kg 1 381 10 J K

0.030 K  

hT
mk Xπ

π

−

−− − −

  = ×  
   

  × ×
= ×  ×× × . × × . × 

=

q

 

The exact partition function in one dimension is 

 
   
q T =

n=1

∞

∑e−(n2−1)h2β/8mL2

= eh2β/8mL2

n=1

∞

∑(e−h2β/8mL2

)n2

 [15B.1a] 

For our H atom, 

 

  

h2β
8mL2 =

(6.626 ×10−34 J s)2

8 ×1.008 ×1.6605×10−27 kg ×1.381×10−23J K−1 × 0.030 K × (100 ×10−9 m)2

= 7.9 ×10−3

 

and   e
h2β/8mL2

= e7.9×10−3

= 1.008 ,    e−h2β/8mL2

= e−7.9×10−3

= 0.992  

Then 
   
q T = 1.008 ×

n=1

∞

∑(0.992)n2

= 1.008 × (0.992 + 0.969 + 0.932 + ...) = 9.57  

Comment. Even under these conditions, the integral approximation is less than 5% from the 
explicit sum. 

15B.4 (a) First, evaluate the partition function 
 e [15B.1b] ej jhc

j j
j j

g gβε βν− −= =∑ ∑ q  

At 3287°C = 3560 K, 
  
hcβ = hcβ =

6.626 ×10−34  J s × 2.998 ×1010  cm s−1

1.381×10−23  J K−1 × 3560 K
= 4.041×10−4 cm  

 
  

q = 5+ 7e−{(4.041×10−4 cm)×(170cm−1 )} + 9e−{(4.041×10−4 cm)×(387cm−1 )} + 3e−{(4.041×10−4 cm)×(6557cm−1 )}

= 5+ 7 × (0.934) + 9 × (0.855) + 3× (0.0707) = 19.444
 

The fractions of molecules in the various energy levels are [15A.6, with degeneracy gj 
included] 

 
e ej jhc v

j j jN g g
N

βε β− −

= =


q q
 

 
  

N (3 F2 )
N

=
5

19.444
= 0.257   

  

N (3 F3)
N

=
7 × (0.934)

19.444
= 0.336  

 
  

N (3 F4 )
N

=
9 × (0.855)

19.444
= 0.396   

  

N (4 F1)
N

=
3× (0.0707)

19.444
= 0.011  
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Comment. 
  

N j

Nj
∑ = 1. Note that the most highly populated level is not the lowest level. 

15B.6 The absorption lines are the values of differences in adjacent rotational terms. The 
wavenumbers of the lines are [42.8a] 
    ν(J +1← J ) = F(J +1) − F(J ) = 2 B(J +1)  
for J = 0, 1, ... . Therefore, we can find the rotational constant and reconstruct the energy 
levels from the data. To make use of all of the data, one would plot the wavenumbers, which 
represent    ν(J +1← J )  vs. J; from the above equation, the slope of that linear plot is    2 B . 
Inspection of the data show that the lines in the spectrum are equally spaced with a separation 
of 21.19 cm–1, so that is the slope: 
    slope = 21.19 cm−1 = 2 B so B = 10.595 cm−1  
The partition function is 

 
   
q =

J
∑ gJ e−βεJ = (2J +1)e−βE ( J )

J=0

∞

∑ [15B.1b] where    E(J ) = hcBJ (J +1)  [41.15] 

and the factor of 2J+1 is the degeneracy of the energy levels. 

At 25°C, 
34 10 1 1

23 1

6.626 10  J s 2.998 10  cm s 10.595 cm 0.05112
1.381 10  J K 298.15 K

hcBhcB
kT

β
− − −

− −

× × × ×
= = =

× ×



  

 0.05112 ( 1)

0
0.05112 1 2 0.05112 2 3 0.05112 3 4

(2 1)e

1 3e 5e 7e

1 2.708 3.679 3.791 3.238 19.90

J J

J
J

∞
− +

=

− × × − × × − × ×

= +

= + + + +

= + + + + + =

∑




q  

15B.8 (a) The electronic partition function, qE, of a perfect, atomic hydrogen gas consists of the 
electronic energies En that can be written in the form: 

 H2

11nE hcR
n

 = − 
 

 , n = 1, 2, 3, ..., ∞ 

which is given by eqn. 9A.14 with the zero of energy redefined as the energy of the n = 1 
state. (The usual zero is taken to be the electrostatic energy of a proton and electron at infinite 
separation). The degeneracy of each level is gn = 2n2 where the n2 factor is the orbital 
degeneracy of each shell and the factor of 2 accounts for spin degeneracy. 

 
   
q E =

n=1

∞

∑ gne
−En /kT = 2

n=1

∞

∑ n2e
− 1− 1

n2






C
 [15B.1b] 

where H photosphere 27 301C hcR kT= / = . . qE, when written as an infinite sum, is infinitely large 

because 
  
lim
n→∞

n2e
− 1− 1

n2






C
= lim

n→∞
n2e−C = e−C lim

n→∞
n2 = ∞  

The inclusion of partition function terms corresponding to large n values is clearly an error. 
 
(b) States corresponding to large n values have very large average radii and most certainly 
interact with other atoms, thereby blurring the distinct energy level of the state. Such 
interactions most likely occur during the collision between an atom in state n and an atom in 
the ground state n = 1. (Even at high temperatures, the ground state is the most probable state.) 
Collisional lifetime broadening is given by 

 n nE zδ
τ

= =


  [Topic 12A.2(b)] 

where the last equality employs the collision frequency (derived in Topic 1B). The collision 
frequency of the nth state of an atomic perfect gas is given by 

 
  
zn =

σ nvrel p
kT

[1B.11b] =
21/2σ nvmean p

kT
[1B.10a] =

21/2σ nvmeanρNA

MH

 

The mean speed is [1B.8] 

 
  
vmean =

8RT
π M







1/2

= 1.106 ×104 m s−1  
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The collision cross-section is 
   σ n = πd 2[Topic 1B.2(a)] = π (rn + a0 )2  
From Example 9A.2, the mean radius of a hydrogen atom with principal quantum number n 
might be surmised to be 

 
  
rn =

3n2a0

2
 

In fact, this is true of ns orbitals, which is good enough for this problem. So the collision 
cross-section is 

 
  
σ n = πa0

2
2

3n2 + 2
2







 

 Any quantum state within δE of the continuum of an isolated atom will have its 
energy blurred by collisions so as to be indistinguishable from the continuum. Only states 
having energies in the range 0 ≤ E < E∞ – δE will be a distinct atomic quantum state. The 
maximum term, nmax, that should be retained in the partition function of a hydrogen atom is 
given by 
 

  
Enmax

= E∞ − δEnmax
 

 

22
1/2 2 max

0 mean A

H H2
Hmax

3 22 211

na v N
hcR hcR

Mn

π ρ
 +
    − = − 

 



   

with ρ = 1.99×10–4 kg m–3 and MH =1.01×10–3 kg mol–1 . 
 The root function of a calculator or mathematical software may be used to solve this 
equation for nmax: 
 nmax = 28 for atomic hydrogen of the photosphere 
Furthermore, examination of the partition function terms n = 2, 3, …, nmax indicates that they 
are negligibly small and may be discarded. The point is that very large n values should not be 
included in qE because they do not reflect reality. 
 
(c) The equilibrium probability of finding a hydrogen atom in energy level n is [15A.6 with 
degeneracy] 

 
   
p n =

Nn

N
=

gne
−βεv

q
= 2n2e−En /kT

q E  

where T = 5780 K. (Note: the probability for each distinct state omits the factor of 2n2.) This 
function is plotted in Figure 15B.5. 

 
Figure 15B.5 

 
 

 Even at the high temperature of the Sun’s photosphere only the ground electronic 
state is significantly populated. This leads us to expect that at more ordinary temperatures only 
the ground state of atoms and molecules are populated at equilibrium. It would be a mistake to 
thoughtlessly apply equilibrium populations to a study of the Sun’s photosphere, however. It 
is bombarded with extremely high energy radiation from the direction of the Sun’s core while 
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radiating at a much lower energy. The photosphere may show significant deviations from 
equilibrium. See S. J. Strickler, J. Chem. Educ. 43, 364 (1966). 

 

15C Molecular energies 

Solutions to exercises 

15C.1(b) The mean energy is 

 

   

ε =
1
q

ε ie
−βε i

i
∑ [15C.2] =

ε ie
−βε i

i
∑

e−βε i

i
∑

=
εe−βε

1+ e−βε =
ε

1+ eβε , 

where the last expression specializes to two non-degenerate levels. Substitute 
    ε = hcν = 6.626 ×10−34  J s × 2.998 ×1010  cm s−1 × 600 cm−1 = 1.192 ×10−20  J  

and 
  
βε = ε

kT
=

1.192 ×10−20  J
1.381×10−23  J K−1 × 400 K

= 2.158  

so 
 
ε =

1.192 ×10−20  J
1+ e2.158 = 1.235×10−21  J  

15C.2(b) The mean energy is 

 
   
ε =

1
q

ε ie
−βε i

states
∑ [15C.2] = 1

q
giε ie

−βε i

levels
∑ =

1
q

(2J +1)ε Je
−ε J /kT

J
∑  

 34 10 1 1

22

( 1) 6.626 10  J s 2.998 10  cm s 6.511 cm ( 1)

( 1) 1.293 10  J 
J hcBJ J J J

J J

ε − − −

−

= + = × × × × × +

= + × ×

  

and 
  

ε J

k
=

J (J +1) ×1.293×10−22  J
1.381×10−23  J K−1 = J (J +1) × 9.366 K  

so 
   
ε =

1
q

J (J +1)(2J +1) ×1.293×10−22  J × e− J ( J+1)×9.366 K/T

J
∑  

 Use a spreadsheet or other mathematical software to evaluate the terms of the sum 
and to sum the terms until they converge. For the partition function, see Exercise 15B.5(b). 
The equipartition value is simply kT (i.e., kT/2 for each rotational degree of freedom). The 
explicit and equipartition expressions are compared in Figure 15C.1. The explicit sum 
reaches 95% of the equipartition value at about 63 K. 

 
 
Figure 15C.1 
 

 
15C.3(b) The mean energy is 

 
   
ε =

1
q

ε ie
−βε i

states
∑ [15C.2] = 1

q
giε ie

−βε i

levels
∑ =

1
σq

(2J +1)2ε Je
−ε J /kT

J
∑  [Topic 12B.2(b)]  
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Note that the sum over levels is restricted by nuclear statistics; in order to avoid multiple 
counting, we sum over all J without restriction and divide the result by the symmetry 
number σ. 
 34 10 1 1

24

( 1) 6.626 10  J s 2.998 10  cm s 0.0572 cm ( 1)

( 1) 1.136 10  J 
J hcBJ J J J

J J

ε − − −

−

= + = × × × × × +

= + × ×

  

and 
  

ε J

k
=

J (J +1) ×1.136 ×10−24  J
1.381×10−23  J K−1 = J (J +1) × 0.0823 K  

so 
   
ε =

1
σq

J (J +1)(2J +1)2 ×1.136 ×10−24  J × e− J ( J+1)×0.0823 K/T

J
∑  

 Use a spreadsheet or other mathematical software to evaluate the terms of the sum 
and to sum the terms until they converge. For σq, see Exercise 15B.6(b). The quantity 
evaluated explicitly in that exercise is σq, for there we computed the partition function 
without taking the symmetry number into account; in effect, the sum evaluated here and the 
sum evaluated in the earlier exercise contain factors of σ, which cancel. The equipartition 
value is simply 3kT/2 (i.e., kT/2 for each rotational degree of freedom). The explicit and 
equipartition expressions are compared in Figure 15C.2. The explicit sum reaches 95% of 
the equipartition value at about 0.27 K. 

 
Figure 15C.2 

 
15C.4(b) The mean energy is 

 

2

states levels

( 1)/ ( ) /
,

0

1 1e [15C.2] e

1 (2 1)e e  [12B.13]

i i
i i i

J
hcBJ J kT hc A B K kT

J K
J K J

g

J

βε βεε ε ε

ε
σ

− −

− + − −

= =−

= =

 
= +  

 

∑ ∑

∑ ∑  

q q

q

 

Note that the sum over levels is restricted by nuclear statistics; in order to avoid multiple 
counting, we sum over all J without restriction and divide the result by the symmetry 
number σ. (See Exercise 15C.3(b).) 
 ( ){ }2

, ( 1)J K hc BJ J A B Kε = + + −  . 

Use 34 10 1 1 226.626 10  J s 2.998 10  cm s 9.444 cm 1.8760 10  JhcB − − − −= × × × × = ×  

 
22

23 1

1.8760 10  J 13.585 K
1.381 10  J K

hcB
k

−

− −

×
= =

×



 

 ( ) 34 10 1 1

23

6.626 10  J s 2.998 10  cm s (6.196 9.444) cm

6.452 10  J ,

hc A B − − −

−

− = × × × × −

= − ×

   

and 
( ) 23

23 1

6.452 10  J 4.672 K
1.381 10  J K

hc A B

k

−

− −

− − ×
= = −

×
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so 

   

ε =
1
σq

(2J +1)e−13.585 K×J ( J+1)/T

J=0
∑

× {J (J +1) ×1.8760 ×10−22  J − K 2 × 6.452 ×10−23  J}e+4.672 K×K 2 /T

K=− J

J

∑ .

 

 Write a brief computer program or use other mathematical software to evaluate the 
terms of the sum and to sum the terms until they converge. Nested sums are straightforward 
to program in languages such as BASIC or FORTRAN, whereas spreadsheets are more 
unwieldy. For σq, see Exercise 15B.7(b). The quantity evaluated explicitly in that exercise 
is σq, for there we computed the partition function without taking the symmetry number 
into account; in effect, the sum evaluated here and the sum evaluated in the earlier exercise 
contain factors of σ, which cancel. Compare the results of the direct sum with the 
equipartition value, namely 3kT/2. The explicit and equipartition expressions are compared 
in Figure 15C.3. The explicit sum reaches 95% of the equipartition value at about 38 K. 

 
Figure 15C.3 

 
15C.5(b) The mean vibrational energy is 

 V
/e 1hc kT

hc
ν

νε =
−



 [15C.8 with β = 1/kT]. 

Use 34 10 1 1 216.626 10  J s 2.998 10  cm s 214.5 cm 4.261 10  Jhcν − − − −= × × × × = ×  

and 
21

23 1

4.261 10  J 308.5 K
1.381 10  J K

hc
k
ν −

− −

×
= =

×


 

so 
  
εV =

4.261×10−21  J
e308.5 K/T −1

 

The equipartition value is simply kT for a single vibrational mode. The explicit and 
equipartition values are compared in Figure 15C.4. The explicit expression reaches 95% of 
the equipartition value at 3000 K. 

 
Figure 15C.4 
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15C.6(b) The mean vibrational energy per mode is 

 V
/e 1hc kT

hc
ν

νε =
−



 [15C.8 with β = 1/kT]. 

We draw up the following table: 
mode 1 2 3 4 

  ν / cm−1  3311 712 712 2097 

   hcν / (10−20  J)  6.577 1.414 1.414 4.166 

   (hcν / k) / K  4763 1024 1024 3016 

 

So 
  
εV =

6.577 ×10−20  J
e4763 K/T −1

+ 2 × 1.414 ×10−20  J
e1024 K/T −1

+
4.166 ×10−20  J

e3016 K/T −1
 

The equipartition value is simply 4kT, that is, kT per vibrational mode. The explicit and 
equipartition values are compared in Figure 15C.5. The explicit expression reaches 95% of 
the equipartition value at 24000 K. 

 
Figure 15C.5 

 
15C.7(b) The mean vibrational energy per mode is 

 V
/e 1hc kT

hc
ν

νε =
−



 [15C.8 with β = 1/kT]. 

We draw up the following table: 
 

mode 1 2 3 4 

  ν / cm−1  178 90 555 125 

degeneracy 1 2 3 3 

   hcν / (10−21  J)  3.54 1.79 11.03 2.48 

   (hcν / k) / K  256 129 798 180 

 

So 
  
εV =

3.54 ×10−21  J
e256 K/T −1

+ 2 × 1.79 ×10−21  J
e129 K/T −1

+ 3× 1.103×10−20  J
e798 K/T −1

+ 3× 2.48 ×10−21  J
e180 K/T −1

 

The equipartition value is simply 9kT, that is, kT per vibrational mode. The explicit and 
equipartition values are compared in Figure 15C.6. The explicit expression reaches 95% of 
the equipartition value at 3700 K. 
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Figure 15C.6 

 

15C.8(b) ( ) ( )

( ) ( )

1 2 1 2

1 2 1 2

1 2

/ /
1 2 1 2

1 1 1[15C.3] 3 e 5e e 5 e

e 5 e e 5 ehcv hcv hcv kT hcv kThc hcv v v v

βε βε βε βε

β β

ε ε ε
β β

− −− −

− − − −

∂ ∂
= − = − + + = − − −

∂ ∂

= + = +   

   

q
q q q

q q

 

Use 4 17.192 10 ( cm )j
j

hc
kT
ν

ν− −= × × /


  and q = 5.809 [Exercise 15B.13b] 

Thus 

( )4 4

34 10 1

1 7.192 10 850 1 7.192 10 1100

20

6.626 10  J s 2.998 10  cm s
5.809

850 cm e 5 1100 cm e

1.010 10  J

ε

− −

− −

− − × × − − × ×

−

× × ×
=

× × + × ×

= ×

 

Solutions to problems 

15C.2  e [15B.1b] ej jhc v
j j

j j
g gβε β− −= =∑ ∑

q  

 
e e

 [15A.6 with degeneracy included]
j jhc v

j j jN g g
N

βε β− −

= =


q q
 

Here 
34 10 1 1

23 1

6.626 10  J s 2.998 10  cm s 121.1 cm 174.2
/ K1.381 10  J K ( / K)

hcvhc v
kT TT

β
− − −

− −

× × × ×
= = =

× ×


  

We measure energies from the lower states and write 
 174 2 ( K)2 2e 2 2ehc Tβν− − . / /= + = +q  
This function is plotted in Figure 15C.7. 
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Figure 15C.7 

 
 

(a) At 300 K 

 
   

N0

N
=

2
q
=

1
1+ e−174.2/300 = 0.641  

and 
  

N1

N
= 1−

N0

N
= 0.359  

(b) The electronic contribution to the mean molecular energy is 

 
34 10 1 1 174.2 300

174.2 300

22

1 2 e [15C.4a]

6.626 10  J s 2.998 10  cm s 121.1 cm e
1 e

8.63 10  J

hchc βννε
β

−

− − − −

−

−

∂
= − =

∂

× × × × ×
=

+

= ×



q
q q

 

which corresponds to  0.520 kJ mol−1  

15C.4 Mean values of any variable can be found by weighting possible values of that variable by the 
probability of that value. Thus, the mean of the square of energy is 

 
   
ε 2 = p jε j

2

j
∑ =

e−βε j

q
ε j

2

j
∑  

Note that 

 
  
−

∂
∂β

e−βε j = ε je
−βε j    so   ∂2

∂β 2 e−βε j = ε j
2e−βε j , 

so 
   
ε 2 =

1
q

∂2

∂β 2 e−βε j

j
∑ =

1
q

∂2

∂β 2 e−βε j

j
∑ =

1
q
∂2q

∂β 2  

Thus 
  
ε 2 1/2

=
1
q
∂2q

∂β 2








1/2

 and ( )
1/2221/222

2

1 1ε ε ε
ββ

  ∂ ∂ ∆ = − = −  ∂∂    

q q
q q

. 

For a harmonic oscillator, we have a closed form expression for the partition function: 

 1
1 e hcβ ν−=
− 

q  [15B.15] 

so 
( )2

e

1 e

hc

hc

hc β ν

β ν

ν
β

−

−

∂ −
=

∂ −





q  and 
( ) ( )

( )

22

2 3

e 1 e

1 e

hc hc

hc

hc β ν β ν

β ν

ν

β

− −

−

+∂
=

∂ −

 



q  

 
( ) ( )

( )

1/2
2 2

2

e 1 e e
1 e1 e

hc hc hc

hchc

hc hc
β ν β ν β ν

β νβ ν

ν νε
− − −

−−

 +  − ∆ = −  − −  
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After some algebra, the expression becomes 

 
/2e

2sinh( / 2)1 e

hc

hc

hc hc
hc

β ν

β ν

ν νε
β ν

−

−∆ = =
−





 



 

 

15D The canonical ensemble 

Answers to discussion questions 
15D.2 An ensemble is a set of a large number of imaginary replications of the actual system. These 

replications are identical in some respects but not in all respects. For example, in the 
canonical ensemble, all replications have the same number of particles, the same volume, 
and the same temperature, but they need not have the same energy. Ensembles are useful in 
statistical thermodynamics because it is mathematically more tractable to perform an 
ensemble average to determine the (time averaged) thermodynamic properties than it is to 
perform an average over time to determine these properties. Recall that macroscopic 
thermodynamic properties are averages over the time dependent properties of the particles 
that compose the macroscopic system. In fact, it is taken as a fundamental principle of 
statistical thermodynamics that the (sufficiently long) time average of every physical 
observable is equal to its ensemble average. This principle is connected to a famous 
assumption of Boltzmann’s called the ergodic hypothesis. 

15D.4 In the context of ensembles, the thermodynamic limit is the limit as the number of 
replications, N , approaches infinity. In that limit, the dominating configuration is 
overwhelmingly the most probable configuration, and its properties are essentially the same 
as those of the system. Note, however, that some authors use the phrase to refer to a limit of 
large numbers of particles. 

Solution to exercise 

15D.1(b) Inclusion of a factor of 1/N! is necessary when considering indistinguishable particles. 
Because of their translational freedom, gases are collections of indistinguishable particles. 
Solids are collections of particles that are distinguishable by their positions. The factor must 
be included in calculations on (i) CO2 gas, but not (ii) graphite, (iii) diamond, or (iv) ice. 

 

15E The internal energy and the entropy 

Answers to discussion questions 
15E.2 The expressions for q, U, and S that were derived in this chapter are applicable to T < 0 as 

well as T > 0. However, if we plot q and U against T, for example, in a two-level system and 
other systems as well, we find sharp discontinuities on passing through zero, and T = +0 
(corresponding to all populations in the lower state) is quite distinct from T = –0, where all 
population is in the upper state. The entropy S is continuous at T = 0, but all these functions 
are continuous if we use β = 1/kT as the independent variable which indicates that β ∝ 1/T 
is a more natural variable than T. 

15E.4 Given the statistical definition of entropy in terms of the number of configurations 
(microstates) consistent with a given energy [15E.7], the entropy for a collection of 
distinguishable particles must be greater than that of otherwise similar indistinguishable 
particles. If the particles are distinguishable, then exchanging, say, a pair of them would 
result in a different (albeit highly similar) microstate with the same energy as the original 
arrangement. Exchanging a pair of indistinguishable particles, however, results in not just a 
similar microstate, but the same state. That is part of what it means for particles to be 
indistinguishable. As a result, the number of microstates available to distinguishable 
particles is greater by a factor of N! than the number available to indistinguishable ones, as 
reflected in eqns 15E.8a and 15E.8b, because N! is the number of permutations of N 
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particles that would result in different microstates for distinguishable particles but the same 
microstate for indistinguishable particles. 

15E.6 Residual entropy is due to the presence of some disorder in the system even at T = 0. It is 
observed in systems where there is very little energy difference—or none—between 
alternative arrangements of the molecules at very low temperatures. Consequently, the 
molecules cannot lock into a preferred orderly arrangement and some disorder persists. 
More precisely, more than one microstate is accessible even at the lowest temperature. 

 
Solutions to exercises 

15E.1(b)  R* V*1
,m 2 (3 2 )VC v v R= + +  [15E.6] 

with a mode active if T > θM. 
(i) O3: vR* = 3, vV* ≈ 0; hence 

  
CV ,m = 1

2 (3+ 3+ 0)R = 3R  [experimental = 3.7R] 

(ii) C2H6: vR* = 2, vV* ≈ 1; hence 
  
CV ,m = 1

2 (3+ 3+ 2×1)R = 4R  [experimental = 6.3R] 

(iii) CO2: vR* = 2, vV* ≈ 0; hence 
  
CV ,m = 1

2 (3+ 2+ 0)R = 5
2 R  [experimental = 4.5R] 

Consultation of the book Herzberg (Molecular Spectra and Molecular Structure II.) turns 
up only one vibrational mode among these molecules whose frequency is low enough to 
have a vibrational temperature near room temperature. That mode was in C2H6, 
corresponding to the “internal rotation” of CH3 groups. The discrepancies between the 
estimates and the experimental values suggest that there are vibrational modes in each 
molecule that contribute to the heat capacity—albeit not to the full equipartition value—that 
our estimates have classified as inactive. 

15E.2(b) The equipartition theorem would predict a contribution to molar heat capacity of   
1
2 R  for 

every translational and rotational degree of freedom and R for each vibrational mode. For an 
ideal gas, Cp,m = R + CV,m. So for CO2 

With vibrations  ( ) ( )1 1
,m 2 2

6.5/ 3 2 (3 3 6) 5.5 and 1.18
5.5VC R γ= + + × − = = =  

Without vibrations ( ) ( )1 1
,m 2 2

3.5/ 3 2 2.5 and 1.40
2.5VC R γ= + = = =  

Experimental 
 
γ =

37.11 J mol−1  K−1

(37.11−8.3145) J mol−1  K−1 = 1.29  

The experimental result is closer to that obtained by neglecting vibrations, but not so close 
that vibrations can be neglected entirely. 

15E.3(b)  
   
q = g je

−βε j

j
∑ ,  where  g = (2S +1)×

1 for Σ states
2 for Π,  ∆, ... states




 

At 400 K, 
  
βε = hc × (7918.1cm−1)

kT
=

(1.4388 cm K)× (7918.1cm−1)
500K

= 22.78  

The 3Σ term is triply degenerate (from spin), and the 1∆ term is doubly (orbitally) 
degenerate. Hence 
 q = 3 + 2e–βε = 3 + 2e–22.78 = 3.000 

15E.4(b) The molar entropy of a collection of oscillators is given by 

 
  
Sm =

Um −Um (0)
T

+ k lnQ [15E.8c] = R(θ V / T )
eθ

V /T −1
− R ln(1− e−θV /T ) [15E.14b]  

where    θ
V = hcv / k is the vibrational temperature. A plot of Sm/R versus T/θV is shown in 

Figure 15E.1. 
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Figure 15E.1 

 
The vibrational entropy of ethyne is the sum of contributions of this form from each of its 
seven normal modes. The table below shows results from a spreadsheet programmed to 
compute Sm/R at a given temperature for the normal-mode wavenumbers of ethyne. 
 

  T=298 K  T=500 K 

   v / cm−1  θV/K T/θV Sm/R  T/θV Sm/R 

612 880 0.336 0.216  0.568 0.554 

729 1049 0.284 0.138  0.479 0.425 

1974 2839 0.105 0.000766  0.176 0.0229 

3287 4728 0.0630 0.00000217  0.106 0.000818 

3374 4853 0.0614 0.00000146  0.103 0.000652 
The total vibrational entropy is obtained by summing the last column (twice for the first two 
entries, since they represent doubly degenerate modes). 
(i) At 298 K, Sm = 0.708R = 5.88 J K–1 mol–1  
(ii) At 500 K, Sm = 1.982R = 16.48 J K–1 mol–1 

15.5(b) The translational contribution to the total entropy of a polyatomic molecule is determined in 
the same manner as the translational entropy of a monatomic molecule. 

 
5/2

O O
m 3O

eln  [15E.11b with ]kTS R p p
p Λ

 
= = 

 
 

(i) 

  

Λ =
h

(2πmkT )1/2 =
6.626×10−34  J s

{(2π )(18.02)(1.6605×10−27  kg)(1.381×10−23  J K−1)T}1/2

=
4.113×10−10  m

(T /K)1/2

 

 

  

Sm
O = R ln (e5/2 )× (1.381×10−23  J K−1T )

(1.013×105  Pa)× (4.113×10−10 m)3







×

T
K







3/2

= R ln{5.302× (T /K)5/2}= (8.3145 J K−1  mol−1) ln{5.302× (298)5/2}

= 132 J K−1  mol−1

  

(ii) 

  

Λ =
h

(2πmkT )1/2 =
6.626×10−34  J s

{(2π )(44.01)(1.6605×10−27  kg)(1.381×10−23  J K−1)T}1/2

=
2.632×10−10  m

(T /K)1/2

 

 
 
 
 

21 



 

  

Sm
O = R ln (e5/2 )× (1.381×10−23  J K−1T )

(1.013×105  Pa)× (2.632×10−10 m)3







×

T
K







3/2

= R ln{271.6× (T /K)5/2}= (8.3145 J K−1  mol−1) ln{271.6× (298)5/2}

= 165 J K−1  mol−1

  

15E.6(b) From the solution to Exercise 15E.5(b) we have, for translational contributions, 
   Sm

O = R ln{271.6× (T /K)5/2}  for CO2 

and   Sm
O = 132 J K−1  mol−1  for H2O at 298 K 

We solve for T: 

 

2/5 2/5O 1 1
m

1 1

1 1 132 J K  molexp K exp K
271.6 271.6 8.3145 J K  mol

60.9 K

ST
R

− −

− −

         = × = ×      
        

=

 

15E.7(b) The high-temperature approximation to the rotational partition function of a non-linear 
molecule is (after substituting the numerical values of the constants in eqn 15B.14) 

 
3 2 3 2

R
1 23 1 2

1 0270 ( K) 1 0270 298 5837
(2) (2.02736 0.34417 0.293535)( cm )

T
ABCσ

/ /

/− /

. / . ×
= = =

× × ×/ 

q  

The high-temperature approximation is valid if T > θR

 
and

 

1/3

34 10 3 1/3

R

1

23 1

2.02736)(0.34417)(0.293535

( )

(6.626 10  J s)(2.998 10  cm s ){( ) cm }
1.381 10  J K

0.8479 K

hc ABC
k

θ

− −−

− −

=

=
× ×

×
=

 

 

so it is valid in this case. All the rotational modes of water are fully active at 25°C; therefore 

 
  
Um

R −Um
R (0) = ER =

3
2

RT , the equipartition value 

 
   
Sm

R =
ER

T
+ R lnq R =

3
2

R + R ln5837 = 84.57 J K−1  mol−1  

Comment. Division of qR by NA! is not required for the internal contributions; internal 
motions may be thought of as localized (distinguishable). It is the overall canonical partition 
function, which is a product of internal and external contributions, that is divided by NA! 

15E.8(b) The degeneracy of a species with   S = 5
2  is 6. The electronic contribution to molar entropy is 

 

 
   
Sm =

Um −Um (0)
T

+ R lnq = R lnq  

(The term involving the internal energy is proportional to a temperature-derivative of the 
partition function, which in turn depends on excited state contributions to the partition 
function; those contributions are negligible.) 

   Sm = (8.3145 J mol−1  K−1) ln6 = 14.9 J mol−1  K−1  

15E.9(b) The molar entropy of a collection of oscillators is given by 

 
  
Sm =

Um −Um (0)
T

+ k lnQ [15E.8c] = R(θ V / T )
eθ

V /T −1
− R ln(1− e−θV /T ) [15E.14b]  

where    θ
V = hcv / k is the vibrational temperature. The vibrational entropy of ethyne is the 

sum of contributions of this form from each of its seven normal modes. The table below 
shows results from a spreadsheet programmed to compute Sm/R at a given temperature for 
the normal-mode wavenumbers of ethyne. 
 

  T=298 K  T=500 K 
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   v / cm−1  θV/K T/θV Sm/R  T/θV Sm/R 

612 880 0.336 0.216  0.568 0.554 

729 1049 0.284 0.138  0.479 0.425 

1974 2839 0.105 0.000766  0.176 0.0229 

3287 4728 0.0630 0.00000217  0.106 0.000818 

3374 4853 0.0614 0.00000146  0.103 0.000652 
The total vibrational entropy is obtained by summing the last column (twice for the first two 
entries, since they represent doubly degenerate modes). 
(i) At 298 K, Sm = 0.708R = 5.88 J K–1 mol–1  
(ii) At 500 K, Sm = 1.982R = 16.48 J K–1 mol–1  
Comment. These calculated values are the vibrational contributions to the standard molar 
entropy. The total molar entropy would also include translational and rotational 
contributions, but without knowledge of the rotational constants the total molar entropy 
cannot be calculated. 

 
Solutions to problems 

15E.2     ∆ε = ε = geµB0  [14A.12a] so q = 1 + e–βε 

 2 m
mV

V

UC kβ β,
∂ = −  ∂ 

 [15E.5]
 

The molar internal energy is [15E.2a]
 

 

E
A A

m m E E
e(0)

V

N NU U
βεε

β

− ∂
− = − = ∂ 

q
q q  

Let     x = βε = 2µB0b  [ge = 2], then   dβ = 1ε dx  
Therefore, if 0 = 5.0 T, 

 
  
x = (2)× (9.274×10−24 J T−1)× (5.0 T)

(1.381×10−23J K−1)×T
=

6.72
T K

 

and
 

2 2
2A

m A 2

e e e
1 e (1 e )1 e

x x x

V x xx

Nx xC k N kx R
xx

ε
ε

ε

− − −

, − −−

     ∂ ∂ = − = − × =       ∂ + +∂ +      
 

(a) T = 50 K, x = 0.134, CV,m = 4.47×10–3R, implying that CV,m = 3.7×10–2 J K–1 mol–1. Since 
the equipartition value is about 3R [vR* =3, vV* ≈ 0], the field brings about a change of about 
0.1 per cent. 
(b) T = 298 K, x = 2.26×10–2, CV,m = 1.3×10–4R, implying that CV,m = 1.1 mJ K–1 mol–1, a 
change of about 4×10–3 per cent. 
Question. What percentage change would a magnetic field of 1 kT cause? 

15E.4  q = 1 + 5e–βε [gJ = 2J + 1] 
    ε = E(J = 2)− E(J = 0) = 6hcB [E = hcBJ (J +1)]  

 
    

U −U (0)
N

= −
1
q
∂q
∂b

=
5εe−be

1+5e−be  

 2 m
mV

V

UC kβ
β,

∂ 
= −  ∂ 

 [15E.5]
 

 
   
CV ,m R =

5ε 2β 2e−βε

(1+5e−βε )2 =
180(hcBβ )2e−6hc Bβ

(1+5e−6hc Bβ )2
 

 
34 10 1 1

23 1

(6.626 10  J s)(2.998 10  cm s )(60.864 cm ) 87.571 K
1.381 10  J K

hcB
k

− − −

− −

× ×
= =

×
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Hence, 

 
  
CV ,m R =

1.380×106e−525.4K T

(1+5e−525.4K T )2 × (T K)2  

We draw up the following table 

T/K 50 100 150 200 250 300 350 400 450 500 

CV,m/R 0.02 0.68 1.40 1.35 1.04 0.76 0.56 0.42 0.32 0.26 

These points are plotted in Figure 15E.2. 
 
Figure 15E.2 

 
15E.6 The contribution to the heat capacity from this system of states is 

 2
V

V V

U UC k
T

β
β

∂  ∂ = = −    ∂∂   

 [15E.5]
 

where 
   
U −U (0) = −N ∂lnq

∂β




V

= −
N
q

∂q
∂β





V

 [15E.2a] = NkT 2

q
∂q
∂T





V  

We need to evaluate q for the energy levels of the Morse potential given in Problem 15B.1. 
   1 1 2

e2 2( ) ( )E v hc v hc xν ν ν= + − +    
Relative to E0 = 0 the energy expression can be written as e{1 ( 1) }vE vhc v xν= − + . 
Let hc uν ≡ . Then Ev = v{1 – (v+1)xe}. The partition function becomes 

 
   
q = e

−βEv

v=0

vmax

∑ = e−βuv{1−(v+1)xe}

v=0

vmax

∑ = e−uv{1−(v+1)xe}/kT

v=0

vmax

∑  

vmax is the maximum value of v for the Morse oscillator before dissociation occurs. It can be 

calculated from e
max

2 1
2

D
v

ν
= −





. See the solution to Problem 12D.7 for a derivation of this 

formula. Since specific values of e e,  ,  and x Dν 

 are required to solve this problem we will 

choose the case of HCl(g). Values of e e,  ,  and x Dν 



 
may be obtained from Table 12D.1 and 

Problem 12D.4. The value of xe can also be calculated from e
e4

x
D
ν

=




[12D.12]. The heat 

capacity is calculated in the following MathCad worksheet and Figure 15E.3. 
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Figure 15E.3 

 
Note the slight difference between the vibrational heat capacities of the harmonic oscillator 
approximation and the Morse oscillator approximation. Also note that for HCl(g) at room 
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temperature the vibrational energy levels make essentially no contribution to the overall heat 
capacity of 29.12 J K–1 mol–1. This is a result of the large spacing between the HCl energy 
levels 

15E.8 The partition function of a system with energy levels ε(J) and degeneracies g(J) is 
 

   
q = g(J )e−βε ( J )

J
∑  

The contribution of the heat capacity from this system of states is 

   
CV = −kβ 2 ∂U

∂β




V

 [15E.5]
 

where 
   
U −U (0) = −N ∂lnq

∂β




V

= −
N
q

∂q
∂β





V

 

Express these quantities in terms of sums over energy levels 

 
   
U −U (0) = − N

q
− g(J )ε(J )e−βε ( J )

J
∑




=

N
q

g(J )ε(J )e−βε ( J )

J
∑  

and 2 ( ) ( )
2 2

2 ( ) ( ) ( )
2

( ) ( )e ( ) ( )e

( ) ( )e ( ) ( )e ( ) ( )e

J JV

J JV

J J J

J J J

C U N Ng J J g J J
k

N Ng J J g J J g J J

βε βε

βε βε βε

ε ε
β ββ

ε ε ε

− −

′− − −

′

∂   ∂  = = − −    ∂ ∂−     

′ ′= − +

∑ ∑

∑ ∑ ∑

q
q q

q q

 (1) 

Finally a double sum appears, one that has some resemblance to the terms in ζ(β). The fact 
that ζ(β) is a double sum encourages us to try to express the single sum in CV as a double sum. 

We can do so by multiplying it by one in the form 

( )( )e J

J
g J βε ′−

′

′∑
q

, so 

 

   

CV

−kβ 2 = −
N
q 2 g(J )ε 2(J )e−βε ( J ) g( ′J )e−βε ( ′J )

′J
∑

J
∑

+
N
q 2 g(J )ε(J )e−βε ( J )

J
∑ g( ′J )ε( ′J )e−βε ( ′J )

′J
∑

 

Now collect terms within each double sum and divide both sides by –N: 

 
   

CV

kNβ 2 =
1

q 2 g(J )g( ′J )ε 2(J )e−β{ε ( J )+ε ( ′J )}

J , ′J
∑ −

1
q 2 g(J )g( ′J )ε(J )ε( ′J )e−β{ε ( J )+ε ( ′J )}

J , ′J
∑  

Clearly the two sums could be combined, but it pays to make one observation before doing so. 
The first sum contains a term ε2(J), but all the other factors in that sum are related to J and J′ 
in the same way. Thus, the first sum would not be changed by writing ε2(J′) instead of ε2(J); 
furthermore, if we add the sum with ε2(J′) to the sum with ε2(J), we would have twice the 
original sum. Therefore, we can write (finally combining the sums): 

 
   

CV

kNβ 2 =
1

2q 2 g(J )g( ′J )e−β{ε ( J )+ε ( ′J )}{ε 2(J )+ ε 2( ′J )− 2ε(J )ε( ′J )}
J , ′J
∑  

Recognizing that   ε
2(J )+ ε 2( ′J )− 2ε(J )ε( ′J ) ={ε(J )− ε( ′J )}2 , we arrive at 

 
  
CV =

kNβ 2

2
ζ (β )  

For a linear rotor, the degeneracies are g(J) = 2J+1 . The energies are 
 R( ) ( 1) ( 1)J hcBJ J kJ Jε θ= + = +  

so   βε(J ) =θ R J (J +1) / T . 
The total heat capacity and the contributions of several transitions are plotted in Figure 15E.4. 
One can evaluate CV,m/R using the following expression, derivable from eqn (1) above. It has 
the advantage of using single sums rather than double sums. 

 
   

CV ,m

R
=

1
q

g(J )β 2ε 2(J )e−βε ( J )

J
∑ −

1
q 2 g(J )βε(J )e−βε ( J )

J
∑




2
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Figure 15E.4 

 
Comment: ζ(β) is defined in such a way that J and J′ each run independently from 0 to 
infinity. Thus, identical terms appear twice. (For example, both (0,1) and (1,0) terms appear 
with identical value in ζ(β). In the plot, though, the (0,1) curve represents both terms.) One 
could redefine the double sum with an inner sum over J′ running from 0 to J–1 and an outer 
sum over J running from 0 to infinity. In that case, each term appears only once, and the 
overall factor of 1/2 in CV would have to be removed. 

15E.10  The absorption lines are the values of differences in adjacent rotational terms. Using 
eqns. 12B.15, and 12B.10, we have 

 ( 1) ( )( 1) ( ) 2 ( 1)E J E JF J F J B J
hc

+ −
+ − = = +    

for J = 0, 1, ... . Therefore, we can find the rotational constant and reconstruct the energy 
levels from the data of Problem 15B.6. To make use of all of the data, one would plot the 
wavenumbers, which represent    

F(J +1)− F(J ) , vs. J; the slope of that linear plot is    2 B . 
However, in this case, plotting the data is not necessary because inspection of the data shows 
that the lines in the spectrum are equally spaced with a separation of 21.19 cm–1, so that is the 
slope: 
    slope = 21.19 cm−1 = 2 B and hence B = 10.595 cm−1  
The partition function is 

 
R( 1) ( 1) / R

0 0
(2 1)e  [15B.11] (2 1)e  [ / ]hcBJ J J J T

J J
J J hcB kβ θ θ

∞ ∞
− + − +

= =

= + = + =∑ ∑

q  

and the factor (2J + 1) is the degeneracy of the energy levels. For HCl, θR = 15.244 K. 

Defining 
  
x ≡ T

θ R , qR may be rewritten 

  
   
q R = (2J +1)e− J ( J+1)/x

J
∑    

At temperatures above about 30 K the high temperature approximation for qR would be 
adequate to calculate the molar entropy, but at lower temperatures the summation needs to be 
performed. 
 The molar entropy is calculated from 

 
   
Sm =

Um −Um (0)
T

+ R lnq R  [15E.8a] 

and the molar energy from 

  
   
Um −Um (0) = NA 〈ε

R 〉 = −
NA

q R

∂q R

∂β





V

 [15E.2a] 
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( 1)/
m m AR

1

R ( 1)/
R

1

1(0) (2 1){ ( 1)}e

1 (2 1){ ( 1)}e

J J x

J

J J x

J

U U N hcB J J J

R J J Jθ

− +

=

− +

=

− = + +

= + +

∑

∑



q

q

 

Substituting into the expression for the entropy we obtain 

 ( 1)/ R
m R

1

11 (2 1){ ( 1)}e lnJ J x

J
R J J J

x
S R− +

=

+ += +∑ q
q

 

Sm and qR are best evaluated with a spreadsheet program such as Excel® or a analytical 
mathematical software as Mathcad®. Here we have used Mathcad®. See the Mathcad® 

worksheet below. Sm/R is plotted as a function of 
  
x ≡ T

θ R in Figure 15E.5. 

 
Figure 15E.5 

 

 
15E.12 The translational contribution to the entropy is given by the Sackur-Tetrode equation 

[15E.11a]: 

 
  
Sm

TO = R ln
Vme5/2

NAΛ
3







 where 

  
Λ =

h
(2πmkT )1/2  [15B.7b] 

After substituting values for the constants we obtain  

 

  

Λ =
h

(2πmkT )1/2 =
6.626×10−34  J s

{2π (38.00×1.6605×10−27  kg)(1.381×10−23  J K−1)(298 K)}1/2

= 1.64×10−11  m

 

and 
5/2

TO 1
2 3

1
m 23 1 11 3

1 1

( )e(8.3145 J K  mol ) ln
(6.022 10  mol )(1.64 1

2.479 10  m
0  m)

154 J K  mol

S − −
− −

− −

− 
=  × ×

×

 
=
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The rotational contribution is [15E.13a] 

 R
m 1 ln kTS R

hcBσ
 = + 
 

 

The rotational constant is 

 

   

B =


4πcI
=



4πcµR2

=
(1.0546×10−34 J s)× (6.022×1023 mol−1)

4π (2.998×1010 cms−1)× ( 1
2 ×19.00×10−3 kgmol−1)× (190.0×10−12 m)2

= 0.4915 cm−1

 

It will be useful to note that 
  

kT
hc

=
(1.381×10−23  J K−1)(298 K)

(6.626×10−34  J s)(2.998×1010  cm s−1)
= 207.2 cm−1  

Thus 
  
Sm

R = (8.3145 J K−1  mol−1) 1+ ln 207.2 cm−1

(2)(0.4915 cm−1)






= 52.8 J K−1  mol−1  

The vibrational contribution is [15E.13a] 

 ( )V

V

V
V /
m /

/ ln 1 e
e 1

T
T

TS R θ
θ

θ − 
= − − 

− 
 with 

V 1

1

450.0 cm 2.172
207.2 cm

hc
T kT
θ ν −

−= = =


 

 ( )V 1 1 2.172 1 1
m 2.172

2.172(8.3145 J K  mol ) ln 1 e 3.33 J K  mol
e 1

S − − − − − = − − = − 
 

The Boltzmann factor for the lowest-lying excited electronic state is 

 
 
exp −(1.609eV)× (1.602×10−19 J eV−1)

(1.381×10−23 J K−1)× (298K)






= 6×10−28  

so we may take qE to equal the degeneracy of the ground state, namely 2 and UE – UE(0) to be 
zero. So the electronic contribution is 

 
   
S E =

U E −U E(0)
T

+ R lnq E = 0+ (8.3145 J K−1  mol−1) ln2 = 5.76 J K−1  mol−1  

Putting it all together yields 

   Sm
O = Sm

TO + Sm
R + Sm

V + Sm
E = 216 J K−1  mol−1  

15E.14 The solution is provided in the MathCad® worksheet which is inserted below. 
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15E.16 A Sackur-Tetrode type of equation describes the translational entropy of the gas. Here 

 

   

q T = q x
Tq y

T with q x
T =

1/2

2πm

βh2













X  [15B.7a] 

where X is the length of the surface. Therefore, 

The plot of the Morse oscillator entropy against temperature, when compared to a similar plot for the 
harmonic oscillator, shows that the Morse oscillator has the greater entropy (Figure 15E.6). This 
happens because the Morse oscillator has the greater number of available energy states at any 
temperature. However, the difference is remarkably small. 
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q T =

2πm
βh2







XY =
2πmσ
βh2 , σ = XY  

 
   
Um −Um (0) = −

NA

q
∂q
∂β






= RT  [or by equipartition]  

 m m
m m A m

2
m m

A A

2
m

m2
A

(0)
(ln ln 1)

e e
ln ln

2 eln

U U qS R N q
T n

R R R
N N

mR
h N n

σπ σ σ
β

−  = + − + =  
  

= + =   
   

   = =     

q

q q

 

Call this molar entropy of the mobile two-dimensional film Sm2. The molar entropy of 
condensation is the difference between this entropy and that of a (three-dimensional) gas: 
 ∆Sm = Sm2 – Sm3 . 
The three-dimensional value is given by the Sackur-Tetrode equation 

 
  
Sm = R ln e5/2

3/2
2πm
h2β







Vm
NA












 [15E.11a] 

So 

  

∆Sm = R ln
e2(2πm / h2β )× (σ m / NA )

e5/2(2πm / h2β )3/2 × (Vm / NA )
= R ln σ m

Vm






×

1/2
h2β

2πme

















 

15E.18  
1 2

m
s m m

m

p
p V

V

CRTc C C R
M C
γ γ ,

, ,
,

 = , = , = + 
 

 

(a) 
  
CV ,m = 1

2 R(3+ν R* + 2ν V*) = 1
2 R(3+ 2) = 5

2 R  

 
  
Cp,m = 5

2 R + R = 7
2 R  

 
  
γ =

7
5
= 1.40; hence cs =

1.40RT
M







1 2

 

(b) Nothing significant changes upon going from a diatomic to a linear triatomic. There are no 
more rotational modes. There are additional vibrational modes, but we assume none is active. 

 
  
cs =

1.40RT
M







1 2

 

(c) 
  
CV ,m = 1

2 R(3+ 3) = 3R  

 
  
Cp,m = 3R + R = 4R, γ =

4
3
, cs =

4RT
3M







1 2

 

For air,  

 
1 21

1
s 3 1

(1 40) (2 48kJ mol ) 350ms
29 10 kg mol

c
−

−
− −

 . × .
= = × 

 

15E.20 (a) The heat capacity is 

 
  
CV = −kβ 2

V

∂U
∂β







 [15E.5]  

First express U as a function of β: 

 
  
U =U (0)+ Nεe−βε

1+ e−βε  
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Hence 
  

CV

−kβ 2 =
∂U
∂β





V

=
1

1+ e−βε × (−Nε 2e−βε )− Nε
(1+ e−βε )2 × (−εe−βε )  

Collecting terms over a common denominator yields 

 
  
CV =

kNβ 2ε 2e−βε

(1+ e−βε )2 (1+ e−βε −1) = kNβ 2ε 2e−2βε

(1+ e−βε )2 =
kN (1/ kT )2ε 2e−2ε /kT

(1+ e−ε /kT )2  

Change the expression to molar rather than molecular quantities: 
 N = NA , R = NAk , and ε/k = εm/R 

so 
  
CV ,m =

R(εm / RT )2e−2εm /RT

(1+ e−εm /RT )2
 

(b) It is convenient to plot CV,m (in units of R) as a function of x where x = kT/ε = RT/εm. See 
Figure 15C.7.  

 
  
CV ,m =

Re−2/x

x2(1+ e−1/x )2

   
c(x) ≡

CV ,m

R
 

 
Figure 15C.7 

 
 

(c) Figure 15.20 shows a maximum heat capacity at about 0.08 R at a value for x of about 0.8. 
The X-Y Trace feature of mathematical software may be used to find a more accurate value for 
xmax of 0.775 and for c(xmax) of 0.0775. A formula for the maximum is determined by the 
criterion that dCV,m/dx = 0 at the maximum. 

 
  

d(CV ,m / R)
dx

=
d
dx

e−2/x

x2(1+ e−1/x )2







=

2e−2/x (1− x − xe−1/x )
x4(1+ e−1/x )3  

Thus, CV,m is a maximum when x = xmax satisfies the equation 

  
This is a transcendental equation so it is necessary to solve for xmax with a numerical method. 
xmax may be numerically determined with the Numeric Solver application of the modern 
scientific calculator. The Given/Find solve block of Mathcad can also be used and the 
following presents a Mathcad solution. 
 

 

This represents the best value of xmax. 
  
Tmax =

εmxmax

R
with xmax determined as above. 

max1/
max max1 e 0xx x −− − =
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15F Derived functions 

Answer to discussion question 
15F.2 The relationship between the equilibrium constant and the standard molar partition 

functions of the species involved is [15F.10b] 

 
J

r 0

O
J,m /

J A

e E RTK
N

ν

−∆
   =       
∏

q
 

The equilibrium constant, of course, is related to the Gibbs functions of reactants and 
products, as discussed in Topic 6A. The Gibbs function itself is often interpreted as 
balancing energetic and entropic tendencies of the system (even if the energetic tendencies 
themselves can be interpreted as reflecting the entropy of the surroundings). We can clearly 
identify an energetic portion in the above expression, the exponential involving ∆rE0, with 
which we are not concerned at the moment. The remaining portion, the continued product 
(quotient) is highly reminiscent of the equilibrium constant expression [6A.13] in terms of 
species activities: 

 
  
K = aJ

νJ

J
∏


 equilibrium

 

Thus, to the extent permitted by energetic considerations, the activities of reactants and 
products in a mixture at equilibrium are directly proportional to the number of accessible 
states they have. Indeed, recalling that activities are approximately proportional to 
concentrations, we can interpret 15F.10b as saying that species concentrations in an 
equilibrium mixture are directly proportional to the number of accessible states of that 
species. 
Finally, recall that each species’ partition function is measured with respect to the ground 
state of that species. If we computed the partition functions of all the species involved with 
respect to a common zero of energy, then the partition functions would absorb the energetic 
factor involving ∆rE0. (Note that that energetic term has the same functional form as a 
Boltzmann factor.) So we conclude by saying that species activities in an equilibrium 
mixture are directly proportional to the number of accessible states they have—period. 

Solutions to exercises 

15F.1(b) In each case the contribution to G is given by 
    G −G(0) = −nRT lnq  [15F.9 for non-tranlational modes] 
Therefore, we first evaluate qR and qV. 

 
3/2 1/2

R

1/23/2
3

1

1 1 3.35 10
2 (3.553) (0.4452) (0.3948)

kT
hc ABC

kT
hc

π
σ
   =    
   

  = = ×   × ×   

 

q  

So 

  

Gm
R −Gm

R (0) = −(8.3145J mol−1K−1)× (298K)ln3.35×103

= −20.1×103J mol−1 = −20.1kJ mol−1

 

The vibrational partition function for each vibrational mode is given by [15B.15] 

 V
V V 1

/

1   where  1.4388 K ( / cm )
1 e T

hcv v
kθ

θ −

−
= = = ×

−



q  

The vibrational partition functions are so small that we are better off taking 
    lnq V = − ln(1− e−θV /T ) ≈ e−θV /T  

so   lnq1
V ≈ e−{1.4388(1110)/298} = 4.70×10−3

    lnq 2
V ≈ e−{1.4388(705)/298} = 3.32×10−2  

and   lnq 3
V ≈ e−{1.4388(1042)/298} = 6.53×10−3  
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Gm
V −Gm

V (0) = −(8.3145 J mol−1K−1)× (298K)

×(4.70×10−3 + 3.32×10−2 + 6.53×10−3)

= −110 J mol−1 = −0.110 kJ mol−1

 

15F.2(b) See the solution to Exercise 15E.3(b). At 400 K  

At 400 K, 
  
βε = hc × (7918.1cm−1)

kT
=

(1.4388 cm K)× (7918.1cm−1)
500K

= 22.78  

Therefore, the contribution to Gm is 
    Gm −Gm (0) = −RT lnq  [15F.9 for non-tranlational modes] 

 
  
Gm −Gm (0) = −(8.3145 J K−1  mol−1)× (400K)× ln(3+ 2× e−28.48 ) = −3.65kJ mol−1  

Comment. The contribution of the excited state is negligible at this temperature. 

15F.3(b) We need to calculate 

 
J

r 0 r 0

O O 79 O 81
J,m / /m 2 m 2

O 79 81 2
J A m

( Br ) ( Br )
e [15F.10b] e

( Br Br)

v

E RT E RTK
N

∆− −∆ 
= × =  

 
∏

q q q
q

 

Each of these partition functions is a product 
   q m

O = q m
Tq Rq Vq E  with all qE = 1. 

The ratio of the translational partition functions is virtually 1 (because the masses nearly 
cancel; explicit calculation gives 0.999). The same is true of the vibrational partition 
functions. Although the moments of inertia cancel in the rotational partition functions, the 
two homonuclear species each have σ = 2, so 

 
  

q R ( 79 Br2 )q R ( 81Br2 )
q R ( 79 Br 81Br)2 = 0.25  

The value of ∆rE0 is also very small compared with RT, so 
 K ≈ 0.25 

 
Solutions to problems 

15F.2    H2O + DCl  HDO + HCl  (all in gas phase) 
The equilibrium constant is [15F.10, with ∆rE0 here defined as the molecular, not molar, 
energy difference; NA factors cancel] 

 r 0

O O
m 3 m

O O
m 4 m

(CHD ) (DCl)
e

(CD ) (HCl)
EK β∆−=

q q
q q

 

Use partition function expressions from Topic 15B. 
The ratio of translational partition functions is 

 

3 2 3/2T T
m m
T T

2m 2 m

(HDO) (HCl) 19 02 36 46(HDO) (HCl) 1 041
(H O) (DCl) 18 02 37 46(H O) (DCl)

M M
M M

/
  . × . = = = .   . × .  

q q
q q

  

The ratio of rotational partition functions is, with σ = 2 for H2O and σ = 1 for the others. 

 

   

   

R R

R R

1 2

1 2

1/2
2 2 2 2

1/2
2

(H O) ( (H O) (H O) (H O)) (DCl)(HDO) (HCl)
1(H O) (DCl) ( (HDO) (HDO) (HDO)) (HCl)

(27 88 14 51 9 29) 5 4492 1 707
(23 38 9 102 6 417) 10 59

A B C B
A B C B

σ

/

/

=

. × . × . × .
= × = .

. × . × . × .

q q
q q

 

The ratio of vibrational partition functions (call it fV) is 

 
   
fV =

q V (HDO)q V (HCl)
q V (H2O)q V (DCl)

=
q (2726.7)q (1402.2)q (3707.5)q (2991)
q (3656.7)q (1594.8)q (3755.8)q (2145)

 

where / 1.4388 /( /K)

1 1( )
1 e 1 ehc kT x Tx ν− −= =
− −

q  
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r 0

1

1

1 {(2726 7 1402 2 3707 5 2991)2

(3656 7 1594 8 3755 8 2145)}cm
162cm

E
hc

−

−

∆
= . + . + . +

− . + . + . +

= −

 

So the exponent in the energy term is 

 r 0 r 0
r 0

1 1.4388 ( 162) 233
/ K / K

E EhcE
kT k hc T T T

β
∆ ∆ × −

− ∆ = − = − × × = − = +  

Therefore,   K = 1.041×1.707 × fV × e233/(T /K) = 1.777 fVe233/(T /K)  
We then draw up the following table 
 

T/K 100 200 300 400 500 600 700 800 900 1000 

K 18.3 5.70 3.87 3.19 2.85 2.65 2.51 2.41 2.34 2.29 
 
and specifically (a) K = 3.89 at 298 K and (b) K = 2.41 at 800 K. 

15F.4 The standard molar Gibbs energy is given by 

 
O O TO

O O R V Em m m
m m

A A A

(0) ln whereG G RT
N N N

− = =
q q q

q q q  [15F.9] 

Translation: 

 
O

O

T
m

3 1/2
A

      
(2 )

kT h
N p mkT

Λ
Λ π

= =
q  

After substituting the values of the constants, we obtain 

    

q m
T O

NA

= 2.561×10−2(T / K)5/2 × ( M / gmol−1)3/2

= (2.561×10−2 )× (2000)5 2 × (38.90)3 2 = 1.111×109

 

Rotation of a linear molecule: 

 R kT
hcBσ

=


q  

The rotational constant is 

 
   
B =



4πcI
=



4πcµR2  

where 
  
µ =

mBmSi

mB +mSi

=
(10.81)× (28.09)

10.81+ 28.09
×

10−3kg mol−1

6.022×1023mol−1 = 1.296×10−26 kg  

so 
   
B =

1.0546×10−34 J s
4π (2.998×1010cms−1)× (1.296×10−26 kg)× (190.5×10−12m)2 = 0.5952 cm−1  

and 
   
q R =

k
hc

×
2000 K

2(0.5952 cm−1)
= 2335  

Vibration: 

 ( ) ( )1

V
1.4388(772)1.4388( cm )

2000K

1 1 1
1 e 1 exp1 exp

2.467

hcv kT v
T

−− −−
= = = =

− −−

=





q
 

The Boltzmann factor for the lowest-lying electronic excited state is 

 
 
exp −(1.4388)× (8000)

2000





= 3.2×10−3  

The degeneracy of the ground level is 4 (spin degeneracy =4, orbital degeneracy =1), and that 
of the excited level is also 4 (spin degeneracy = 2, orbital degeneracy = 2), so 
 E 34(1 3.2 10 ) 4.013−= + × =q  
Putting it all together yields 
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O O 1 1
m m

9

5 1 1

(0) (8.3145 J K  mol ) (2000 K)

ln[(1.111 10 ) (2335) (2.467) (4.013)]

5.135 10 J mol 513.5kJ mol

G G − −

− −

− = ×

× × × × ×

= × =

 

15F.6 The standard molar Gibbs energy is given by 

 
O O TO

O O R V Em m m
m m

A A A

(0) ln whereG G RT
N N N

− = =
q q q

q q q  [15F.9] 

Translation: 

 
O

O

T
m

3 1/2
A

      
(2 )

kT h
N p mkT

Λ
Λ π

= =
q  

After substituting the values of the constants, we obtain 

 
   

q m
TO

NA

= 2.561×10−2(T K)5 2 ( M gmol−1)3 2  

First, at 10.00 K: 
   

q m
TO

NA

= (2.561×10−2 )× (10.00)5 2 × (36.033)3 2 = 1752  

Rotation of a nonlinear molecule 

 
3 2 1 2 3 2

R
3 1 2

1 1.0270 ( K)
( cm )

kT T
hc ABC ABC

π
σ σ −

   = = ×   
       

q  

The rotational constants are 

 
   
B =



4πcI
so AB C =



4πc






3
1

IA IBIC

, 

 

   

AB C =
1.0546×10−34 J s

4π (2.998×1010cm s−1)







3

×
(1010 � m−1)6

(39.340)× (39.032)× (0.3082)× (mu  �2 )3 × (1.66054×10−27 kg mu
−1)3

= 101.2cm−3

 

so 
  
q R =

1.0270
2

×
(10.00)3 2

(101.2)1 2 = 1.614  

Vibration: 

 
( ) ( )1

V
1.4388(63.4)1.4388( cm )

10.00K

1 1 1 1.0001
1 e 1 exp1 exp

hcv kT v
T

−− −−
= = = =

− −−




q  

Even the lowest-frequency mode has a vibrational partition function of 1; so the stiffer 
vibrations have qV even closer to 1. The degeneracy of the electronic ground state is 1, so qE = 
1. Putting it all together yields 

 
O O 1 1

m m

1

(10 K) (0) (8.3145J mol K ) (10.00K) ln[(1752) (1.614) (1) (1)]

= 660.8J mol

G G − −

−

− = × × × ×
 

Now at 1000 K 

Translation: 
   

q m
TO

NA

= (2.561×10−2 )× (1000)5 2 × (36.033)3 2 = 1.752×108  

Rotation: 
  
q R =

1.0270
2

×
(1000)3 2

(101.2)1 2 = 1614  

Vibration: 
( )

V
1 (1.4388) (63.4)

1000

1 11.47
1 exp ×

= =
− −

q

 
( )

V
2 (1.4388) (1224.5)

1000

1 1.207
1 exp ×

= =
− −

q  
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  ( )
V
3 (1.4388) (2040)

1000

V

1 1.056
1 exp

(11.47) (1.207) (1.056) 14.62

×
= =

− −

= × × =

q

q

 

Putting it all together yields 

 

O O 1 1
m m

8

5 1 1

(1000 K) (0) (8.3145J mol K ) (1000K)

ln[(1.752 10 ) (1614) (14.62) (1)]

2.415 10 J mol 241.5kJ mol

G G − −

− −

− = ×

× × × × ×

= × =
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16  Molecular interactions 

16A  Electric properties of molecules 
 

Answers to discussion questions 
 
16A.2 When the applied field changes direction slowly, the permanent dipole moment has time to reorientate—
the whole molecule rotates into a new direction—and follows the field. However, when the frequency of the 
field is high, a molecule cannot change direction fast enough to follow the change in direction of the applied 
field and the dipole moment then makes no contribution to the polarization of the sample. Because a molecule 
takes about 1 ps to turn through about 1 radian in a fluid, the loss of this contribution to the polarization occurs 
when measurements are made at frequencies greater than about 1011 Hz (in the microwave region). We say that 
the orientation polarization, the polarization arising from the permanent dipole moments, is lost at such high 
frequencies 
 
The next contribution to the polarization to be lost as the frequency is raised is the distortion polarization, the 
polarization that arises from the distortion of the positions of the nuclei by the applied field. The molecule is 
bent and stretched by the applied field, and the molecular dipole moment changes accordingly. The time taken 
for a molecule to bend is approximately the inverse of the molecular vibrational frequency, so the distortion 
polarization disappears when the frequency of the radiation is increased through the infrared. The disappearance 
of polarization occurs in stages: as shown in Justification 16A.3, each successive stage occurs as the incident 
frequency rises above the frequency of a particular mode of vibration. 
 
At even higher frequencies, in the visible region, only the electrons are mobile enough to respond to the rapidly 
changing direction of the applied field. The polarization that remains is now due entirely to the distortion of the 
electron distribution, and the surviving contribution to the molecular polarizability is called the electronic 
polarizability. 
 
 
 

Solutions to exercises 
 
16A.1(b) A molecule with a centre of symmetry may not be polar but molecules belonging to the groups Cn, 
Cnv, and Cs may be polar (Topic 11A). SO3, which has a trigonal planar structure (D3h), and XeF4, which is 
square planar (D4h), cannot be polar. 4SF  (see-saw, C2v) may be polar. 
 
16A.2(b) 2 2 1/2

res 1 2 1 2( 2 cos ) [16A.3a]µ µ µ µ µ θ= + +  

         2 2 1/2[(2.5) (0.50) (2) (2.5) (0.50) (cos120 )] D 2.3 D= + + × × × =  
 
16A.3(b) 2 3 2 2 3 3 34 (0) 2 2      where          and     i i

i
Q e e e r x x yµ = = − − = = +∑ r r r ri i j  

 2 162 pmx = +  

 ( ) ( )3 3 cos30 143 pm 0 866 124 pmx r= ° = + × . =  

 ( ) ( )3 3 sin 30 143 pm 0 500 71.5 pmy r= ° = × . =  
The components of the vector sum are the sums of the components. 
 ( ) ( ){ } ( )2 32 2 2 162 124  pm 572 nmx ex ex e eµ = − − = − × + = − ×  

 ( ) ( )32 2 71.5 pm 143 pmy ey e eµ = − = − × = − ×  
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( )

( ) ( ){ } ( ) ( )

( )

1
2

1 22 2

2 2 19 12

29
30

  [16A.4b]

  572 pm 143 pm 1 602 10 C 590 10  m

1 D  9.45 10  C m 28 D
3.33564 10  C m

x y

e

µ µ µ
/

− −

−
−

= +

= × + = . × × ×

 = × × = × 

 

The angle that µ makes with x-axis is given by 

 1572 572cos      so     cos 14.2
590 590

x −  | |
= = = = ° 

 

µ
θ θ

µ
 

 
16A.4(b) Polarizability α, dipole moment μ, and molar polarization Pm are related by 

 
2

A
m

0

 [16A.12]
3 3
NP

kT
µα

ε
   

= × +   
  

 

In order to solve for α, it is first necessary to obtain µ from the temperature variation of Pm. 

 

2
0 m

A

3
3

P
kT N

εµα + =
 

Therefore, ( ) ( ) ( )
2

0
m m m m

A

31 1 [   at    at ]3 P P P T P TT Nk T
εµ   ′ ′ ′× − = × − , ′  

 

and hence 

 

2 0 m m

A

12 1 2 1 23 1 6 3 1

23 1

59 2 2

9 ( )
1 1

9 (8 854 10  J  C  m ) (1 381 10  J K ) (75.74 71.43) 10  m  mol    
1 1(6 022 10  mol )

320.0 K 421.7 K
    1.045 10  C  m

k P P

N
T T

ε
µ

− − − − − − −

−

−

′× −
=

 × − ′ 
× . × × . × × − ×

=
 . × × − 
 

= ×

 

 30
30

1 D3.23 10  C m 0.968 D
3.33564 10  C m

µ −
−

 = × × = × 
 

 
( ) ( )

( ) ( )

2
0 m

A

12 1 2 1 6 3 1 59 2 2

23 1 23 1

39 1 2 2

3
3

3 8 854 10  J  C  m 75.74 10  m  mol 1.045 10  C  m   
6 022 10  mol 3 1 381 10  J K 320 0 K

   2.56 10  J  C  m

P
N kT

− − − − − −

− − −

− −

= −

× . × × × ×
= −

. × × . × × .

= ×

ε µα

 

Corresponding to 29 3

0

 [16A.6] 2.29 10  m
4π

αα
ε

−′ = = ×  

 
16A.5(b) 185.0 g molM −=  

 ( )m
r r1 2   [16A.11]

P
M

ρ
ε ε− = × +  

 m m
r

2
1 1

P P
M M

ρ ρ
ε − = + 

 
 

 
( ) ( )

( ) ( )

m
r

m

1 3 3 1

1 3 3 1

2

85.0 g mol 2 1.92 g cm 32.16 cm  mol
   

85.0 g mol 1.92 g cm 32.16 cm  mol

   8.97

M P
M P

ρ
ε

ρ
− − −

− − −

+
=

−

+ × ×
=

− ×

=
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16A.6(b) 1 2 r A
r r

r 0

1
( )   [16A.14]     and       [16A.13]

2 3
Nn
M

ε ρ α
ε

ε ε
/ −

= =
+

 

Therefore, 
 

 
( ) ( )
( ) ( )

2
0 r

2
A r

1 12 1 2 1 2

26 3 23 1

40 1 2 2

3 1
2

3 65.5 g mol 8.854 10  J  C  m 1.622 1  
1.622 22.99 10  g m 6.022 10  mol

  3.40 10  J  C  m

M n
N n

ε
α

ρ
− − − −

− −

− −

 −
=  + 

× × ×  −
= × +× × ×  

= ×

 

 

16A.7(b)
0

 [16A.6]
4π

αα
ε

′ =  

 ( ) ( )10 1 2 1 30 3 40 1 2 2
04π 1.11265 10  J  C  m 2.2 10  m 2.45 10  J  C  m− − − − − −′= = × × × = ×α ε α  

Let 

 
( ) ( ) ( )

( ) ( )
3 3 23 1 40 1 2 2

A
1 12 1 2 1

0

865 10  g m 6.022 10  mol 2.45 10  J  C  m
0.0665

3 3 72.3 g mol 8.85419 10  J  C  m
NC
M

ρ α
ε

− − − −

− − − −

× × × × ×
= = =

× × ×
 

and solve the Clausius−Mossotti eqn [17A.13] for εr with which we calculate the refractive index. 

 r

r

1
  [16A.13, the Clausius Mossotti eqn]

2
Cε

ε
−

= −
+

 

 
( )

r
1 2
1

1 2 0.0665
  

1 0.0665
  1.2137

C
C

ε +
=

−
+ ×

=
−

=

 

 ( )
11 22

r r  [17.17] 1.2137 1.10n ε= = =  
 
16A.8(b) 30 15.17 10  C m  for bromobenzene (157.00 g mol )µ − −= ×  

 ( ) ( )10 1 2 1 29 3 39 1 2 2
04π  [16A.6] 1.11265 10  J  C  m 1.5 10  m 1.67 10  J  C  mα ε α − − − − − −′= = × × × = ×  

 
( )

( )
( )

( ) ( )

2
A

m
0

39 1 2 2

23 1
230

12 1 2 1

23 1

5 3 1

  [16A.12]
3 3

1.67 10  J  C  m
6.022 10  mol    5.17 10  C m

3 8.85419 10  J  C  m
3 1.3807 10  J K 298.15 K

    8.69 10  m  mol

NP
kT
µα

ε
− −

−
−

− − −

− −

− −

 
= + 

 
 ×
 ×  = × × × +
 × × × 

= ×

 

Let 

 
( ) ( )6 3 5 3 1

m
1

1.491 10  g m 8.69 10  m  mol
0.825

157.00 g mol
PC

M
ρ

− − −

−

× × ×
= = =  

and solve the Debye eqn [16A.11] for εr. 

 r

r

1
  [16A.11, the Debye eqn]

2
Cε

ε
−

=
+

 

 
( )

r
1 2
1

1 2 0.825
  

1 0.825
  15

C
C

ε +
=

−
+ ×

=
−

=
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Solutions to problems 

 
16A.2 The point charge model can be used to estimate the magnitude of the electric dipole moment of hydrogen 
peroxide as a function of φ  (defined in Fig. 16A.1b as a view down the z axis of the O–O bond). Each hydrogen 
atom has a partial charge of δ; each oxygen atom has a partial charge of –δ. The dipole moment magnitude is  

 ( ) ( ) { }1 1 2 2

1/21/2 2 2 2
J J H O O H

J
 where  [16A.4a,b], etc.x y z x Q x x x x xµ µ µ µ µ µ µ δ= ⋅ = + + = = × − − +∑  

We will use the Cartesian coordinate system defined in Fig. 16A.1a. The bond lengths are lOH = 97 pm and lOO = 
149 pm. We also use the ratio lratio = lOO / lOH = 1.54 and calculate μ in units of δlOH so that it is unnecessary to 
estimate the magnitude of δ.  The O–O–H bond angle, θ , may be estimated as 90° but we will use the 
experimental value of 100°. The computations of μx, μy, and μz require the coordinates of each atom; those of H1 
and the oxygen atoms are shown in Fig. 16A.1a. 
 

  
Figure 16A.1 
 
The coordinates of H2 can be determined by analogy to the relationships between Cartesian coordinates and 
spherical polar coordinates. They are: 

 
( )
( )

( )

OH

OH

OO OH

sin 180 cos

sin 180 sin

cos 180

x l

y l

z l l

θ φ

θ φ

θ

= ° −

= ° −

= + ° −

 

Substitution of variables into eqn. 16A.4b, yields 

 

( ) ( ) ( ) ( )

( ) ( ){ } ( ){ } ( ) ( ){ }
( ) ( ){ } ( ){ } ( ) ( ){ }

22 2 2
OH OH OH OH

2 2 2
ratio ratio

2 2 2

/ / / /

               cos 10 sin 80 cos sin 80 sin sin 10 cos 80

               cos 10 sin 80 cos sin 80 sin sin 10 cos 80

x y zl l l l

l l

µ δ µ δ µ δ µ δ

φ φ

φ φ

= + +

= ° + ° + ° + − ° − + + °

= ° + ° + ° + − ° + °

 

We now draw a table to calculate ( )2
OH/ lµ δ  in φ  increments of 15o and, subsequently, calculate OH/ lµ δ  

values at each φ . Fig. 16A.2 is a plot of the variation. As expected, there the dipole is a maximum of almost 
twice the single O–H bond dipole when the hydrogen atoms are eclipsed and it is zero when they have a gauche 
conformation. 
 

    
 
 
 
 
 
 
 
 

x

y

z

H1 H2

(a)

180  o − θ

( cos(lOH θ − 90 ),0,− θ − 90 ))ο οlOHsin(

(0,0,0)

(0,0, )lOO
H2

H1

φ

(b)

lOO

lOH

φ / deg φ / radians sq(µ  / δ l ) µ / δ l
0 0 3.879385 1.969616
15 0.261799 3.813292 1.952765
30 0.523599 3.619516 1.902502
45 0.785398 3.311262 1.819687
60 1.047198 2.909539 1.705737
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Figure 16A.2 
 

   
 
16A.4‡ Let the partial charge on the carbon atom equal δe and the N-to-C distance equal l. Then, 

 ( ) ( )
( ) ( )

30 1

19 12

 [16A.4a]     or     

1.77 D 3.3356 10  C m D
0.123

1.602 10  C 299 10  m

el
el
µµ δ δ

δ
− −

− −

= =

× ×
= =

× × ×

 

 
16A.6 The induced dipole moment μ* is given by 

 0
0 2 2

0

4π
*  [16A.5a] 4π  [16A.6]

4π
e e

r r
ε α αµ α ε α
ε

′ ′
′= = = =E E  

Consequently, the dipole-proton distance needed to induce a particular dipole is 

 
( ) ( )
( ) ( )

1/2

1/230 3 19

30 1

*

1.48 10  m 1.602 10  C
 196 pm

1.85 D 3.336 10  C m D

er α
µ

− −

− −

′ 
=  

 

 × × ×
 = =
 × × 

 

 

16A.8 
2

r A
m m A 0

r 0

1 4π  [16A.11]  and  [16A.12 with 4π ]
2 3 9

NMP P N
kT

ε µ
α α ε α

ρ ε ε
 − ′ ′= × = + , = + 

 

Eqn 16A.12 indicates that, when the permanent dipole moment μ contributes to the molar polarization in a 
manner that is consistent with thermal averaging of the electric dipole moment in the presence of the applied 

field (i.e., free rotation), a plot of Pm against 1/T should be linear with an intercept at 1/T = 0 equal to A
4π
3

N ′α  

and a constant slope for which 
( )

md
d 1/

P
T

 equals 
2

A

09
N

k
µ

ε
. Eqn 16A.12 is replaced by the Clausius−Mossotti 

expression, m A
4π  [16A.13]
3

P N α′= , in the case for which either the molecules are non-polar or because the 

frequency of the applied field is so high that the molecules cannot orientate quickly enough to follow the change 
in direction of the field. 
 
To examine the possibility that either solid or liquid methanol exhibits the characteristics of eqn 16A.11 or eqn 
16A.13, we draw up the following table and prepare the Figure 16A.3 plot of Pm against 1/T. The molar 
polarization Pm is calculated with eqn 16A.11 at all temperatures and, since the data have been corrected for the 
variation in methanol density, we use ρ = 0.791 g cm–3 for all entries and M = 32.0 g mol–1. 
 
 

‡ These problems were supplied by Charles Trapp and Carmen Giunta 

Dipole Moment of Hydrogen Peroxide

0

0.5

1

1.5

2

0 60 120 180 240 300 360

φ  / deg

µ
 / 

δ 
l O

H
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θ  / ºC −185 −170 −150 −140 −110 −80 −50 −20 0 20 
T / K 88 103 123 133 163 193 223 253 273 293 
1000

/ KT
 11.3 9.69 8.12 7.51 6.13 5.18 4.48 3.95 3.66 3.41 

εr 3.2 3.6 4 5.1 67 57 49 43 38 34 
r

r

1
+2

ε
ε

−

 
0.42 0.46 0.50 0.58 0.957 0.949 0.941 0.933 0.925 0.917 

Pm 
/ (cm3 mol–1) 17.1 18.8 20.2 23.4 38.7 38.4 38.1 37.7 37.4 37.1 

 
Figure 16A.3 
 

   
 
Inspection of Figure 16A.3 reveals that the molar polarization Pm is not a linear function of 1/T for either the 
solid or liquid phase of methanol. Nor is it a constant for either phase. Thus, we conclude that the conditions of 
eqns 16A.12 and 16A.13 are not applicable and it is not possible to extract reliable values for either the 
polarizability volume or the dipole moment from this data. The data does provide valuable conceptual 
information about molecular motion in the condensed phases. 
 
Figure 16A.3 indicates that, as the temperature of liquid methanol is reduced, Pm increases less rapidly than 
would be expected for the linear case of thermal equilibrium of the dipole with the applied field. The 
progression toward lower temperatures appears to have a negative second-order component, which extends into 
the solid phase. The second-order regression fit for 110 Cθ ≤ − °  reflects this significant non-linearity:  
 Pm / cm3 mol−1 = 31.246 + 2.3788 × (103 K / T) – 0.1904 × (103 K / T)2     with     R2 = 0.9914 
This indicates that hydrogen-bonding between methanol molecules is hindering molecular rotation and reducing 
the orientation polarization. The effect extends below the melting point with the −110ºC data point exhibiting 
liquid-like, hindered rotation. The large decline of Pm below −110ºC is interpreted as corresponding to a 
stronger hindrance of the dipole moment rotation but the non-constancy of Pm seems to indicate that rotational 
excitation is never completely eliminated. 
 
16A.10 Calculate the dipole moment of H2O and its polarizability volume. 

 
2

A
m A 0

0

4π    [16A.12 with 4π ]
3 9

NP N
kT
µ

α α ε α
ε

′ ′= + , =  

Eqn 16A.12 indicates that a plot of Pm against 1/T should be linear with a slope, 
( )

md
d 1/

P
T

, equal to 
2

A

09
N

k
µ

ε
 and a 

1/T = 0 intercept that equals A
4π
3

N ′α . Therefore, we draw up the following table and prepare a plot f Pm 

against 1/T. If it is linear, we perform a linear least squares regression fit of the plot so as to acquire the slope 
and intercept from which we calculate α′  and μ. A suitable plot is shown in Figure 16A.4. 

15

20

25

30

35

40

2 4 6 8 10 12

P m
  /

 c
m

3  m
ol

−1
 

1000 K / T 

melting point 

liquid phase 

solid phase 
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T / K 384.3 420.1 444.7 484.1 522.0 
1000

/ KT
 2.602 2.380 2.249 2.066 1.916 

Pm / (cm3 mol–1) 57.4 53.5 50.1 46.8 43.1 
 
 
Figure 16A.4 

 
 
The plot of Pm against 1/T is linear with a regression fit that gives an intercept of 3.44 cm3 mol–1 (not shown in 
the figure), and the slope is such that dPm/d(1/T) = 2.08 × 104 cm3 mol–1 K. It follows that 

 
( )
( )

3 1
24 3m

23 1
A

3 3.44 cm  mol3 (at intercept)
1.36 10 cm

4π 4π 6 022 10  mol
P

N
α

−
−

−

×
′ = = = ×

× . ×
 

 

( )
( ) ( ) ( )

2 0 m

A

12 1 2 1 23 1
2 3 1

23 1

59 2 2

9 d
d 1/

9 8.85419 10  J  C  m 1.3807 10  J K
   2.08 10  m  mol  K

6.022 10  mol

   3.80 10  C  m

k P
N T

− − − − −
− −

−

−

=

 × × × × = × × 
×  

= ×

ε
µ

 

 ( )1/ 259 2 2
30

1 D3.80 10  C  m 1.85 D
3.33564 10  C m

−
−

 = × × = × 
µ  

 
16A.12 Since the refractive index nr and, therefore, the relative permittivity εr are close to 1, we infer that the 
dipole moment does not contribute to the molar polarization because either the gas phase molecules are non-
polar or the molecular rotational frequency is much lower than the frequency of the applied electric field, which 

is the case for infrared, visible, and ultraviolet radiation. Furthermore, the observation that the ratio r

r

1
2

C ε
ε

−
≡

+
 

must be much less than 1 greatly simplifies mathematical manipulations. 

 r A

r 0 0

1
  [16A.13, Clausius Mossotti eqn]   [ / , perfect gas]

2 3 3
N p Mp RT C
M kT

ε ρ α α ρ
ε ε ε

−
= − = = ≡

+
 

Solving the Clausius−Mossotti eqn for εr gives 

 ( ) ( ) ( )

r
0

12 3

1 2      where     
1 3

   1 2 1   [Taylor series expansion of 1  for 1]

   1   [Second order and higher powers are insignificantly small and may be discarded.]

C pC
C kT

C C C C C C

C

−

+
= =

−

= + × − + − + −

= +

 

αε
ε
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1 2
r

1
2

0

(1 )   [16A.14]
   1   [Taylor expansion, discard higher order terms]

   1
6

n C
C

p
kT

α
ε

/= +
= +

= +

 

Thus, nr is linear in pressure p with an intercept equal to 1, which corresponds to a vacuum. The slope, 
06 kT
α

ε
, 

is so small (~10−4 bar−1) that we normally consider the refractive index of a gas to be 1.00. Very sensitive 
measurements of the refractive index as a function of pressure may be used to find the polarizability. Solving the 
above equation for α gives the computational equation using measured values of temperature, pressure, and 
refractive index: 
 ( )0 r6 1 /kT n pα ε= × −  
The polarizability volume is calculated with 
 0/ 4π   [16A.6]α α ε′ =  
 
 
16B  Interactions between molecules 
 

Answers to discussion questions 
 
16B.2 See Fig. 16A.2 of the text for typical charge arrays corresponding to electric multipoles. As a generality 
we may write 11/  [16B.6]n mV r + −∝  for the potential energy of interaction between an n-pole and an m-pole. 
More specifically, the interaction potential between a point charge Q2 (monopole, n = 1) and any of the 
multipoles (m = 2 or 3 or ...) is given as 1/ mV r∝  where r is the separation distance between Q2 and the 
multipole. This is a steeper potential energy decrease with r than that observed for the Coulombic interaction 
between two point charges: 1/V r∝ . The steeper decline originates in the case for which r l , where l is the 
separation of charge within the multipole, because, as r becomes relatively large, the array of charges in the 
multipole appears to blend together into neutrality causing lower order interaction terms to cancel. For example, 
the dipole terms within the monopole-quadrupole (m = 3) interaction potential cancel leaving only a 1/r3 term 
when r l .  
 
We use the linear quadrupole charge arrangement shown in Fig. 16B.1 to show this cancellation of lower order 
terms. Since we are interested in the case x = l/r << 1, the following Taylor series expansions are useful 
substitutions: 
 1 2 3 1 2 3(1 ) 1          and          (1 ) 1x x x x x x x x− −+ = − + − + − = + + + +   
Begin by adding the terms for the Coulomb potential interaction between the charge array of the quadrupole and 
the monopole Q2, substitute x = l/r, and perform Taylor series expansions on the functions of x. 

 

1 2 1 2 1 2
0

1 2

1 2

2
4π

1 1         2
1 1

         1

Q Q Q Q Q QV
r l r r l

Q Q
r x x

Q Q
r

= − +
+ −

 = − + 
+ − 

=

ε

x− 2 3 4 2x x x+ − + + − 1+ x+{ }

{ }

2 3 4

2
2 41 22

         1

x x x

x Q Q x x
r

+ + +

= + + +





 

The higher order terms within the polynomial are negligibly small compared to 1 in the case for which x = l/r << 
1, thereby, leaving the simple expression: 

 
2 2

1 2 1 2
3 3

0 0

2 1     or     
4π 2π
x Q Q l Q QV V

r r r
= = ∝

ε ε
. 
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Figure 16B.1 
 

   

Q1 Q12Q1

l l

r

Q2

 
 
16B.4 A hydrogen bond ( ) is an attractive interaction between two species that arises from a link of the form 
A H B−  , where A and B are highly electronegative elements (usually nitrogen, oxygen, or fluorine) and B 
possesses a lone pair of electrons. It is a contact-like attraction that requires AH to touch B. Experimental 
evidences supports a linear or near-linear structural arrangement and a bond strength of about 20 kJ mol–1. The 
hydrogen bond strength is considerably weaker than a covalent bond but it is larger than, and dominates, other 
intermolecular attractions such as dipole-dipole attractions. Its formation can be understood in terms of either 
the (a) electrostatic interaction model or with (b) molecular orbital calculations. 
 
(a) A and B, being highly electronegative, are viewed as having partial negative charges (δ–) in the electrostatic 
interaction model of the hydrogen bond. Hydrogen, being less electronegative than A, is viewed as having a 
partial positive (δ+). The linear structure maximizes the electrostatic attraction between H and B: 

      
This model is conceptually very useful. However, it is impossible to exactly calculate the interaction strength 
with this model because the partial atomic charges cannot be precisely defined. There is no way to define which 
fraction of the electrons of the AB covalent bond should be assigned to one or the other nucleus. 
 
(b) Ab initio quantum calculations are needed in order to explore questions about the linear structure, the role of 
the lone pair, the shape of the potential energy surface, and the extent to which the hydrogen bond has covalent 
sigma bond character. Yes, the hydrogen bond appears to have some sigma bond character. This was initially 
suggested by Linus Pauling in the 1930's and more recent experiments with Compton scattering of x-rays and 
NMR techniques indicate that the covalent character may provide as much as 20% of the hydrogen bond 
strength. A three-center molecular orbital model provides a degree of insight. A linear combination of an 
appropriate sigma orbital on A, the 1s hydrogen orbital, and an appropriate orbital for the lone pair on B yields a 
total of three molecular orbitals. One of the MOs is bonding, one is almost nonbonding, and the third is 
antibonding. Both bonding MO and the almost nonbonding orbital are occupied by two electrons (the sigma 
bonding electrons of A–H and the lone pair of B). The antibonding MO is empty. Thus, depending on the 
precise location of the almost nonbonding orbital, the nonbonding orbital may lower the total energy and 
account for the hydrogen bond. 
 
16B.6 Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and a planar, rigid structure. The 
amide group is expected to be like the peptide bond that connects amino acid residues within protein molecules. 
This group is also planar because resonance produces partial double bond character between the carbon and 
nitrogen atoms. There is a substantial energy barrier preventing free rotation about the CN bond. The two bulky 
phenyl groups on the ends of an amide group are trans because steric hinderance makes the cis conformation 
unfavourable. 

A H B
δ δδ+
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The flatness of the Kevlar polymeric molecule makes it possible to process the material so that many molecules 
with parallel alignment form highly ordered, untangled crystal bundles. The alignment makes possible both 
considerable van der Waals attractions between adjacent molecules and for strong hydrogen bonding between 
the polar amide groups on adjacent molecules. These bonding forces create the high thermal stability and 
mechanical strength observed in Kevlar. 

    
Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a speeding bullet, through 
hydrogen bond breakage and the transition to the cis conformation. 
 
 

Solutions to exercises 
 
16B.1(b) The H–Cl bond length of a hydrogen chloride molecule is 127.45 pm and the Mg2+ cation is 300 pm 
from the dipole center. Because these lengths are comparable, a calculation based on the assumption that the 
hydrogen chloride dipole acts like a point dipole with a dipole length much shorter than the dipole-ion distance 
is unlikely to provide an accurate value of the dipole-ion interaction energy. However, such a calculation does 
provide an "order-of-magnitude" estimate. The minimum value of the dipole-ion interaction occurs with the 
dipole pointing toward the cation. 

 
( ) ( ) ( )

( ) ( )

2+HCl Mg HCl
min 2 2

0 0

30 1 19

210 1 2 1 12

19

2
~  [16B.2]

4π 4π

2 1.08 D 3.336 10  C m D 1.602 10  C
     ~

1.113 10  J  C  m 300 10  m

     ~ 1.15 10  J

Q e
V

r r

µ µ
ε ε

− − −

− − − −

−

− = −

× × × × ×
−

× × ×

− ×

 

The interaction potential becomes a maximum upon flipping the dipole. This effectively changes the sign of the 
dipole in the previous calculation giving 
 19

max ~ 1.15 10  JV −×  
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The work w required to flip the dipole is the difference Vmax – Vmin. 

 
18

max min

3 1
m A

~ 2.30 10  J

~ 1.39 10  kJ mol

w V V

w w N

−

−

− = ×

= ×
 

 
16B.2(b) The two linear quadrupoles are shown in Fig. 16B.2 with a parallel configuration. 
 
Figure 16B.2 
 

      
 
In addition to the distance r between some of the point charges in one quadrupole and point charges in the other, 
the Pythagorean theorem provides the distances (r2 + l2)1/2 and (r2 + 4l2)1/2. The total potential energy of the 
interaction between the quadrupoles is: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2
1 1 1 1 1

0 1/2 1/2 1/22 2 2 2 2 2

2 2 2 2
1 1 1 1

1/2 1/2 1/22 2 2 2 2 2

0
2 1/2 1/22 2

1

2 2 4
4π

4

2 2
                                                  

4

2π 4 13      where     
1 1 4

Q Q Q Q QV
r rr l r l r l

Q Q Q Q
rr l r l r l

rV lx
rQ x x

ε

ε

= − + − +
+ + +

− + − +
+ + +

= − + =
+ +

 

With the point quadrupole condition that x << 1 the last two terms in the above expression can be expanded with 
the Taylor series: 

 
1/ 2 2 3 43 3 5 3 5 71 1 1 1

2 2 4 2 4 6 2 4 6 8
2 3 43 15 1051

2 8 48 384

(1 ) 1  

              1  

z z z z z

z z z z

−+ = − + − + −

= − + − + −





 

where z is either x2 or 4x2. 

 
{ } { }2 4 6 8 2 4 6 80 3 15 1051

2 8 48 3842
1

49
2

2π
3 4 1 1 2 6 20 70

           higher order terms

rV
x x x x x x x x

Q
x

ε
= − − + − + − + − + − + −

= − +

 

 

In the limit of small x values the higher order terms are negligibly small, thereby, leaving 

 
4 2 4 2

1 1
5

0 0

9 9
4π 4π
x Q l QV

r rε ε
= − = −  

Thus, 5

1V
r

∝  for the quadrupole-quadrupole interaction. See Discussion question 16B.2 and note that a 

quadrupole is n-pole array of charges with n = 3. So the above derivation demonstrates the general potential 

energy relation between an n-pole array and an m-pole array: 1 3 3 1 5

1 1 1
n mV

r r r+ − + −∝ = = . 

 

16B.3(b) ( )
( )

( )2 2
Ar Ar Ar Ar

London 6 6
Ar Ar

3 3
 [16B.8]

2 4
I I

V
I I r r

α α′ ′
= − = −

+
 

Q1
Q12Q1

r

Q1
Q12Q1

l l
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( ) ( )
( )

230 3 1

69

1

3 1.66 10  m 1520.4 kJ mol
         

4 1.0 10  m

         3.1 J mol

− −

−

−

× × ×
= −

× ×

=

 

 
16B.4(b) Using the partial charge presented in the table to the 
right, we estimate the partial charge on each hydrogen atom of a 
water molecule to be QH = δe where δ = 0.42. The 
electroneutrality of an H2O molecule implies that the estimated 
partial charge on the oxygen atom is QO = –2δe. With a hydrogen 
bond length of 170 pm, the point charge model of the hydrogen 
bond in a continuum of water estimates the potential of 
interaction to be 
 

( )

( )
( ) ( ) ( )

2
H O

0
219

21
12 1 2 1 12

2
 [16B.1]

4π 4π

2 0.42 1.60 10  C
  6.0 10  J

4π 80 8.85 10  J  C  m 170 10  m

r

eQ Q
V

r r
δ

ε ε ε
−

−
− − − −

= = −

× ×
= − = − ×

× × × ×

 
The molar energy required to break these bonds is 

 ( ) ( )23 1 21 1
m A 6.022 10  mol 6.0 10  J 3.6 kJ molE N V − − −= − = − × × − × =  

The model of point charges embedded within a continuum of water yields an estimate of the hydrogen bond 
strength that is well below the experimental value of about 20 kJ mol–1. The excessively low estimate has been 
caused by the assumption that water around the point charges behaves as a continuum of matter. This 
significantly overestimates the ability of the surrounding water molecules to modulate the point charge 
interaction. 
 
 
 

Solutions to problems 
 
16B.2 The positive end of the dipole will lie closer to the (negative) anion in the most energetically favourable 
orientation for which the anion will be on line with the dipole. Let the positive end of the dipole have a charge 
δe while the charge on the other end is −δe and the water dipole is defined by µ = δel. The electric field 
generated by a dipole at the distance r where r≫l is sum of the fields generated by these two charges. 

 

( ) ( )

( ) ( )
( ) ( ){ }

2 2

0 0

2 2 2
0

2
0

3
0

3
0

4π 4π2 2

1 1
4π 1 12 2

1 1   [Taylor series expansion with 1.]24π

2π

  [Electric field generated by a point dipole.]
2π

(1 85 D) (3 34 10

e e
l lr r

e
r l l

r r
e l l l

r r rr
el

r

r

δ δ

ε ε

δ
ε

δ
ε

δ
ε
µ
ε

−

= −
− +

 
 = − 
 − + 

= + − −

=

=

. × . ×
=



E

30 1 19 1 8 1

12 1 2 1 3 3 3

C m D ) 1 11 10 V m 1 11 10  Vm
2π (8 854 10 J C m ) ( m) ( nm)r r r

− − − −

− − −

. × . ×
= =

× . × × / /

 

(a) 8 11.1 10 V m when 1 0nmr−= × = .E  

  Partial charges in polypeptides 
(from Physical Chemistry; 
Atkins and de Paula,OUP, 9th ed. 2010) 
Atom Partial charge / e 
C(=O) +0.45 
C(−CO) +0.06 
H(−C) +0.02 
H(−N) +0.18 
H(−O) +0.42 
N −0.36 
O −0.38 
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(b) 
8 1

9 1
3

1 11 10 V m 4 10 V m for 0 3nm
0 3

r
−

−. ×
= = × = .

.
E  

(c) 
8 1

1
3

1 11 10 V m 4 kV m for 30nm
30

r
−

−. ×
= = = .E  

 
16B.4 (a) The energy of induced-dipole–induced-dipole interactions can be approximated by the London 
formula (eqn. 16B.8): 

 
2

1 2 1 2
6 6 6

1 2

3 3
2 4

I IC IV
r r I I r

α α α′ ′ ′= − = − = −
+

 

where the second equality uses the fact that the interaction is between two of the same molecule. For two phenyl 
groups, we have: 

 
29 3 2 19 1

26 1
9 6

3(1 04 10 m ) (5 0 eV) (1 602 10 J eV ) 1.8 10  J or 0.0096 J mol
4 (4.0 10 m)

V
− − −

− −
−

. × × . × . ×
= − = − × −

× ×
 

Comment. A distance of 0.40 nm, yields V = –9.6 kJ mol–1  
 
(b) The potential energy is everywhere negative. We can obtain the distance dependence of the force by taking 

 7

d 6
d
V CF
r r

= − = − .  

This force is everywhere attractive (i.e., it works against increasing the distance between interacting groups). 
The force approaches zero as the distance becomes very large ; there is no finite distance at which the 
dispersion force is zero. (Of course, if one takes into account repulsive forces, then the net force is zero at a 
distance at which the attractive and repulsive forces balance.) 
 
16B.6 By the law of cosines 2 2 2

O H O H O O O H O O2 cosr r r r r θ− − − −= + −


. Therefore, 

 ( )1/ 22 2
O H O H O O O H O O( ) 2 cosr f r r r rθ θ− − − −= = + −


 

 
( )

( )

2 22 2
O H O H O O O OA A

m O H
0 O H O H O O 0 O H O O

22
O OA

O H12
O H O O0

1
O H

O H

1 1
4π 4π ( )

1 1    
/ pm ( ) / pm / pm4π 10  m

1 1    139 MJ mol
/ pm (

N e N eV
r r r r f r

N e
r f r

r f

δ δ δ δ δ δ
δ δ

ε ε θ

δ
δ δ

θε

δ δ

− −

− − − −

−
−

− −

−

−

     = + + = + +    
     

   = + +  
×    

= × +



2
O O

O O) / pm / pmr
δ

θ
−

−

   +  
   

 

With δO = –0.83, δH = 0.45, rO–H = 95.7 pm, and rO–O = 200 pm we draw up a tabular computation of f(θ) and 
Vm(θ) over the range 0 ≤ θ ≤ 2π and plot Vm(θ) in Fig. 16B.3. As expected, the potential is a minimum when θ = 
0 because at that angle the hydrogen lies directly between the two oxygen atoms, which repel. 
 

    
 
 
 
 

θ  / deg θ  / radian f (θ ) V  / kJ/mol
0 0 104.30 -561

15 0.261799 110.38 -534
30 0.523599 126.52 -474
45 0.785398 148.63 -413
60 1.047198 173.26 -363
75 1.308997 198.12 -326
90 1.570796 221.72 -298
105 1.832596 243.04 -277
120 2.094395 261.34 -262
135 2.356194 276.09 -252
150 2.617994 286.90 -245
165 2.879793 293.49 -241
180 3.141593 295.70 -239
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Figure 16B.3 

    
16B.8 The number of molecules in a volume element dτ is d dN

V
τ τ= N . The energy of interaction of these 

molecules with one at a distance R is ( ) dV R τN . The total interaction energy, taking into account the entire 
sample volume, is therefore 

 ( ) d ( )d [ ( ) is the interaction energy not the volume]u V R V R V Rτ τ= = ,∫ ∫N N  
The total interaction energy of a sample of N molecules is ½Nu (the ½ is included to avoid double counting), 
and so the cohesive energy density is 

 2
1

2 1 1 d
2 2

( )U Nu
u

V V
V R τ

−
= − = = − = − ∫U N N  

For 6
6( )

C
V R

R
= −  and 2d 4π dR Rτ =  

 
2

2 6
6 4 3

d 2π2π
3d

CU RC
V R d

∞
− = = ×∫

N
N  

However, AN
M

ρ
=N , where M is the molar mass; therefore 

 ( )
2

6A
3

2π
3

CN
M d

ρ   = × ×   
   

U  

 
 
16C  Liquids 
 

Solutions to exercises 
 
16C.1(b) Calculate the vapour pressure of a spherical droplet of water of radius 20.0 nm at 35.0 °C. The vapour 
pressure of bulk water at that temperature is 5.623 kPa and its density is 994.0 kg m−3. 

 
1

3
m 3

18.02 g mol 18.13 cm
0.9940 g cm

MV
ρ

−

−= = =  

 ( )
( ) ( )

( ) ( ) ( )

m2 (l)/

3 1 6 3 1

9 1 1

*e   [16C.20, the Kelvin eqn]

2 72.75 10  N m 18.13 10  m  mol
  5.623 kPa exp

20.0 10  m 8.3145 J K  mol 308.15 K

  5.92 kPa

V rRTp p γ

− − − −

− − −

=

 × × × × = ×  
× × ×  

=

 

 
16C.2(b) The contact angle for water on clean glass is close to zero. Calculate the surface tension of water at 30 
°C given that at that temperature water climbs to a height of 9.11 cm in a clean glass capillary tube of internal 
diameter 0.320 mm. The density of water at 30 °C is 0.9956 g cm−3. 
 1

2   [16C.9]grhγ ρ=  

-600

-500

-400

-300

-200

0 90 180 270 360

θ  / deg

 V
m

 / 
kJ

 m
ol

-1
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( ) ( ) ( ) ( )3 2 3 21

2

2 1

  995.6 kg m 9.80665 m s 0.320 10  m 9.11 10  m

  0.1423 kg s 142 mN m

− − − −

− −

= × × × × × ×

= =
 

 
16C.3(b) Calculate the pressure differential of ethanol across the surface of a spherical droplet of radius 220 nm 
at 20 °C. The surface tension of ethanol at that temperature is 22.39 mN m−1. 

 in out
2  [16C.7, the Laplace eqn]p p
r
γ

− =  

 
( )3 1

9

5 2

2 22.39 10  N m
            

220 10  m
            2.04 10  N m 204 kPa

− −

−

−

× ×
=

×
= × =

 

Pressure differentials for small droplets are quite large. 
 
 
 
 
 
Integrated activities 
 

16.2 (a) 
12 6

0 04   [16B.14, Lennard Jones potential]
r r

V
r r

ε
     = − −    
     

 

The depth of the well in Joules is 23
e 1.51 10  JhcDε −= = × . 

The distance at which the potential is zero is given by 
 ( )1 6 1 6 1 6

e 0 0 e2 so 2 2 297 pm 265 pmr r r r/ − / − /= = = × = . 
A plot of the Lennard-Jones potential is shown in Figure I16.1. 
 

  
Figure I16.1 

(b) ( ){ }e
2

e e1 e   [12D.11, Morse potential energy]a r rV hcD hcD− × −= − −   

The constant ehcD−   has been added to the above expression for the Morse potential so that it has a minimum of 

e e at hcD r r− = . This makes it easy to compare the Morse potential with the Lennard−Jones potential of part (a), 

which also has a minimum of e e at hcD r r− = . Plots of both potentials are shown in Figure I16.1 with a = 
0.0579 pm−1 for the Morse potential. The Morse potential has a much steeper repulsive component at 
separations lower than re while the Lennard−Jones potential shows a longer-range attractive component. 
 
16.4 (a) Figure I16.2 displays electrostatic charges on the atoms of trans-N-methylacetamide as calculated with 
the DF/B3LYP/6-31G* method using Spartan '10 software. The dipole moment vector is shown in the figure 
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and it approximates points from the positive H atom at the C−H bond to the negative O atom. The calculated 
dipole moment is µ = 3.64 D. This agrees well with the experimental dipole moments at 25° of both acetamide 
(3.6 D, Handbook of Chemistry and Physics, 1991) and trans-N-methylacetamide in benzene solution (3.74 D, 
V.S. Rangra et al, Z. Naturforsch, 61a, 197, 2006). 
 

     
Figure I16.2 
The interaction energy of two parallel dipoles is given by eqn. 16B.4: 

 1 2
3

0

( )
 where  cos

4π
fV f
r

µ µ θ
θ θ2= ( ) = 1− 3

ε
 

where r is the distance between the dipoles and θ the angle between the direction of the dipoles and the line that 
joins them. A plot of the interaction angular dependence is shown in the following Mathcad Prime 2 worksheet. 
Note that V(θ) is at a minimum for θ = 0° and 180° while it is at a maximum for 90° and 270°. Furthermore the 
interaction is positive and repulsive both when 54.74° < θ < 125.26° and when 234.74° < θ < 305.26°. Outside 
these ranges the potential is negative and attractive. 

 

 

 
 
(b)  

 
The maximum of both the dipole-dipole repulsion and attraction at 3.0 nm are dwarfed by a hydrogen bond 
attraction that is typically 20 kJ mol−1 at about 200 pm. However, the typical hydrogen bond length is much 
shorter, so this may not be a fair comparison. 
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16.6 (a) Here’s a solution using MathCad Prime 2 to perform the bivariable linear model regression fit. 
Data: 

 
The function  polyfitc with n = 1 performs the linear fit. The function submatrix takes rows 0-3 and columns 0-2 
of polyfitc. 

 
Thus, the linear fit is: 

 
Value checks give reasonable agreement with the data: 

 
 
(b) For a group having the properties S = 4.84 and log A = 7.60, the linear structure-activity model of part (a) 
requires the following value of W if the group is to belong to the set of the data.

 ( )7.60 3.59 0.957 4.84
0.362

1.72

W
− + ×

=

= −

 

Clearly, the value S = 4.84 is very much out of the S data range as is the computed value of W (−1.72) so we 
expect that a group X, which has these structure values, does not linearly correlate with this data set. So the 
question becomes “Can we modify the model so that it meaningfully includes the new group?” Let’s try by 
adding the cross-term S×W to the linear model. Here’s the Prime 2 worksheet: 

 
This non-linear structure-activity model seems to adequately describe the groups of part (a) so we now calculate 
the W value, using a Mathcad Solve block, for what is an outlier group in the linear model. 

 
This is close to the other W values and it is possible that the cross-term has extended the applicability of the 
model. 
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17 Macromolecules and self-assembly 

17A  The structures of macromolecules 

 
Answers to discussion questions 

 
17A.2 The freely jointed random coil model of a polymer chain of ‘units’ or ‘residues’ gives the simplest 
possibility for the conformation of the polymer that is not capable of forming hydrogen bonds or any other type 
of non-linkage bond. In this model, a bond that links adjacent units in the chain is free to make any angle with 
respect to the preceding one (see text Figs. 17A.4 and 17A.5). We assume that the residues occupy zero volume, 
so different parts of the chain can occupy the same region of space. We also assume in the derivation of the 
expression for the probability of the ends of the chain being a distance nl apart, that the chain is compact in the 
sense that n << N. This model is obviously an oversimplification because a bond is actually constrained to a 
cone of angles around a direction defined by its neighbor and it is impossible for one section of a chain to 
overlap with another. Constrained angles and self-avoidance tend to swell the coil, so it is better to regard the 
Rrms and Rg values of a random coil as lower bounds to the actual values. 
 
The freely jointed chain is improved by constraining each successive individual bond to a single cone of angle θ 
relative to its neighbor. This constrained chain reduces Rrms and Rg values of a freely jointed random coil by a 
factor of F: 

 
1

21 cos   [17A.7]
1 cos

F θ
θ

− =  + 
 

The random coil model also ignores the role of the solvent: a poor solvent will tend to cause the coil to tighten; a 
good solvent does the opposite. Therefore, calculations based on this model are best regarded as lower bounds to 
the dimensions of a polymer in a good solvent and as an upper bound for a polymer in a poor solvent. The 
model is most reliable for a polymer in a bulk solid sample, where the coil is likely to have its natural 
dimensions. 
 
17A.4 The Corey–Pauling rules for the secondary structures of proteins describe the arrangement of atoms at 
each peptide link (see test Fig. 17A.10). They are: 
 
1. The four atoms of the peptide link lie in a relatively rigid plane. The planarity of the link is due to 
delocalization of π electrons over the O, C, and N atoms and the maintenance of maximum overlap of their p 
orbitals. 
 
2. The N, H, and O atoms of a hydrogen bond lie in a straight line (with displacements of H tolerated up to not 
more than 30° from the N–O direction). 
 
3. All NH and CO groups of the peptide links are engaged in hydrogen bonding. 
 
The rules are satisfied by both helical and sheet structures, for which hydrogen bonding link peptide groups 
located at separate positions in the primary chain of amino acid residues.  
 
 

Solutions to exercises 
 
17A.1(b) 1/2

rms
1/2[17A.4] (1200) (1.125 nm) 38.97 nmR N l= = × =  

 
17A.2(b) The repeating monomer unit of polypropylene is (─CH(CH3) ─CH2─) which has a molar mass of 42.1 
g mol–1. The number of repeating units, N, is therefore 

 
–1

polymer 3
–3 –1

monomer

174 kg mol 4.13  10
42.1  10  kg mol

M
N

M
= = = ×

×
 

 l = 2R(C─C) [Add half a bond-length on either side of monomer.] 
 ( ) ( )3 –10

c  [17A.3] 2 4.13 10 1.54 10  m 1.27 μmR Nl= = × × × × =  
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 ( ) ( )
11 22 3 –10

rms  [17A.4] 2 4.13 10 1.54 10  m 19.8 nmR N l= = × × × × =  
 
17A.3(b) For a one-dimensional random coil, the radius of gyration is 

 
2 2

g1/2 3
g

18.9 nm [17A.5]     so is number of links is     1.76 10
0.450 nm

R
R N l N

l
   = = = = ×   

  
 

 
17A.4(b) The repeating monomer unit of polyethylene is (─CH2─CH2─) which has a molar mass of 28 g mol–1. 
The number of repeating units, N, is therefore 

 1

1
polymer 3

monomer

85 000 g mol 3.04 10
28 g mol

M
N

M −

−

= = = ×  

 l = 2R(C─C) = 2 × 154 pm = 308 pm  [Add half a bond-length on either side of monomer.] 
In units of l the polymer ends are separated by the distance 

 
9 9

12

15 10  m 15 10  m 48.7
308 10  m

n
l

− −

−

× ×
= = =

×
 

Thus, 

 
( ) ( ){ }

1
2

2

1
22 3

/2

48.7 / 2 3.04 10 3
3

2 e   [17A.1]
π

2  e 9.8 10
π 3.04 10

n NP
N

−

− × × −

 =  
 

 = = × × × 

 

 
17A.5(b) The repeating monomer unit of polyethylene is (─CH2─CH2─) which has a molar mass of 28 g mol–1. 
The number of repeating units, N, is therefore 

 1

1
polymer 3

monomer

75 000 g mol 2.68 10
28 g mol

M
N

M −

−

= = = ×  

 l = 2R(C─C) = 2 × 154 pm = 308 pm  [Add half a bond-length on either side of monomer.] 
Thus, 

 

( ) ( )

1
2

1
2

2

7 1
23 12

3   [17A.2]
2

3  7.68 10  m
2 2.68 10 308 10  m

a
Nl

−

−

 =  
 

 
 = = ×
 × × × × 

 

The 14.00 nm to 14.10 nm range of distances between the polymer ends is very small so we estimate that the 
distribution function f(r) is the constant given by f(r) = f(14.05 nm). The probability that the polymer ends are in 
this range is 

 

( )

( ) ( ) ( ) ( )

2 2

2 27 1 9

3
2 –

1/2

37 1 2 – 7.68 10  m 14.05 10  m9 9
1/2

3

4π e   [17A.2]
π

7.68 10  m  4π 14.05 10  m e 14.1 14.00 10  m
π

  6.3 10

a raP f r r r r

− −−
× ×− −

−

 = ∆ = ∆ 
 

 ×
= × × × × − × 

 

= ×

 

 
17A.6(b) The radius of gyration for a constrained chain that has successive individual bonds constrained to a 
single cone of angle θ = 120º (i.e., cos θ = −½) is 

 
1/21/2 1

2
g,constrained coil g,random coil 1

2

1– cos 1     with      [17A.7] 3
1 cos 1

R R F F θ
θ

+  = = = =  + −   
 

The percentage change in the radius of gyration upon application of the constraint is 
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( )

( )

g,constrained coil g,random coil g,constrained coil

g,random coil g,random coil

100% 1 100% 1 100%

                                                  3 1 100%

                      

R R R
F

R R
   −

× = − × = − ×      
   

= − ×

                            73.21%= +

 

The percentage change in the volume upon application of the constraint is 

 

3 3
g,constrained coil g,random coilconstrained coil random coil

3
random coil g,random coil

g,constrained coil

g,random coil

100% 100%

                                               

R RV V
V R

R
R

 − −
× = ×       


= ( )

( )3
2

3

31 100% 1 100%

                                               3 1 100%

                                               419.6%

F
  − × = − ×      

= − ×

= +

 

 

17A.7(b) 
1

2
1

2
rms rms,random coil

2
  [17A.10]     where     1pl

R R F N lF F
l

 
= = = − 

 
 

Thus, the percentage increase in the root-mean-square separation when the polymer persistence length is 
changed from l to 0.025Rc with constant contour length is given by the expression 

 

( )

1
2

rms rms,random coil rms

rms,random coil rms,random coil

100% 1 100% 1 100%

2
                                     1 1 100%p

R R R
F

R R

l
l

   −
× = − × = − ×      

   
   = − − ×  
   

 

 

( )

( )

1
2

1
2

c2 0.025
                                     1 1 100%

2 0.025
                                     1 1 100%  [17A.3]

                                     0.

R
l

Nl
l

 ×  = − − ×  
   
 × ×  = − − ×  
   

= ( ){ }1
2050 1 1 100%

                                     600 % when 1000

N

N

− − ×

= + =

 

The percentage change in the volume as determined by the root-mean-square separation is 

 

( )
3

2

3 3
rms,random coil rms rms,random coil 3

3
rms,random coil rms,random coil

100% 100% 1 100%

2
                                   1 1 100%

                      

p

V V R R
F

V R

l
l

  − −
× = × = − ×     

   
   = − − ×  
   

( )

( )

( ){ }

3
2

3
2

3
2

c2 0.025
             1 1 100%

2 0.025
                                   1 1 100%  [17A.3]

                                   0.050 1 1 100%

             

R
l

Nl
l

N

 ×  = − − ×  
   
 × ×  = − − ×  
   

= − − ×

4                      3.42 10 % when 1000N= + × =
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17A.8(b) In analogy to eqn 17A.10 we assume the following relation for a three-dimensional partially rigid 
polymer. 

 
11 22

g g,random coil

2
     where     1

6
plNR R F lF F

l
  = = = −  

   
 

Solving for lp gives 

 
( )
( )

2
g
2

2
2

2

6
1

2

6 3000 pm164 pm  1 1.9 10  pm
2 1500 164 pm

p

Rll
Nl

  = + 
  

 × = + = × 
×  

 

 
 

Solutions to problems 
 
17A.2 The probability that the ends of a three-dimensional freely jointed chain lie in the range r to r + dr is 
f(r)dr where 

 ( ) 2 2
3 1/2

2
1/2 2

34π e              [17A.2]
π 2

a raf r r a
Nl

−   = =   
   

 

The mean nth power of the end-to-end separation is 

 ( )
0

dn nr r f r r
∞

= ∫  

(a) The square of the root mean square separation of the chain ends is 

 

( )

( ) ( )

2 2

1
2

1
2

1
2

1 12 2

2 2 2
rms 0

3
4

0

3 5
2 5 3

2 45

2
2

2

2
rms

d

       4π e d
π

       4π   where π   [standard integral]
2π

3 3 2       
2 32

a r

R r r f r r

a r r

a
a

Nl Nl
a

R r N l

∞

∞ −

= =

 =  
 

Γ = Γ = 
 

 
= = = 

 

= =

∫

∫

 

Note: The general form of the above standard integral is 

 
( )2 2

10

1 / 2
e d   where  is the gamma function found in math handbooks

2
m a r

m

m
r r

a
∞ −

+

Γ +  = Γ∫  

When N = 4000 and l = 154 pm, 1
2

rms 4000 154 pm 9.74 nmR = × =  
 
(b) The mean separation is 

 

( )

( ) ( )

2 2

1
2

1
2

1
2

1
2

mean 0
3

3

0

3

4

d

       4π e d
π

2
       4π   where 2 1  [standard integral]

2π

2 8       
3ππ

a r

R r rf r r

a r r

a
a

N l
a

∞

∞ −

= =

 =  
 

Γ = Γ = 
 

 = =  
 

∫

∫
 

When N = 4000 and l = 154 pm, 
1

2

mean
8 4000 154 pm 8.98 nm

3π
R × = = 
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(c) The most probable separation, R*, is the value of r for which f is a maximum, so set 
*

d 0
d r R

f
r =

 =
 and solve 

for R*. 

 ( ) 2 2
3

2 3
1/2

d 4π 2 2 e
d π

a rf a r a r
r

− = − 
 

 

Evaluation of the slope of f at r = R* shows that it is zero when 

 
( )

1
2

2 2

2
3

1 * 0
1*

a R

R N l
a

− =

= =
 

When N = 4000 and l = 154 pm, ( )
1

22
3* 4000 154 pm 7.95 nmR = × × =  

 
17A.4 There are two standard sums found in math handbooks that are used in the following derivation. They 
are: 

 ( ) ( )( )21 1
2 6

1 1
1      and     1 2 1

i i

j j
j i i j i i i

= =

= + = + +∑ ∑  

We begin with the following definition of the radius of gyration: 

 2 2 2
g

1 1
2

N N

ij
i j

N R R
= =

= ∑∑  

where 2
ijR  is the mean over all conformations of the separation between atoms i and j in a chain of identical 

atoms linked with the bond length l. In fact, 2
ijR is identical to the end separation of a chain of |i – j| atoms 

and, consequently, 2 2
ijR i j l= − . 

 2 2 2
g

1 1
2 /

N N

i j
N R l i j

= =

= −∑∑  

We now break the inner summation of absolute values into two separate summations of positive terms. 

 
( ) ( )2 2 2

g
1 1 1

1 1 1 1 1

2 /

               1 1

N i N

i j j i

N i i N N

i j j j i j i

N R l i j j i

i j j i

= = = +

= = = = + = +

 
= − + − 

 
 

= − + − 
 

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
 

 
( ) ( )

( ) ( ) ( ) ( ){ }

2 1
2

1 1 1

2 1 1 1
2 2 2

1

               1

               1 1 1

N N i

i j j

N

i

i i i j j i N i

i i i N N i i i N i

= = =

=

 
= − + + − − − 

 

= − + + + − + − −

∑ ∑ ∑

∑
 

 

( ) ( ){ }

( ) ( )

( )( ) ( ) ( )

2 1
2

1

2 1
2

1 1 1
2 21 1 1

6 2 2

               1 1

               1 1 1

               1 2 1 1 1

N

i
N N N

i i i

i i N N N

i N i N N

N N N N N N N

=

= = =

= − + + +

= − + + +

= + + − + + +

∑

∑ ∑ ∑  

Since N >> 1, N + 1 effectively equals N. 

 
2 2 2 3 3 3 31 1 1 1

3 2 2 3g

2 21
6 6g g

2 /

     or     ,  which confirms eqn 17A.6N

N R l N N N N

R Nl R l

= − + =

= =
 

 
17A.6 A simple procedure is to generate numbers in the range 1 to 8, and to step north for a 1 or 2, east for 3 or 
4, south for 5 or 6, and west for 7 or 8 on a uniform grid. Alternatively, the random number generator rnd(1), 
which gives a random number between 0 and 1, can be used to generate the random steps. Can you follow the 
following Mathcad Prime 2 program logic for constructing a two-dimensional walk? If you recreate the program 
notice that each recalculation produces a new path for the walk because of the use of random numbers; also, 
explore the effect of changing the value of N upon the plot. Notice that the random nature of the walk tends to 
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severely restrict expansion of Rrms by favoring back and forth, up and down motions that pretty much keep the 
walker in the same local region for many steps. Roughly, the rms end-to-end separations would appear to vary 
as N1/2. Can you rewrite the program so that each step occurs at a random angle to the x-axis at a constant length 
of 1? 
 

 

 

 

 
 
17A.8 The definition of radius of gyration is 

 
1/2

2
g

1 1
2 ij

ij

R
N
 

=   
 
∑R   

So, 2 2 2 2
g

1 1

2
N N

ij ij
ij i j

N R R R
= =

= =∑ ∑∑  

The scalar quantity Rij can be written as the dot product Rij · Rij .  If we refer all our measurements to a common 
origin (which we will later specify as the center of mass), the interatomic vectors Rij can be expressed in terms 
of vectors from the origin:  Rij = Rj – Ri . Therefore, 

17:6 



 

2
g 2

2 2
2 2

1 ( ) ( )
2

1 1( 2 ) ( 2 )
2 2

j i j i
i j

j j j j i j j i i j
i j i j

R
N

R R
N N

= − ⋅ −

= ⋅ + ⋅ − ⋅ = + − ⋅

∑∑

∑∑ ∑∑

R R R R

R R R R R R R R
 

Look at the sums over the squared terms: 

   
Rj

2

j
∑

i
∑ = Ri

2

j
∑

i
∑ = N Rj

2

j
∑

 

Hence 2 2 2
g 2 2

1 1 1 1
j i j j i j

j i j j i j

R R R
N NN N

= − ⋅ = − ⋅∑ ∑∑ ∑ ∑ ∑R R R R  

If we choose the origin of our coordinate system to be the center of mass, then  

 0i j
i j

= =∑ ∑R R  and 2 2
g

1
j

j

R R
N

= ∑  

for the center of mass is the point in the center of the distribution such that all vectors from that point to 
identical individual masses sum to zero. 
 
 
 
 
17B  Properties of macromolecules 
 
 

Answers to discussion questions 
 
17B.2 As illustrated in the stress–strain curve of text Fig. 17B.2, the stress-strain region of elastic deformation 
is where the strain is proportional to the stress and is reversible: when the stress is removed, the sample returns 
to its initial shape. At the yield point, the reversible, linear deformation gives way to plastic deformation, 
where the strain is no longer linearly proportional to the stress and the initial shape of the sample is not 
recovered when the stress is removed. 
 
17B.4 Conducting polymers have extensively conjugated double bond networks that permit electron 
conduction along the polymer chain. The delocalized π bonds contribute to electrical conductivity by allowing 
electrons can move up and down the polymer chain. One conducting polymer, polyacetylene, exhibits 
conductivity increases when it is partially oxidized by I2 and other strong oxidants. The oxidation product is a 
polaron, a partially localized cation radical that travels virtually (by exchanging its identity with a neighbour) 
through the chain (see text Fig. 17B.7). Further oxidation of the polymer forms either bipolarons, a di-cation 
that moves virtually as a unit through the chain, or solitons, two separate cation radicals that move 
independently. 
 
 
 

Solutions to exercises 
 
17B.1(b) We obtain (see exercise 17A.4(b)) 33.04 10N = ×  and l = 308 pm. In units of l the polymer ends are 
moved apart by the distance 

 
9 9

12

2.0 10  m 2.0 10  m 6.49
308 10  m

n
l

− −

−

× ×
= = =

×
 

Thus, the molar change in conformational entropy arising from the stretch is 

 ( ) ( ) ( ) ( ){ }
1 1 3 31

2

1.00213 0.997871 1 31
2

1 1

ln{(1 ) (1 ) }  [17B.1]     with    / 6.49 / 3.04 10 2.13 10

    8.3145 J mol  K 3.04 10 ln 1.00213 0.99787

    57 mJ mol  K

S RN n Nν νν ν ν+ − −

− −

− −

∆ = − + − = = × = ×

= − × × × × ×

= −

 

  
17B.2(b) Each polyethene chain bond has a length l = 154 pm = 0.154 nm and the number N chain bonds is the 
polymer molar mass divided by the molar mass of the repeating CH2 unit. 
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2

1

1
polymer 3

CH

85 000 g mol 6.07 10
14 g mol

M
N

M −

−

= = = ×   

The restore forcing of a freely jointed chain is 

 1ln /   [17B.2a]
2 1–
kT n N

l
ν ν
ν

+ = = 
 

F
 

n is the displacement from equilibrium in units of l so 

 
( ) ( ) 3

3

2.0 nm / 0.154 nm
2.14 10

6.07 10
n
N

ν −= = = ×
×

 

Since ν << 1, we use the simplified form of eqn 17B.2a. 

 ( ) ( ) ( )3 23 1
14

12

  [17B.2b]

2.14 10 1.381 10  J K 298.15 K
  5.7 10  N

154 10  m

nkT
Nl

− − −
−

−

=

× × × ×
= = ×

×

F

 

 
 
 

Solutions to problems 
 
17B.2 On the assumption that the tension, t, required to keep a sample at a constant length is proportional to the 
temperature (t = aT, the analogue of p ∝ T), show that the tension can be ascribed to the dependence of the 
entropy on the length of the sample. Account for this result in terms of the molecular nature of the sample. 
Consider the thermodynamic description of stretching rubber. The observables are the tension, t, and the sample 
length l. Because dw = tdl, the basic equation is dU = TdS + tdl. This is analogous to the basic equation with pV 
work alone (dU = TdS − pdV) with the transformations p→−t and V→l. This suggests that we apply the 

transformation to the Maxwell relation   [Table 3D.1]
V T

p S
T V
∂ ∂   =   ∂ ∂   

 for pV work in order to acquire an 

expression that relates l and S. It is 

  
l T

t S
T l
∂ ∂   − =   ∂ ∂   

 

Since dU = TdS + tdl, t = aT (given), and 
l

ta
T
∂ =  ∂ 

, 

 0
T T l

U S tT t T t Ta t t t
l l T

∂ ∂ ∂     = + = − + =− + = − + =     ∂ ∂ ∂     
 

Thus, the internal energy is independent of the extension and 

 
l T

t St aT T T
T l
∂ ∂   = = = −   ∂ ∂   

 

This shows that tension is a measure of the dependence of entropy on the length of the sample. Sample 
extension reduces the disorder of the chains, and they tend to revert to their disorderly (non-extended) state. 
 
 
 
 
17C  Self-assembly 
 
 

Answers to discussion questions 
 
17C.2 The formation of micelles is favored by the interaction between hydrocarbon tails and is opposed by 
charge repulsion of the polar groups which are placed close together at the micelle surface. As salt concentration 
is increased, the repulsion of head groups is reduced because their charges are partly shielded by the ions of the 
salt. This favors micelle formation causing the micelles to be larger and the critical micelle concentration to be 
smaller. 
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Solutions to exercises 
 
17C.1(b) v/(μm s–1) = a + b(pH) + c(pH)2 with a = 0.80, b = –4.0 × 10–3, and c = –5.0 × 10–2  
At the isoelectric point the pH is such that there is no net charge on the macromolecule, thereby, eliminating the 
normal protein velocity caused by an electric field. The following Mathcad Prime 2 worksheet sets the above 
speed expression equal to zero and numerically solves for the pH. 

 
The negative value is non-physical so we conclude that the isoelectric point occurs at a pH of 3.96. 
 
 
 
17D Determination of size and shape 
 
 

Answers to discussion questions 
 
17D.2 Polymers are unlike small molecules in that all small molecules of the same species have nearly identical 
masses with variations caused by a distribution of isotopes. Polymers, however, vary widely in mass because 
they can vary in the number of monomeric units they contain. Depending on how a polymer mixture is 
synthesized and purified, it is entirely possible for one macromolecule to contain 1000 monomer units and 
another 1500. We call a polymer sample polydisperse if there is a large variation in mass among the molecules 
of the sample; conversely, a sample is monodisperse if its range of masses is narrow.  
 
The various experimental methods for measuring the average molar mass of a polymer mixture (such as mass 
spectrometry, light scattering, osmometry, and viscosity) yield similar results for a monodisperse polymer 
solution. But the measurements can show great variation for a polydisperse  polymer mixture. The differences in 
averages are in the weighting factors. The weighting factor for nM  is the number of molecules that have a 
particular mass and the weighting factor in wM  is the mass fraction of a sample that has a particular mass. 
Different measurement techniques yield different weighting factors because they are sensitive to different 
factors. The intensity of a mass spectrometry peak, for instance, is proportional to the number of molecules of a 
given mass. Some techniques, like light scattering, are more sensitive to the size (volume) and shape of 
particles, and some, like sedimentation, are more sensitive to the mass. Discussions in the text reveal, however, 
that the measurements capture a complicated function of size, shape, mass, and number. Osmometry, measuring 
a colligative property, is sensitive to the number of molecules Ni that have molar mass Mi . Consequently, 
average osmotic properties depend upon the number average molar mass. Light scattering depends upon 
molecular size and shape, which indirectly depend upon mass, so weight average molar mass becomes 
important. Other mass averages become important when the technique is sensitive to intermolecular attractions 
and repulsions, molecular entanglements, gravitational and centrifuge effects. 
 
 
 
 

Solutions to exercises 
 
17D.1(b) Equal amounts imply equal numbers of molecules.  Hence the number-average is (eqn 17D.1) 
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( )

1

1 1

1 2 2 1 1 2 2
n

1
5     3 62 2 78  kg mol 68 kg mol  

N M N M n M n MM
N n

− −

+ +
= =

= × + × =
 

and the weight-average is (eqns 17D.2a and b) 

 1

1 1

2 2
1 1 2 2 1 1 2 2

w
1 2 2

2 23 62 2 78      kg mol 69 kg mol  
3 62 2 78

m M m M n M n MM
m n M n M

− −

+ +
= =

+

× + ×
= =

× + ×

 

  
17D.2(b) (i) Osmometry gives the number-average molar mass, so 

 

1 1

1 2
1 2

1 21 1 2 2 1 1 2 2 1 2
n

1 2 1 2 1 2 1 2

1 2 1 2

 [17D.1]  

100 g [assume 100 g of solution] 8.8 kg m
25 g 75 g

22 kg mol 7.33 kg mol

m mM M
M MN M N M n M n M m mM

N N n n m m m m
M M M M

− −

   
+   

+ + +   = = = =
+ +        

+ +       
       

= =
   

+   
   

1ol  −

 

(ii) Light-scattering gives the mass-average molar mass, so 

 1 11 1 2 2
w

1 2 

 (25) (22) + (75) (7.33)=  kg mol 11 kg mol   
100

m M m MM
m m

− −+ × ×
= =

+
 

 
17D.3(b) Since the two spherical particles have different radii and different densities, their buoyancy b must be 
considered. The buoyancy is 

 s s

s

1   [17D.8] 1 /
where  and  are solution and solute particle densities, respectively. 
b ρυ ρ ρ

ρ ρ
= − = −

 

Their effective masses are proportional to both b and the particle mass. The solute particle mass equals its 
volume multiplied by its density ρs so, since the solute particle has radius a, the particle mass is proportional to 
a3ρs. Therefore, 
 3

eff sm ba ρ∝  
According to eqn 17D.12, the Stoke’s frictional coefficient is proportional to a and eqn 17D.9 indicates that the 
sedimentation rate s is proportional to the effective mass and inversely proportional to the frictional coefficient. 
Thus, 

 

( )

3
s

2
s

2
s

  

  

ba
s

a
ba

a

ρ

ρ

ρ ρ

∝

∝

∝ −

 

The constant of proportionality cancels when taking ratios so the relative rates of sedimentation of the two 
different particles is 

 

( )

2

2 2 2

1 1 1

21.10 0.794   8.4 56
1.18 0.794

s a
s a

ρ ρ
ρ ρ

   −
= ×   −   

− = × = − 

 

 

17D.4(b) A A
n

s

 [17D.11]  [17D.8]
1

SfN SfNM
b ρυ

= =
−

 

Assuming that the solution density equals that of water at 298 K (0.9969 g cm−3) and substitution of the 
Stokes−Einstein relation, f = kT/D [19B.19a], gives 
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( )
( ) ( )( ) ( )
( ) ( ){ } ( )

n
s

13 1 1 1

3 4 3 1 11 2 1

1

1

7.46 Sv 10  s Sv 8.3145 J mol  K 298.15 K
   

1 996.9 kg m 8.01 10  m  kg 7.72 10  m  s

   119 kg mol

SRTM
Dρυ

− − − −

− − − − −

−

=
−

× ×
=

− × × × ×

=

 

 
17D.5(b) The net force acting upon the settling particle equals zero because of the balance between the 
gravitation pull, meffg, and the frictional force, fs where s is the drift speed and the frictional coefficient is given 
by Stokes’s relation f = 6πaη [17D.12] for a particle of radius a. Thus, 

 
( ) ( ){ }

( )

eff

34
3s seff

2
s

1 / π
  [17D.8 and 17D.12]

6π
2

 
9

fs m g

a gm g bmgs
f f a

a g

ρ ρ ρ

η
ρ ρ

η

=

− × ×
= = =

−
=

 

 
( ) ( ) ( )

( )

23 3 6 2

4 1 1

1

2 1250 kg m 1000 kg m 15.5 10  m 9.8067 m s
 

9 8.9 10  kg m  s

 0.15 mm s

− − − −

− − −

−

× − × × ×
=

× ×

=

 

 

17D.6(b) A A
n

s

 [17D.11]  [17D.8]
1

SfN SfNM
b ρυ

= =
−

 

Substitution of the Stokes−Einstein relation, f = kT/D [19B.19a], gives 

 

( )
( ) ( )( ) ( )

( ) ( ){ } ( )

n
s

13 1 1 1

3 3 1 11 2 1

1

1

5.1 Sv 10  s Sv 8.3145 J mol  K 293.15 K
   

1 0.997 g cm 0.721 cm  g 7.9 10  m  s

   56 kg mol

SRTM
Dρυ

− − − −

− − − −

−

=
−

× ×
=

− × × ×

=

 

 
17D.7(b) The number of solute molecules with energy E is proportional to e–E/kT, hence 
 / 2 21

eff2e whereE kTc N E m r−∝ ∝ = ω  

Therefore,
2 2 / 2

eff Ae  [ , ]Mb r RTc m bm M mNω∝ = =  and 

 
2 2

sln   const. +         [ 1 ] 
2

Mb rc b
RT
ω ρυ= = −  

This expression indicates that the slope of a plot of ln c against r2 is equal to 2 / 2Mb RTω . Therefore 

 

( ) ( ) ( )
( ) ( ){ } ( )

1

1 1 4 2

2 23 4 3 1 1

3

2 8.3145 J K  mol 293 K 821 10  m2 slope

1 997 kg m 7.2 10  m  kg 2π 1080 s

3.1 10  kg mol  

RTM
b

−

− − −

− − − −

× × × ××
= =

− × × × ×

= ×

ω  

 
 
 

Solutions to problems 
 
17D.2 The peaks are separated by 104 g mol−1, so this is the molar mass of the repeating unit of the polymer. 
This peak separation is consistent with the identification of the polymer as polystyrene, for the repeating group 
of 2 6 5CH CH(C H )  (8 C atoms and 8 H atoms) has a molar mass of 8 × (12 + 1) g mol−1 = 104 g mol−1. A 
consistent difference between peaks suggests a pure system and points away from different numbers of subunits 
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of different molecular weight (such as the t-butyl initiators) being incorporated into the polymer molecules. The 
most intense peak has a molar mass equal to that of n repeating groups plus that of a silver cation plus that of 
terminal groups: 
 
 +(peak) (repeat) + (Ag ) (terminal)M nM M M= +  
 
If both ends of the polymer have terminal t-butyl groups, then 
 
 1 1(terminal) 2 ( -butyl) 2(4 12 9) g mol 114 g molM M t − −= = × + =  
 

and 
+(peak) (Ag ) (terminal) 25578 108 114 244

(repeat) 104
M M Mn

M
− − − −

= = =  

 

17D.4 
  
S =

s
rω 2  [17D.10] 

Since d
d
rs
t

= , 1 d d ln
d d

s r r
r r t t
= =  

Thus, if we plot ln r against t, the slope gives S through 

 
  
S =

1
ω 2

d ln r
dt

 

The data are as follows. 
 

t/min 15.5 29.1 36.4 58.2 
r/cm 5.05 5.09 5.12 5.19 
ln(r/cm) 1.619 1.627 1.633 1.647 

 
The points are plotted in Fig. 17D.1. 
 
Figure 17D.1 

 
The least-squares slope is 6.62 × 10–4 min–1, so 

 
4

4 1
4 1

13
2 2

1 min(6.62 10  min )
6.62 10  min 60 s 4.97 10  s or  5.0 Sv

4.5 102π
60 s

S

− −
− −

−

 × × ×  = = = ×
 ×

× 
 

ω
 

 
17D.6 Rearrange eqn 17D.14 to yield 
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2 2

wln const.
2

M b r
c

RT
ω

= + , 

which shows that a plot of ln c against r2 should be a straight line of slope 2
w / 2M b RTω  from which we find 

that w 2

2RT slopeM
bω
×

= . We construct the following table and prepare the plot shown in Figure 17D.2. 

 
r/cm 5.0 5.1 5.2 5.3 5.4 
c/(mg cm−3) 0.536 0.284 0.148 0.077 0.039 
r2/(cm2) 25.0 26.0 27.0 28.1 29.2 
ln(c/mg cm−3) −0.624 −1.259 −1.911 −2.564 −3.244 

 
Figure 17D.2 

 
The plot of Figure 17D.2 is seen to be linear and a linear regression fit of the data gives a slope equal to −0.623 
cm−2. Therefore 

 

( )
( ) ( ) ( )
( ) ( ){ } ( )

w 2 2
s

1 1 4 2

23 3 1 1

1

2 2   [17D.8]
1

2 8.3145 J K  mol 293 K 0.623 10  m
      

1 1.001 g cm 1.112 cm  g 2 322 s

      65.6 kg mol

RT slope RT slopeM
bω ρυ ω

π

− − −

− − −

−

× ×
= =

−

× × × − ×
=

− × × ×

=

 

 

17D.8 
  
S =

s
rω 2  [17D.10] 

Since 
  
s = dr

dt
, s

r
=

1
r

dr
dt

=
d ln r

dt
 

and if we plot ln r against t, the slope gives S through 

 
  
S =

1
ω 2

d ln r
dt

 

We prepare the following table and plot the points as shown in Figure 17D.3. 
 
  
 
 
 
 

t/s 0 300 600 900 1200 1500 1800 
r/cm 6.127 6.153 6.179 6.206 6.232 6.258 6.284 
ln(r/cm) 1.813 1.817 1.821 1.826 1.830 1.834 1.838 
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Figure 17D.3 
 
Figure 17D.3 shows that the plot is linear with a regression slope of 1.48 × 10−5 s−1. Thus, 

 
( )5 1

13
23

1.48 10  s
 5.40 10  s    or     5.40 Sv

50 102π
60 s

S
− −

−
×

= = ×
 ×

× 
 

 

 A A
n

s

 [17D.11]  [17D.8]
1

SfN SfNM
b ρυ

= =
−

 

Substitution of the Stokes−Einstein relation, f = kT/D [19B.19a], gives 
 

 

( )
( ) ( )( ) ( )
( ) ( ){ } ( )

n
s

13 1 1 1

3 3 3 1 11 2 1

1

1

5.40 Sv 10  s Sv 8.3145 J mol  K 293.15 K
   

1 998.1 kg m 0.728 10  m  kg 7.62 10  m  s

   63.2 kg mol

SRTM
D

− − − −

− − − − −

−

=
−

× ×
=

− × × × ×

=

ρυ

 

Information about the molecular geometry is inferred by calculation of the ratio of the actual frictional 
coefficient, f, of the macromolecule to that of the frictional coefficient, f0, of a sphere of the same volume. 
Interpolation between ratios given in Table 17D.2 provides dimensions of the molecular ellipsoid. 

 ( )–23 –1
–11 –1

–11 2 –1

(1.381  10  J K ) 293 K
5.31  10  kg s

7.62 10  m  s
kTf
D

× ×
= = = ×

×
 

 Vm = (0.728 cm3 g−1) × (63.2 × 103 g mol−1) = 46.0 × 103 cm3 mol−1 = 4.60 × 10−2 m3 mol−1 
Then, the effective sphere radius is 

 
( )
( )

1/ 31/ 3 2 3 –1
m

23 –1
A

3 4.60 10  m  mol3
2.63 nm

4π 4π 6.022 10  mol
Va
N

− × ×   = = =   × ×   
 

 f0 = 6πaη = 6π × (2.63 × 10−9 m) × (1.00 × 10−3 kg m−1 s−1) = 4.96 × 10−11 kg s−1 
Thus, 

 
0

5.31 1.07
4.96

f
f
= =  

 Interpolation for the Table 17D.2 value of 1.07 reveals that the a/b ellipsoidal ratio of major-minor axes is 
about 2.3 for both the prolate and oblate ellipsoids. So it appears that the protein is an ellipsoid with a/b = 2.3. 
We cannot, however, determine whether it is a prolate or an oblate ellipsoid.  
 
17D.10 We need to determine the intrinsic viscosity, [η], from a plot of ((η/η0) − 1)/(c/(g dm−3)) against c, 
extrapolated to c = 0 as in Example 17D.5. Then from the relation 

 v
v 3 1 3 1 1

[ ][ ]  [17D.18]  or   in conventional units
cm  g cm  g  g mol

a

a MKKM ηη − − −

  
= = ×       

 

17:14 



with K and a from Table 17D.3, the viscosity average molar mass vM  may be calculated. η/η0 values are 
determined from the times of flow using the relation 

 
0 0 0 0

[17D.17]t t
t t

η ρ
η ρ

= × ≈  

noting that in the limit as c approaches 0 the approximation becomes exact.  
 
As explored in Self-test 178D.5, [η] can also be determined from the limit of (1/c) ln (η/η0) as c approaches 0. 
To see this, we note that, when η ≅  η0, 

 0 0

0 0 0 0

ln ln 1 1
η η η ηη η

η η η η
 − −

= + = = − 
 

 

The above relationship is exact in the limit that η coincides with η0, which is true when c = 0. Hence, [η] can 
also be defined as the limit of (1/c)ln(η/η0) as c → 0. We use both methods to determine the intrinsic viscosity 
and, thereby, show that they give identical results. 
 
We draw up the following table and plot the points as shown in Figure 17D.4. 
 
 

c / g dm–3 0.000 2.22 5.00 8.00 10.00 
t / s 208.2 248.1 303.4 371.8 421.3 
η / η0 — 1.192 1.457 1.786 2.024 

[ ]0
3

100 ( / ) –1
/ g dmc
η η

−  — 8.63 9.15 9.82 10.24 

ln(η / η0) — 0.1753 0.3766 0.5799 0.7048 
0

–3

100 ln( / )
/ g dmc

η η
 — 7.89 7.52 7.24 7.05 

 
Figure 17D.4 

  
The intercept of Figure 17D.4 as determined from the simultaneous extrapolation of both plots is 8.22. Hence 

 ( ) ( )33 1 1 3 1[ ] 8.22 0.01 dm  g 10 cm dm 82.2 cm  gη − − −= × × =  

 [ ] 1/ 1/0.743 –1
1 5 1

v –3 3 –1

82.2 cm  g g mol 2.1 10  g mol
9.5 10  cm  g

a

M
K
η − −   

= = = ×   ×  
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Integrated activities 
 
 
 
17.2 Given that G = U − TS − tl and dU = TdS + tdl, we take the differential, obtaining 
 dG = dU − TdS − SdT − ldt − tdl 
       = TdS + tdl − TdS − SdT − ldt − tdl = – d  – dS T l t  
Since A = U − TS, we have A = G + tl, so 
 dA = dG + tdl + ldt = −SdT − ldt + tdl + ldt = – d   dS T t l+  
Since dA and dG are both exact differentials, the above differential give use the Maxwell relations 

 tTlT T
l

t
S

T
t

l
S








∂
∂

=






∂
∂








∂
∂

−=






∂
∂ and

 
Since dU = TdS + tdl [given], 

 
above]relation  [Maxwellt

T
tTt

l
ST

l
U

lTT
+







∂
∂

−=+






∂
∂

=






∂
∂

 
 
17.4 With concentration c in g dm−3 the osmotic pressure equation can be written in the form 

 
2c cΠ RT B

M M
   = + × +  

   
  

where B is the osmotic virial coefficient in dm3 mol−1. The osmotic virial coefficient arises largely from the 
effect of excluded volume. If we imagine a solution of a macromolecule being built by the successive addition 
of macromolecules of effective radius a to the solvent, each one being excluded by the ones that preceded it, 
then B is the excluded volume per mole of molecules. The volume of a molecule 34

3mol πv a=  but the excluded 
volume is determined by the smallest distance possible between centers of two molecules, which is 2a, so the 
excluded volume is 34

3 molπ(2 ) 8a v=  for a pair of molecules. The volume excluded per molecule is one-half this 
volume or mol4v . Thus, for an effective radius of g g0.85a R Rγ= =  the osmotic virial coefficient is 

 3 3 3
A mol A A

16π 16π4
3 3 gB N v N a N R= = = γ  

(a) 
1/2

gFor a freely jointed chain: [17A.6]
6
NR l =  

 
 

 

( )

( ) ( ){ }

3
2

3
2

3
A

323 1 12

3 1

16π
3 6

16π 4000  6.022 10  mol 0.85 154 10  m
3 6

  0.38 m  mol

NB N l

− −

−

 =  
 

 = × × × × × 
 

=

γ

 

(b) 
1/2

gFor a chain with tetrahedral bond angles: [17A.8]
3
NR l =  

 
 

 

( )

( ) ( ){ }

3
2

3
2

3
A

323 1 12

3 1

16π
3 3

16π 4000  6.022 10  mol 0.85 154 10  m
3 3

  1.1 m  mol

NB N l

− −

−

 =  
 

 = × × × × × 
 

=

γ
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18         Solids 

18A      Crystal structure 
 

Answers to discussion questions 
 
18A.2 Lattice planes are labeled by their Miller indices h, k, and l, where h, k, and l refer respectively to the 
reciprocals of the smallest intersection distances (in units of the lengths of the unit cell, a, b and c) of the plane 
along the a, b, and c axes, which may be non-orthogonal. 
 
18A.4 The atomic scattering factor, f, describes the dependence of the magnitude of an atom's scattering of  

 X-rays upon the scattering angle θ: ( ) 2

0

sin 4π4π d      where     sin   [18A.3]krf r r r k
kr

ρ θ
λ

∞

= =∫  

The dependence upon the electron distribution in the atom, ρ(r), means that heavy atoms give rise to stronger 
scattering than light atoms. Furthermore, since the electron distribution used to calculate the scattering factor 
shows no angular dependence, the scattering factor is a spherical distribution estimate that ignores the influence 
on scattering of partially filled valence p and d subshells. It is shown in Justification 18A.2 that the scattering 
factor equals the total number of atomic, or ionic, electrons in the forward direction of scattering . It is smaller in 
non-forward directions. When comparing isoelectronic atoms and ions, the less diffuse species (greater ρ(r)) 
exhibits greater scattering. 
 
18A.6 The structure factor Fhkl is the sum over all j atoms of terms each of which has a scattering factor fj: 
 ( ) ( ) ( )ie      where     2π   [18A.4]hkl j

hkl j hkl j j j
j

F f j hx ky lzφ φ= = + +∑  

The importance of the structure factor to the X-ray crystallographic method of structure determination is its 
relationship to the electron density distribution, ρ(r), within the crystal: 

 ( ) ( )2πi1 e   [18A.5]hx ky lz
hkl

hkl
F

V
ρ − + += ∑r  

Eqn 18A.5 reveals that if the structure factors for the lattice planes can be measured then the electron density 
distribution can be calculated by performing the indicated sum. Therein lays the phase problem. Measurement 
detectors yield only the intensity of scattered radiation, which is proportional to |Fhkl|2, and give no direct 
information about Fhkl. To see this, consider the structure factor form ie hkl

hkl hklF F α=  where αhkl is the phase of 
the hkl reflection plane. Then, 
  { } { }2 i i i ie e e ehkl hkl hkl hkl

hkl hkl hkl hkl hkl hkl hklF F F F F F Fα α α α∗ −= = × = ×   
and we see that all information about the phase is lost in an intensity measurement. It seems impossible to 
perform the sum of eqn 18A.5 since we do not have the important factor ie hklα . Crystallographers have 
developed numerous methods to resolve the phase problem. In the Patterson synthesis, X-ray diffraction spot 
intensities are used to acquire separation and relative orientations of atom pairs. Another method uses the 
dominance of heavy atom scattering to deduce phase. Heavy atom replacement may be necessary for this type 
of application. Direct methods dominate modern X-ray diffraction analysis. These methods use statistical 
techniques, and the considerable computational capacity of the modern computer, to compute the probabilities 
that the phases have a particular value. 
 
 
 

Solutions to exercises 
 
18A.1(b) The volume of an orthorhombic unit cell is 

 
38

22 3
10 1 3

3 86 10 pm(589pm) (822pm) (798pm) 3 86 10 cm
(10 pm cm )

V abc −
−

. ×
= = × × = = . ×  

The mass per formula unit is 

 
1

22
23 1

135 01 g mol 2 2419 10 g
6 02214 10 mol

m
−

−
−

.
= = . ×

. ×
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The density is related to the mass m per formula unit, the volume V of the unit cell, and the number N of formula 
units per unit cell as follows 

 
3 22 3

22

(2 9 g cm ) (3 86 10 cm )so 5
2 24 10 g

Nm dVd N
V m

− −

−

. × . ×
= = = =

. ×
 

A more accurate density, then, is 

 
22

3
22 3

5(2 24 10 g) 2.90 g cm
3 86 10 cm

d
−

−
−

. ×
= =

. ×
 

 
18A.2(b) When the axes intersections are (–a,2b,–c) and (a,4b,–4c), the Miller indices of the planes are ( )212  

and ( )411 . Simply take the inverse of the intersection multiple and clear fractions to find these planes. 
 

18A.3(b) For the cubic unit cell: 
( )1/22 2 2

  [18A.1b]hkl
ad

h k l
=

+ +
 

 
( ) ( )123 1/ 2 1/ 22 2 2

712 pm 190 ppm
141 2 3

ad = = =
+ +

 

 
( ) ( )222 1/ 2 1/ 22 2 2

712 pm 206 ppm
122 2 2

ad = = =
+ +

 

 
( ) ( )246 1/ 2 1/ 22 2 2

712 pm 95.1 ppm
562 4 6

ad = = =
+ +

 

 

18A.4(b)
1 22 2 2

[18A.1c]hkl
h k ld
a b c

− /
      = + +      
       

 

 
1 22 2 2

312
3 1 2 pm 200 pm

769 891 690
d

− /
      = + + =      
       

 

 
18A.5(b) ( )2 sin  [18A.2b] 2 128.2 pm sin19.76 86.7 pmdλ θ= = × × ° =  
 
18A.6(b) Combining the Bragg law with Miller indices yields, for a cubic cell 

 2 2 2 1 2sin ( )
2hkl h k l

a
λθ /= + +  

In a face-centered cubic lattice, h, k, and l must be all odd or all even (see Fig. 18A.24 of text). So the first three 
reflections would be from the (111), (200), and (220) planes. In an fcc cell, the face diagonal of the cube is 4R, 
where R is the atomic radius. The relationship of the side of the unit cell to R is therefore 

 2 2 2 2 4(4 ) 2 so
2
RR a a a a= + = =  

Now we evaluate 

 129 pm 0 158
2 pm4 2 4 2(144 )a R
λ λ

= = = .  

 We set up the following table: 
 

hkl sin θ θ / ˚ 
111 0.274 15.9 
200 0.316 18.4 
220 0.447 26.6 

 

18A.7(b)
1 22 2 2

1arcsin [18A.2b] arcsin [18A.1c, arcsin sin ]
2 2hkl

hkl

h k l
d a b c
λ λθ −

        = = + + ≡       
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1 22 2 2

100
83.42 1 0 0arcsin 4.166

2 574.1 796.8 495.9
θ

/        = × + + = °       
         

 

 
1 22 2 2

010
83.42 0 1 0arcsin 3.001

2 574.1 796.8 495.9
θ

/        = × + + = °       
         

 

 
1 22 2 2

111
83.42 1 1 1arcsin 7.057

2 574.1 796.8 495.9
θ

/        = × + + = °       
         

 

 
18A.8(b) 1arcsin [18A.2b  arcsin sin ]2d

λθ −= , ≡  

 
2 1 95.123 pm 93.222 pmarcsin arcsin arcsin arcsin2 2 (2) (82.3 pm) (2) (82.3 pm)

0.807 0.0141 rad
d d

λ λθ    ∆ = − = −   × ×   
= ° =

 

Consequently, the difference in the glancing angles (2θ) is 1.61°. 
 
18A.9(b) Justification 18A.2 demonstrates that the scattering factor in the forward direction equals the number 
of electrons in the atom or simple ion. Consequently, 2Mg

10f + =  

 
18A.10(b) The structure factor is given by 
 ie where 2π( )  [18A.4]i

hkl i i i i i
i

F f hx ky lzφ φ= = + +∑  

All eight of the vertices of the cube are shared by eight cubes, so each vertex has a scattering factor of 8f / . 
The coordinates of all vertices are integers, so the phase φ  is a multiple of 2π and 1ie φ = . The body-center 
point belongs exclusively to one unit cell, so its scattering factor is f . The phase is 
 ( )1 1 1

2 2 22π π( )h k l h k lφ = + + = + +  

When h k l+ +  is even, φ  is a multiple of 2π and ie 1φ = ; when h k l+ +  is odd, φ  is π plus a multiple of 2π 
and i 1e φ = − . So i ( 1)h k le φ + += −  and 

 
8( 8)(1) ( 1)

2  for  even and 0 for  odd

h k l
hklF f f

f h k l h k l

+ += / + −

= + + + +
 

 
18A.11(b) The structure factor is given by  
 ie where 2π( )  [18A.4]i

hkl i i i i i
i

F f hx ky lzφ φ= = + +∑  

All eight of the vertices of the cube are shared by eight cubes, so each vertex has a scattering factor of f/8 and 
their total contribution to the structure factor equals f (see exercise 18A.10(a)). The body-centered ion of the 
bcc(I) unit cell belongs entirely to the cell. In this problem it has a scattering factor of 2f and its coordinates are 
(½a, ½a, ½a). Thus, the contribution of the body-centered ion to the structure factor is 

 

( ) ( )

( )( ) ( )( ){ }
( )( )

( )

2πi /2 /2 /2 πii

(body-centred)
e 2 e 2 e

                     2 cos π isin π   (Euler's identity)

                     2 cos π

                     2 1

i h k l h k l
i

i

h k l

f f f

f h k l h k l

f h k l

f

φ + + + +

+ +

= =

= + + + + +

= + +

= −

∑

 

With contributions from the vertices and body-centered ion, the structure factor becomes 

 ( ) ( ){ }i i

(vertices) (body-centred)
e e 2 1 1 2 1i i

h k l h k l
hkl i i

i i
F f f f f fφ φ + + + += + = + − = + −∑ ∑  

 3  for  even   and    for  oddhklF f h k l f h k l= + + − + +  
 
18A.12(b) The electron density is given by 
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 ( ) ( )2πi1 e  [18A.5]hx ky lz
hkl

hkl
r F

V
ρ − + += ∑  

The component along the x direction is 

 ( ) 2πi1 e hx
h

h
x F

V
ρ −= ∑  

Using the data of this problem, we sum from h = –9 to +9 and use the relationship Fh = F|h|. The following 
Mathcad computation of ρ(x) and plot shown in Fig. 18A.1 shows high electron density at the ends of unit cell 
edge (i.e., at the vertices). 

 

 
 
Figure 18A.1 
 
18A.13(b) Using the information of exercise 18A.12(b), the Mathcad computation of P(x) is performed with 
Equation 18A.6. 

  
 
The Patterson synthesis P(x) of Fig. 18A.2 shows that atoms represented by this data are separated by 1 a unit 
along the x axis. 
 

F
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:=

ρ x( )

9−

9

h

F h e 2− π⋅ i⋅ h⋅ x⋅
⋅



∑

=

:=

ρ 1.0( ) 142=

0 0.2 0.4 0.6 0.8

0

50

100

150

ρ x( )

x

F

10

10

4

4

6

6

8
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:=

P x( )

9−

9

h

F h( )2 e 2− π⋅ i⋅ h⋅ x⋅
⋅



∑

=

:=

P 1.0( ) 1.164 103
×=
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Figure 18A.2 
 
18A.14(b) Draw points corresponding to the vectors joining each pair of atoms. Heavier atoms give more 
intense contributions than light atoms. Remember that there are two vectors joining any pair of atoms ( AB



 and 
AB


); don’t forget the AA zero vectors for the center point of the diagram. See Fig. 18A.3 for 6 6C H . 
 
Figure 18A.3 
 

    
 

18A.15(b) h h
p m

λ = =
v

 

Hence,  
34

1
31 12 km s

6 626 10 J s 6928 
(9.109 10 kg) (105 10 m)

h
mλ

−
−

− −

. ×
=

× × ×
= =v  

 

18A.16(b) h h
p m

λ = =
v

          Hence, h
mλ

=v . 

Combine 1
2E kT=  and 

2
21

2 22
hE m
mλ

= =v , to obtain 

 
34

1 2 31 23 1 21

6 626 10 J s 958 nm
( ) [(9.109 10 kg) (1 381 10 ) (380K)]J K

h
mkT

λ
−

/ − − /−

. ×
= = =

× × . × ×
 

 

1 0.5 0 0.5 1
500

0

500

1000

1500

P x( )

x
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Solutions to problems 
 
18A.2 Examination of the monoclinic P unit cells shown in text Figure 18A.8 reveals that its volume V equals 
the length b multiplied by the area of the parallelogram of sides a and c separated by angle β. The parallelogram 
is replicated alone in Figure 18A.4 where it is seen that the object has the area c×x = c×a sin(180° −β). Using 
the trigonometric relation sin(A − B) = sin(A) cos(B) − cos(A) sin(B), the area formula becomes: 
 area = c×a sin(180° −β) = ca {sin(180°)cos(β) − cos(180°)sin(β)} 
        = ac {0×cos(β) − (−1)×sin(β)} 
        = ac sin(β) 
Thus, we conclude that V  = abc sin(β). 
 

     
Figure 18A.4 
 
18A.4 If the sides of the unit cell define the vectors a, b, and c, then its volume is V = ⋅ ×a b c  [given]. 
Introduce the orthogonal set of unit vectors ˆ ˆ ˆ, ,i j k  so that 

 

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

x y z

a a a

b b b

c c c

= + +

= + +

= + +

a i j k

b i j k

c i j k

 

Then 
x y z

x y z

x y z

a a a
V b b b

c c c
= ⋅ × =a b c  

Therefore 

 

2

 [interchange rows and columns, no change in value]

x xy z y z

x y z x y z

x y z x y z

x xy z x x

x y z y y y

x y z z z z

x x y y z z x x y y z z x x y y z z

x x y y z z y x y y z z x

a a a a a a
V b b b b b b

c c c c c c

a a a a b c
b b b a b c
c c c a b c

a a a a a a a b a b a b a c a c a c
b a b a b a b b b b b b b

=

=

+ + + + + +
= + + + +

2 2

2 2

2 2

2 2 2 2 2 2

cos cos
cos cos
cos cos

(1 cos cos cos 2cos cos cos )

x y y z z

x x y y z z x x y y z z x x y y z z

c b c b c
c a c a c a c b c b c b c c c c c c

a a ab ac
b ab b bc

c ac bc c

a b c

γ β
γ α
β α

α β γ α β γ

+ +
+ + + + + +

⋅ ⋅
= ⋅ ⋅ =

⋅ ⋅

= − − − +

a b a c
b a b c
c a c b

 

Hence 2 2 2 1 2(1 cos cos cos 2cos cos cos )V abc α β γ α β γ /= − − − +  

For a monoclinic cell, 90α γ= =   

 2 1 2(1 cos )  sin V abc abcβ β/= − =  

For an orthorhombic cell, 90α β γ= = =  , and 

 V abc=  
A tetragonal unit cell, as shown in Fig. 18A.8 of the text, has a b c= ≠ . Therefore 
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 28 3(651pm) (651pm) (934pm) 3.96 10 mV −= × × = ×  
 

18A.6 2 2 A2 (CH CH ) /(unit cell)
(unit cell)

M Nm
V abc

ρ
×

= =  

 

1

23 36 31

36 3

(2) (28 05 )g mol
(6 022 10 ) [(740 493 253) 10 ] mmol
1 01 10 1.01 g cmg m

ρ
−

−−

− −

× .
=

. × × × × ×

= . × =

 

 
18A.8‡ The volume per unit cell is 
 3 21 3(3.6881nm) (0 9402 nm) (1 7652 nm) 6 121 nm 6 121 10  cmV abc −= = × . × . = . = . ×  
The mass per unit cell is 8 times the mass of the formula unit, [N(C4H9)4][Ru(N)(S2C6H4)2], for which the molar 
mass is 
 ( ) ( ) ( ) ( ){ } 1 1101.07 2 14.007 28 12.011 44 1.008 4 32.066 638 01g mol g molM − −= + + + + = .  
The density is 

 
1

3
23 1 21 3

A

8 8(638 01g mol ) 1.385g cm
(6 022 10 mol ) (6 121 10 cm )

m M
V N V

ρ
−

−
− −

.
= = = =

. × × . ×
 

The osmium analogue has a molar mass of 727.1 g mol−1. If the volume of the crystal changes negligibly with 
the substitution, then the densities of the complexes are in proportion to their molar masses 

 ( ) 33
Os

727 1 1.385 g cm 1.578 g cm
638 01

ρ −−.
= =

.
 

 

18A.10 2 2 2 1 2

2 sin
2 sin

( )
hkl

hkl hkl
a

d
h k l

θ
λ θ /= =

+ +
 [18A.2b and 18A.1b] 2 sin 6 0 0 209a a= . ° = .  

In a NaCl unit cell (text Fig. 18A.23) the number of formula units is 4 (each corner ion is shared by 8 cells, each 
edge ion by 4, and each face ion by 2). Therefore, 

 
1 3

3
A AA

4 4implying thatNM M Ma
VN Na N

ρ
ρ

/
 = = , =  
 

 

 
1 31

6 3 23 1

(4) (58 44g )mol 563 5pm
(2 17 10 g m ) (6 022 10 )mol

a
/−

− −

 × .
= = . . × × . × 

 

and hence (0 209) (563 5pm) 118pmλ = . × . =  
 
18A.12 For the three given reflections 
 sin19 076 0 32682 sin 22 171 0 37737 sin 32 256 0 53370. ° = . . ° = . . ° = .  

For cubic lattices 
( )1/22 2 2

sin [18A.2b with 18A.1b]
2hkl

h k l

a

λ
θ

+ +
=  

First, consider the possibility of simple cubic; the first three reflections are (100), (110), and (200). (See 
Discussion questions 18A.3 and 18A.5 above.) 

 100

110

sin 1 0 32682      [not simple cubic]
sin 0 377372

θ
θ

.

.
= ≠  

Consider next the possibility of body-centred cubic; the first three reflections are (110), (200), and (211). 

 110

200

sin 2 1 0 32682    (not bcc)
sin 0 377374 2

θ
θ

.

.
= = ≠  

Consider finally face-centred cubic; the first three reflections are (111), (200) and (220) 

 111

200

sin 3 0 86603
sin 4

θ
θ

.= =  

which compares very favourably to 0.32682 0 86605
0 37737

= .
.

. Therefore, the lattice is face-centred cubic . 

This conclusion may easily be confirmed in the same manner using the second and third reflection. 
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 2 2 2 1 2

111

154 18pm( ) 3 408.55 pm
2sin (2) (0 32682)

a h k lλ
θ

/  .
= + + = × = × . 

 

 

1

23 1 8 3
A

3

(4) (107 87g mol )[exercise 18A.1(a)]
(6 0221 10 mol ) (4 0855 10 cm)

  10.507g cm

N M
N V

ρ
−

− −

−

× .
= =

. × × . ×

=

 

This compares favourably to the value listed in the text Resource section Table 0.1. 
 
18A.14 The scattering factor is given by 

 2

0

sin 4π4π ( ) d  [18A.3]     where     sinkrf r r r k
kr

ρ θ
λ

∞

= =∫  

The integral may be divided into segments such as 

 2 2

0

sin sin4π ( ) d 4π ( ) d
R

R

kr krf r r r r r r
kr kr

ρ ρ
∞

= +∫ ∫  

In the case for which ρ = 3Z/4πR3 when 0 ≤ r ≤ R and ρ = 0 when r > R, the second integral vanishes, leaving 

 

( )

( )

2
3 3

0 0

3 2
0

3

3 sin 3d sin d

3 sin cos  

3 sin  cos

R R

r R

r

Z kr Zf r r kr r r
krR R k

Z kr r kr
kR k k

Z kR kR
kRkR

=

=

= =

 = −  

 = − 
 

∫ ∫

 

This shows that the scattering factor is proportional to the atomic number Z, which is illustrated in a plot of f 
against sin(θ)/λ in Fig. 18A.5. As expected, f = Z in the forward direction. 

   
Figure 18A.5 
 
Figure 18A.6 is a plot of the scattering factor for several R values at constant Z. As R increases, the scattering 
factor shifts to the forward direction. 

f

sin pm )θ / (λ −1

R
Z 

 = 75 pm
= 20

R
Z 

 = 75 pm
= 5
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Figure 18A.6 
 
18A.16 2πi( )   [18A.4]i i ihx ky lz

hkl i
i

F f e + += ∑  

For each A atom use 1
A8 f  (each A atom shared by eight cells) but use Bf  for the central atom (since it 

contributes solely to the cell). 

 
2πi 2πi 2πi 2πi( ) 2πi( ) 2πi( ) 2πi( ) πi( )1

A B8

iπ( )
A B

1 e e e e e e e e

( 1) [ 1]are all integers e

h k l h k h l k l h k l h k l
hkl

h k l

F f f

f f h k l

+ + + + + + + 
 
 

+ +

= + + + + + + + +

= + − , , = −,
 

(a) A B 0  no systematic absenceshklf f f F f= , = ; =  

(b) ( )1 1
B A A2 21 ( 1) h k l

hklf f F f + + 
  

= ; = + −  

Therefore, when h k l+ +  is odd, ( )1 1
A A2 21hklF f f= − = , and when h k l+ +  is even, 3

A2hklF f= . 

That is, there is an alternation of intensity  ( 2I F∝ ) according to whether  is odd or evenh k l+ + . 

(c) A B 1 ( 1)h k l
hklf f f F f + + 

 
 

= = ; = + −  

Therefore, when h k l+ +  is odd, 0hklF = , and when h k l+ +  is even, 2hklF f= . 

Thus, all  odd lines are missingh k l+ + . 
 
 
 
 
 
18B Bonding in solids 
 

Answers to discussion questions 
 
18B.2 In a face-centred cubic close-packed lattice, there is an octahedral hole in the centre. The rock-salt 
structure can be thought of as being derived from an fcc structure of Cl– ions in which Na+ ions have filled the 
octahedral holes. The cesium-chloride structure can be considered to be derived from the ccp structure by 
having Cl– ions occupy all the primitive lattice points and octahedral sites, with all tetrahedral sites occupied by 
Cs+ ions. This is exceedingly difficult to visualize and describe without carefully constructed figures or models. 
Refer to S.-M. Ho and B. E. Douglas, J. Chem. Educ. 46, 208, 1969, for the appropriate diagrams. 
 
 
 
 
 
 

sin pm )θ / (λ −1

f

R = 50 pm

R = 75 pm

R = 100 pm

Z = 10
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Solutions to exercises 
 
18B.1(b) There are two smaller (white) triangles to each larger (brown) triangle. Let the area of the larger 
triangle be A and the area of the smaller triangle be a. Since 1

2 (base)b B=  and 1 1
2 4(height)  h H a A= , = . The 

white space is then 2 4N A/ , for N of the larger triangles. The total space is then ( )2 3 2NANA NA+ = / . Therefore 

the fraction filled is 2
3(3 2)NA NA/ / =  

 
18B.2(b) The diagonal of the face that has a lattice point in its center is equal to 4r, where r is the radius of the 
atom. The relationship between this diagonal and the edge length a is 
 4 2 so 2 2r a a r= =  
The volume of the unit cell is 3a , and each cell contains 2 atoms. (Each of the 8 vertices is shared among 8 
cells; each of the 2 face points is shared by 2 cells.) So the packing fraction is 

 
3

atom
3 23

cell

2 2(4 3)π π 0.370
3(2)(2 2 )

V r
V r /

/
= = =  

 

18B.3(b) (a) It is shown in Exercise 18B.3(a) that for a six-fold coordination 0.414r
R

= . 

Thus, ( ) ( )0.414 0.414 149 pm 61.9 pmr R= = × =  

(b) It is shown in Exercise 18B.3(a) that for an eight-fold coordination 0.732r
R

= . 

Thus, ( ) ( )0.732 0.732 149 pm 109 pmr R= = × =  
 
18B.4(b) The volume of an atomic crystal is proportional to the cube of the atomic radius divided by the 
packing fraction. The packing fractions for hcp, a close-packed structure, is 0.740; for bcc, it is 0.680 (see 
Exercise 18B.2(a)). So for iron 

 
3

bcc

hcp

0 740 122pm 0 988
0 680 126pm

V
V

 .
= = . .  

 

The bcc structure has a smaller volume, so the transition involves a contraction. (Actually, the data are not 
precise enough to be sure of this. 122 could mean 122.49 and 126 could mean 125.51, in which case an 
expansion would occur.) 
 
18B.5(b) The lattice enthalpy is the difference in enthalpy between an ionic solid and the corresponding isolated 
ions. In this exercise, it is the enthalpy corresponding to the process 
 2

2(s) (g) 2Br (g)MgBr Mg + −→ +  
The standard lattice enthalpy can be computed from the standard enthalpies given in the exercise by considering 
the formation of 2(s)MgBr  from its elements as occurring through the following steps: sublimation of Mg(s), 
removing two electrons from Mg(g), vaporization of 2Br (l) , atomization of 2Br (g) , electron attachment to 
Br(g), and formation of the solid 2MgBr  lattice from gaseous ions 

 
O O O O

f sub ion vap 22

O O O
bond diss 2 eg L 2

( s) (Mg,s) (Mg,g) (Br l)MgBr

                      (Br ,g) 2 (Br g) (MgBr ,s)

H H H H

H H H

∆ , = ∆ + ∆ + ∆ ,

+ ∆ + ∆ , − ∆
 

So the lattice enthalpy is 

 
O O O

O O

O
L 2 sub ion vap 2

O
bond diss 2 eg f 2

(MgBr s) (Mg,s) (Mg,g) (Br l)

                       (Br g) 2 (Br,g) (MgBr s)

H H H H

H H H

∆ , = ∆ + ∆ + ∆ ,

+ ∆ , + ∆ − ∆ ,
 

 O 1 1
2(MgBr s) [148 2187 31 193 2(331) 524] kJ mol 2421 kJ molL H − −∆ , = + + + − + =  

 
 
 
 

Solutions to problems 
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18B.2 Close-packed rods of length L and elliptical cross-section with semi-major axis a and semi-minor axis b 
have a rod volume of πabL. The parallelepiped unit cell is shown in Fig. 18B.1(a) in a cross-section of the 
packed rods. Examination of the figure reveals that each unit cell contains one rod. Thus, the packing fraction f 
is given by 

 p
p p

π π=      where  is the cross-section area of the unit cell.abL abf A
LA A

=  

Fig. 18B.1(b) defines the parameters needed for the determination of Ap. Examination of the center positions of 
a pair of stacked ellipses reveals that they have the relative coordinates (0,0) and (0,2b). The adjacent ellipse 
column is centered b higher and, consequently, the vertical contact point between the adjacent ellipses is 
necessarily at b/2. The horizontal component of the contact point, x, is calculated with the formula for an ellipse 
using y = b/2. 

 

2 2

2 2
1
2

1

/ 2 1     or     3

x y
a b

x b x a
a b

   + =   
   

   + = =   
   

 

The parallelepiped area has a base of 2b and its height h is  
 2 3h x a= =  
Thus, 
 p 2 2 3A bh ab= =  
and 

 πab π= 0.907
2 3 2 3

f
ab

= =  

The above formula for the packing fraction shows that it is independent of the ellipse eccentricity. 
 

   
Figure 18B.1 
 
18B.4 (a) The density of energy levels is: 

 
1d d( )

d d
k EE
E k

ρ
−

 = =  
 

  where   ( ) 2πd d π π2 cos  [38.1] sin
d d 1 1 1
E k k
k k N N N

βα β= + = −
+ + +

 

so ( ) 11 π( ) sin
2π 1
N kE

N
ρ

β

−+= −
+

 

Unlike the expression just derived, the relationship the problem asks us to derive has no trigonometric functions, 
and it contains E and α within a square root. This comparison suggests that the trigonometric identity 

2 2sin cos 1θ θ+ =  will be of use here. Let π ( 1)k Nθ = / + ; then 2 1 2sin (1 cos )θ θ /= − . However, cosθ  is 
related to the energy 

 2 cos so cos
2

EE α
α β θ θ

β
−

= + =    and   
1 22

sin 1
2

E αθ
β

/
  −= −  

   
 

Finally, ( )
1 22

1 / 2π
( )

1 2

N
E

E

β
ρ

α
β

/

+
= −

  −−  
   

 

2a

2b

(0,0)
( , /2)x b

(0,2 )b

h

h

(a) (b)

 
18:11 



 

(b) The denominator of this expression vanishes as the energy approaches 2α β± . Near those limits, E α−  
becomes 2β± , making the quantity under the square root zero, and ( )Eρ  approach infinity. 
 
18B.6 As discussed in Topic 7B.2(c), the wavefunction must be continuous, have a continuous slope, be single-
valued, be square-integrable. This means that, when a line of N tight-bonding identical atoms are wrapped into a 
ring, the wavefunction must satisfy the conditions: ψ(left end) = ψ(right end) and ψ'(left end) = ψ'(right end). 
These boundary conditions are more restrictive than those required for the line of atoms: ψ(left end) = ±ψ(right 
end) and ψ'(left end) = ±ψ'(right end). As the line is wrapped into a ring, the states for which ψ(left end) = –
ψ(right end) become forbidden and only alternate quantum numbers for which ψ(left end) = ψ(right end) are 
allowed. 
 
18B.8 The problem asks for an estimate of O

f (CaCl,s)H∆ . A Born–Haber cycle would envision formation of 
CaCl(s) from its elements as sublimation of Ca(s), ionization of Ca(g), atomization of 2Cl (g) , electron gain of 
Cl(g), and formation of CaCl(s) from gaseous ions. Therefore 
 O O O O O O

f sub ion f eg L(CaCl,s) (Ca,s) (Ca,g) (Cl,g) (Cl,g) (CaCl,s)H H H H H H∆ = ∆ + ∆ + ∆ + ∆ − ∆  
Before we can estimate the lattice enthalpy of CaCl, we select a lattice with the aid of the radius-ratio rule. The 
ionic radius for Cl− is 181 pm (Table 18B.2); use the ionic radius of K+ (138 pm) for Cs+. 

 138pm 0 762
181pm

γ = = .  

suggesting the CsCl structure (Madelung constant A = 1.763, Table 18B.3). We can interpret the Born–Mayer 
equation (eqn. 18B.6) as giving the negative of the lattice enthalpy.   

 
2

O 1 2 A
L p,min

0

*1      where *  is taken to be 34.5 pm (common choice).
4π

A z z N e dH E d
d dε

| |  ∆ ≈ = − 
 

 

The distance d  is  = (138+181) pm 319 pmd = . 

 

23 19 21
O

L 12 1 2 1 12

5 1 1

(1 763) (1)( 1) (6 022 10 ) (1 602 10 C) 34 5pmmol 1
319pm4π(8 854 10 J C m ) (319 10 m)

 6.85 10 J mol 685kJ mol

H
−−

− − − −

− −

. × | − | × . × × . × . ∆ ≈ − . × × ×  
≈ × =

 

The enthalpy of formation, then, is 

 O 1 1
f (CaCl,s) [176 589 7 121 7 348 7 685] kJ mol 146 kJ molH − −∆ ≈ + . + . − . − = − . 

Although formation of CaCl(s) from its elements is exothermic, formation of 2CaCl (s)  is still more favoured 
energetically. Consider the disproportionation reaction 2 CaCl(s) → Ca(s) + CaCl2(s) for which 

 

O O O O
f f 2 f

1

1

(Ca,s) (CaCl ,s) 2 (CaCl,s)

[0 795 8 2( 146)]kJ mol
504 kJ mol

H H H H
−

−

∆ = ∆ + ∆ − ∆

≈ − . − −

≈ −

 

and the thermodynamic instability of CaCl(s) toward disproportionation to Ca(s) and CaCl2(s) becomes 
apparent. 
 
Note: Using the tabulated ionic radius of Ca (i.e., that of Ca2+) would be less valid than using the atomic radius 
of a neighbouring monovalent ion, for the problem asks about a hypothetical compound of monovalent calcium. 
Predictions with the smaller Ca2+ radius (100 pm) differ from those listed above but the conclusion remains the 
same: the expected structure changes to rock-salt, the lattice enthalpy to 1758kJ mol− , O

f (CaCl,s)H∆  to 
1219 kJ mol−−  and the disproportionation enthalpy to 1358 kJ mol−− . 

 
18B.10 A macroscopic two-dimensional crystal that has the ionic structure depicted in text Fig. 18.2 is unstable 
because it requires energy to hold the ions in position, thereby, preventing them from flying apart as small 
clumps of ions or shifting into a more stable lattice structure. To see this, consider one of the diagonals within 
the figure. This is a line of cations separated by the distance 2r where r is the radius of the smallest circle.  
Moving along this diagonal, away from the figure center, we find that rather quickly all cation or anions that are 
not on the line are so far away from the cations of this diagonal that electrostatic interaction with out-liners is 
negligibly small. The appreciable interaction is among the cations of the diagonal only and it is repulsive. To 
say that it is infinitely large, and positive, is a good approximation for a large array. This repulsive interaction 
overwhelms the small attractive interaction near the center of the figure. We conclude that there is no Madelung 
constant to compute for a large array of this lattice. 
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What about a small clump of atoms? To explore this question, consider a clump that consists only of the 5 ions 
found in the very center of the text figure. Their potential energy is 

 
2 22

p
0

2 2

0

2 2

0

44 1
4π 2

44 1
4π2

0.1716
4π

z zeE
r r

z e
r

z e
r

ε

ε

ε

    −       = × × + + ×               
    = − + + ×      

 
 = − ×
 
 

 

The first term in the above expression accounts for the electrostatic attraction between the central cation (+|z|) 
and the 4 anions (−|z| ) of the first ring. The second term accounts for the repulsive interaction between the 
anions of the first ring. Since Ep < 0, the five-member clump is stable. 
 
We expect that as additional rings are considered around the five-member clump the potential energy will 
become successively more stable. However, if too many rings are added, the repulsive interactions along one-
dimensional lines of like ions will begin to dominate and the clump will become unstable. What is the maximum 
number of rings that can be placed around the central cation to form a stable clump of ions? In the following 
Mathcad Prime 2 worksheet, the potential energy in units of |z|2e2/4πε0 is calculated for the case in which an 
even number of rings surround the central cation. The worksheet begins by forming a matrix of x coordinates 
and a matrix of y coordinates for the ions of the clump. Each matrix row contains coordinates (x,y) for ions of a 
ring (ring 1, 2, 3,..., Meven). The 4 matrix columns provide locations for the coordinates of each of the identical 
ions of the ring. 
 

 
Next, the worksheet establishes a formula that can calculate the distance between the ion whose coordinates are 
at the matrix element i,j and the ion whose coordinates are at the matrix element m,n. 

 
Now a formula for the reduced potential energy of the clump is setup. The first term of the expression accounts 
for the interaction between the central cation and all other ions of the clump. The second term accounts for the 
repulsive interactions between the 4 ions of a ring and sums over all rings. The last term accounts for 
interactions between the 4 ions of a ring and all ions in larger rings and sums over all rings. It uses the symmetry 
that the interaction of each of the 4 ions in the smaller ring experiences identical interactions with ions in larger 
rings. The terms of this expression have accounted for all interactions of the clump while avoiding self-
interactions and avoiding the inclusion of any ion-ion interaction more than once. 

 
For 4, 6, 8, and 10 rings the worksheet gives reduced potential energies of −1.599, −1.268, +0.167, and +2.487 
|z|2e2/4πε0, respectively. Interpolation indicates that 7 rings should be stable (about −0.7 |z|2e2/4πε0). We 
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conclude that the largest stable clump of this two-dimensional lattice of ions consists of 7 rings around the 
central cation. 
 
 
 
 
18C Mechanical, electrical, and magnetic properties of solids 
 

Answers to discussion questions 
 
18C.2 The most obvious difference is that there is no magnetic analog of electric charge; hence, there are no 
magnetic ‘ions.’ Both electric and magnetic moments exist and these can be either permanent or induced. 
Induced magnetic moments in the entire sample can be either parallel or antiparallel to the applied field 
producing them (paramagnetic or diamagnetic moments), whereas in the electric case they are always parallel. 
Magnetization, M, is the analog of polarization, P. Although both magnetization and induced dipole moment are 
proportional to the fields producing them, they are not analogous quantities, neither are volume magnetic 
susceptibility, χ, and electric polarizability, α. The magnetic quantities refer to the sample as a whole, the 
electric quantities to the molecules. Molar magnetic susceptibility is analogous to molar polarization as can be 
seen by comparing equations 18C.7 and 16A.5a and magnetizability is analogous to electric polarizability. 
 
 
 

Solutions to exercises 
 

18C.1(b) Poisson’s ratio: p
transverse strain  [18C.2] 0 41

normal strain
ν = = .  

We note that the transverse strain is usually a contraction and that it is usually evenly distributed in both 
transverse directions. That is, if ( )zL L∆ /  is the normal strain, then the transverse strains, ( )xL L∆ /  and ( ) yL L∆ / , 
are equal. In this case of a 2.0% uniaxial stress: 

 0 020 0.020 0.41 0 0082  [a contraction of widths]
z x y

L L L
L L L

∆ ∆ ∆     = + . , = = − × = − .     
     

 

Application of the stress to 1 dm3 cube of lead results in a volume equal to 
 2 3 3(1 0 0082) (1 0 020) 1 dm 1 0033dm− . × + . × = .  

The change in volume is 3 33.3 10  dm−× . 
 
18C.2(b) Is gallium-doped germanium a p-type or n-type semiconductors? 
p-type; the dopant, gallium, belongs to Group 13 whereas germanium belongs to Group 14. 
 
18C.3(b) 1 2

e B{ ( 1)} [18C.9 with  in place of ]m g S S S sµ/= + ,  
Therefore, since B5.3 m µ=  and ge ≈ 2, 
 ( ) 21

4( 1) (5.3) 7.0 implying that 2.2S S S+ = × = , =  

Because 4.4
2S ≈ , the Mn2+ ions typically have 4-5 unpaired spins. 

In actuality most Mn2+ compounds have 5 unpaired spins. 
 
18C.4(b) 6 1 3

m m[18C.8] / ( 7 9 10 ) (84 15g ) / (0 811g )mol cmV Mχ χ χ ρ − − −= = = − . × × . .  

 4 10 3 13 1     8.2 10 8.2 10  m  molcm mol− − −−= − × = − ×  
 
18C.5(b) The molar susceptibility is given by 

 
2 2

A e 0 B m
m 2 2

e 0 B

( 1) 3
 [18C.10a] so ( 1)

3
A

N g S S kTS S
kT N g

µ µ χ
χ

µ µ
+

= + =  
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23 1 8 3 1

23 2 7 2 1 3 24 1 21

3(1 381 10 J K ) (298K) (6.00 10 m )mol( 1)
(6 022 10 ) (2 0023) (4π 10 T J m ) (9 274 10 J T )mol

1 1 4(2.84)
2 84 so 1 26

2

S S

S

− − − −

− − − −−

. × × ×
+ = ×

. × × . × × . ×

− + +
= . = = .

 

corresponding to 2.52 effective unpaired spins. The theoretical number is 2 . The magnetic moments in a 
crystal are close together, and they interact rather strongly. The discrepancy is most likely due to an interaction 
among the magnetic moments. 
 
18C.6(b) The molar susceptibility is given by 

 
2 2

A e 0 B
m

( 1)
 [18C.10a]

3
N g S S

kT
µ µ

χ
+

=  

Mn2+ has five unpaired spins, so 2 5S = .  and 

 

23 2 7 2 1 3 24 1 21

m 23 1

7 3 1

(6 022 10 ) (2 0023) (4π 10 T J m ) (9 274 10 J T ) (2 5) (2 5 1)mol
3(1 381 10 J K ) (298K)

= 1.85 10 m  mol

χ
− − − −−

− −

− −

. × × . × × × . × × . × . +
=

. × ×

×

 

 
 
 

Solutions to problems 
 
 
18C.2 The Fermi-Dirac distribution, f, can be transformed to the variables of text Figure 18C.6 as follows. 

 E E z x
kT kT

µ µ µ
µ

 − − = × ≡ ×  
   

 

 ( ) 1,  [39.2a]     where          and     
1z x

Ef x z x z
kTe

µ µ
µ×

−
= ≡ ≡

+
 

Text Figure 18C.6 is replicated in the following Mathcad Prime 2 worksheet. The effect of changing values of z, 
the ratio of µ to kT, is readily explored by simply altering z values in the plot. Values z = 0.10, 1, and 10 are 
shown in the worksheet. It is seen that as T→∞, z→0, and f→½; that is all available energy states have an 
occupational probability of ½ (a state is filled with at most two electrons by the Pauli exclusion Principle). As 
T→0, z→∞, and f  becomes a step distribution for which f = 1 for x < 0 and f = 0 for x > 0 (see Brief illustration 
18C.2 of the text for the significance of this distribution). 
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18C.4 ( ) ( ) ( ) ( )
( )e /

0 0 0

d d d  [18C.5 and 18C.6a]
e 1

E

E kT
E

E
N N E E f E E E

µ

ρ
ρ

=∞ ∞ ∞

−
=

= = × =
+∫ ∫ ∫   

In order for N to remain a constant of this equation as the temperature is raised, the exponential term  
exp{(E – μ)/kT} must remain constant. It is apparent that, when exp{E/kT} gets smaller as T grows larger for 
each value of E, it must be multiplied by a larger value of exp{– μ/kT}, so μ(T) must decrease. 
 
18C.6 Tans and coworkers (S.J. Tans et al., Nature, 393, 49 (1998)) have draped a semiconducting carbon 
nanotube (CNT) over metal (gold in Fig. 18C.1) electrodes that are 400 nm apart atop a silicon surface coated 
with silicon dioxide. A bias voltage between the electrodes provides the source and drain of the molecular field-
effect transistor(FET). The silicon serves as a gate electrode and the thin silicon oxide layer (at least 100 nm 
thick) insulates the gate from the CNT circuit. By adjusting the magnitude of an electric field applied to the gate, 
current flow across the CNT may be turned on and off. 
 

    
Figure 18C.1 
 
Wind and coworkers (S.J. Wind et al., Applied Physics Letters, 80(20, May 20), 3817 (2002)) have designed 
(Fig. 18C.2) a CNTFET of improved current carrying capability. The gate electrode is above the conduction 
channel and separated from the channel by a thin oxide dielectric. In this manner the CNT-to-air contact is 
eliminated, an arrangement that prevents the circuit from acting like a p-type transistor. This arrangement also 
reduces the gate oxide thickness to about 15 nm, allowing for much smaller gate voltages and a steeper 
subthreshold slope, which is a measure of how well a transistor turns on or off. 
 

   
Figure 18C.2 
 
A single-electron transistor (SET) has been prepared by Cees Dekker and coworkers (Science, 293, 76, (2001)) 
with a CNT. The SET is prepared by putting two bends in a CNT with the tip of an AFM (Fig. 18C.3). Bending 
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causes two buckles that, at a distance of 20 nm, serves as a conductance barrier. When an appropriate voltage is 
applied to the gate below the barrier, electrons tunnel one at a time across the barrier. 
 

   
Figure 18C.3 
 
Weitz et al.( Phys. Stat. Sol. (b) 243, 13, 3394 (2006)) report on the construction of a single-wall CNT using a 
silane-based organic self-assembled monolayer (SAM) as a gate dielectric on top of a highly doped silicon 
wafer. The organic SAM is made of 18-phenoxyoctadecyltrichlorosilane. This ultrathin layer (Fig. 18C.4) 
ensures strong gate coupling and therefore low operation voltages. Single-electron transistors (SETs) were 
obtained from individual metallic SWCNTs. Field-effect transistors made from individual semiconducting 
SWCNTs operate with gate-source voltages of –2 V, show good saturation, small hysteresis (200 mV) as well as 
a low subthreshold swing (290 mV/dec). 

    
Figure 18C.4 
 
John Rodgers and researchers at the University of Illinois have reported a technique for producing near perfect 
alignment of CNT transistors (Fig. 18C.5). The array is prepared by patterning thin strips of an iron catalyst on 
quartz crystals and then growing nanometer-wide CNTs along those strips using conventional carbon vapor 
deposition. The quartz crystal aligns the nanotubes. Transistor development then includes depositing source, 
drain, and gate electrodes using conventional photolithography. Transistors made with about 2,000 nanotubes 
can carry currents of one ampere. The research group also developed a technique for transferring the nanotube 
arrays onto any substrate, including silicon, plastic, and glass. See Coskun Kocabas, Seong Jun Kang, Taner 
Ozel, Moonsub Shim, and John A. Rogers, J. Phys. Chem. C 2007, 111, 17879, Improved Synthesis of Aligned 
Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors. 
 

    
Figure 18C.5 
 
Further background discussion of carbon nanotube field-effect transistors (CNTFET) can be found at 
wikipedia.org. For a review of the CNT catalytic growth technique, methods to grow oriented long CNTs with 
controlled diameters, and process steps for the fabrication of both back and top-grated CNTFET see K.C. 
Narasimhamurthy and R. Paily, IETE Technical Review, 2011, V 28, Issue 1, 57, Fabrication of Carbon 
Nanotube Field Effect Transistor. 
 
18C.8 Only two electronic levels are accessible to nitric oxide at low temperature. The ground state is a doubly 
degenerate 2Π1/2 state while the excited state is a doubly degenerate 2Π3/2 state that is 121.1 cm−1 above the 
ground state. These states originate from spin-orbital coupling of angular momentum. Let hcvε =   be the 
energy separation between these levels, then the probabilities that a molecule is in one (p1/2) or the other level 
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(p3/2) are given by the following equations, which are derived from the Boltzmann distribution in the note 
below.  

 
/

1/2 3/2/ / /
1 e 1     and      

1 e 1 e 1 e

kT

kT kT kTp p
ε

ε ε ε

−

− −
= = =

+ + +
 

Since the ground state of nitric oxide exhibits no paramagnetism, only p3/2NA molecules contribute to the 
observed magnetic moment of a mole of nitric oxide molecules. Consequently, eqn 18C.10a for the molar 
paramagnetic susceptibility must be modified with the inclusion of a factor p3/2. 

 ( )2 2
3/2 A e 0 B

m
1

 [18C.10a]
3

p N g S S
kT

µ µ
χ

+
=  

Substitution of ( ) ( )2e B1 /   [18C.9]S S m g µ+ =  where m is the magnetic moment into the above expression 
gives 

 

( )

( )
( ) ( )

22
3/ 2 A 0 B B

m

22
A 0 B B 1

/

/
3

/
         where     / / 121.1 cm / 174.2 K

3 1 e kT

p N m
kT

N m
k hcv k hc k

kT ε

µ µ µ
χ

µ µ µ
ε −

=

= = = × =
× +



 

Thus, with B/ 2m µ =  

 
( )

6 3 1

m 174.2 ( K)

6.286 10  m  mol
( K) 1 e TT

χ
− −

/ /

×
=

/ × +
 

This relation gives the molar paramagnetic susceptibility of NO as a function of temperature. For example, χm at 
90 K is 

 
( )

6 3 1
9 3 1

m 174.2 (90)

6.286 10  m  mol 8.81 10  m  mol
(90) 1 e

χ
− −

− −
/

×
= = ×

× +
 

The mass paramagnetic susceptibility is 
 ( ) ( )9 3 1 1 7 3 1

mass m / 8.81 10  m  mol / 0.03001 kg mol 2.94 10  m  kgMχ χ − − − − −= = × = ×  

Wishing to compare this with the value found in the older literature, we must convert the SI unit of 
susceptibility to the cgs (or emu) unit by dividing the SI unit by 4π, converting the m3 to cm3, and converting kg 
to g. 
 ( )4 3 1 6 3 1

mass  in cgs 2.94 10  cm  g / 4π 23.4 10  cm  gχ − − − −= × = ×  

This is in reasonable agreement with the accepted value of 19.8 × 10−6 cgs for the mass susceptibility of NO(s) 
at 90 K. Fig. 18C.6 is a plot of the molar paramagnetic susceptibility, as modeled in this problem, against 
temperature below the normal fusion point (110 K) of nitric oxide. The curve is remarkably different than the 

( )m Tχ  behavior of most paramagnetic substances. Paramagnetism is normally a property of the ground 
electronic state and, consequently, there is an inverse relation between mχ  and T [18C.10b] so that mχ  
decreases with increasing T. Effective angular momentums of individual molecules align in a magnetic field at 
low temperature and become disoriented by thermal agitation as the temperature is increased. In the case of 
NO(s) it is the excited state that is paramagnetic so, when all molecules are in the ground state at absolute zero, 

m 0χ = . As T is increased from absolute zero, molecules are thermally promoted to the excited state and the 
observed paramagnetism increases as shown in Fig. 18C.6. 
 
Comment: The explanation of the magnetic properties of NO is more complicated and subtle than indicated by 
the solution here. In fact the full solution for this case was one of the important triumphs of the quantum theory 
of magnetism which was developed about 1930. See J. H. van Vleck, The theory of  electric and  magnetic  
susceptibilities. Oxford University Press (1932). 
 
Note: The Boltzmann distribution indicates that the probability that a molecule is in the ground state energy 
level is given by p0 ∝ g0 where g0 is the degeneracy of the ground state while the probability that the molecule is 
in energy level “1” that is ε above the ground state is given by p1 ∝ g1e−ε/kT. For a two-level system the constant 
of proportionality is provided by the normalization condition that p0 + p1 = 1. Thus, the constant of 
proportionality is 1/( g0 + g1e−ε/kT) and the probabilities are 
 p0 = g0/( g0 + g1 e−ε/kT)     and     p1 = g1e−ε/kT /( g0 + g1e−ε/kT) 
In the special case for which g0 = g1 the probabilities simplify to those given at the top. 
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Figure 18C.6 
 
 
 
 
 
 
 
 
18D The optical properties of solids 
 

Answers to discussion questions 
 
18D.2 Figure 18D.1 is a simplified schematic of a light-emitting diode. The upper portion of the figure shows 
the electric circuit symbol of the LED. The lower portion represents the electron motion and energy flows of the 
LED when, as shown, it is forward-biased (see text Fig. 18C.9 and associated discussion). Electrons are 
represent with solid circles while electron holes are white circles Here’s a list of important features that you 
should label within the figure: the location of both the p−type and n−type semiconductors, the junction between 
semiconductors, the line representing the energy of the conduction band, the line representing the energy of the 
valence band, electron flow in the circuit, current direction in the circuit, flow of electrons and holes in the 
semiconductors, and light-emitting transitions. The intensity of radiative emissions depends upon the applied 
voltage but the wavelength depends upon the band gap energy. 
 
In addition to having the basic features of the LED, the laser diode must have a resonant cavity, which can be 
formed by using the high refractive index of the semiconducting material and cleaving single crystals so that the 
light is trapped by the abrupt variation of refractive index.  
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Figure 18D.1 
 
 

Solutions to exercises 
 
18D.1(b) g minE hv=  

 
34

15 1
min 19

g

6.626 10  J s 1 eV 3.69 10  s 3.69 fHz
1.12 eV 1.602 10 J

hv
E

−
− −

−

×  = = = × = × 
 

 
 
 

Solutions to problems 
 
18D.2 (a) ( )or or or or or

ˆ ˆ     and     0H v H vψ ψ ψ+ − + − + − + − + −= − =   

 
( )

( )

2
mon or 2mon

or 3
mon or 0

or
or or mon or

or

0     where     1 3cos   [See Problem 18D.1]
4π

1
0     where     /

1

v v
v v hcr

x
x v v

x

β µ
ψ β θ

β ε

ψ β

+ −
+ −

+ −

+ −
+ − + − + −

+ −

− 
= = − − 

 
= = − 

 

 

 

 

 

 

( )

or 2
or

or

or mon or or mon

1
1 0

1

/ 1     and     

x
x

x

x v v v vβ β

+ −
+ −

+ −

+ − + − + −

= − =

= − = ± = ±   

 

 mon mon     and     v v v vβ β+ −= − = +     
 and v v+ −   are plotted in Fig. 18D.2 as a function of θ using µmon = 4.00 D, 1

mon 25000 cmv −= , and r = 0.5 nm. 
 
 

  
Figure 18D.2 
 
The ratio of μ+

2/ μ−
2 (and the relative intensities of the dimer transitions) doesn’t depend upon β or θ because µ+ 

= 0.  To see this, we use the coefficients of the normalized wavefunctions for ψ+ and ψ− and the overlap integral
1 2|S ψ ψ= . 
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or ,1or
or

or ,2or

or or ,1 or ,2

or ,2 or or ,1

1
0          where         1

1

0
                (i)

cx
x

cx

x c c
c x c

+ −+ −
+ −

+ −+ −

+ − + − + −

+ − + − + −

  
= = ±  

  
+ =

= −

 

The coefficients must also satisfy the normalization condition. 

 
+or +or or ,1 1 or ,2 2 or ,1 1 or ,2 2

2 2
or ,1 or ,2 or ,1 or ,2

2 2 2
or ,1 or ,1 or or ,1

| |

                     2

                     2 1     (ii)

c c c c

c c c c S

c c x c S

ψ ψ ψ ψ ψ ψ− − + − + − + − + −

+ − + − + − + −

+ − + − + − + −

= + +

= + +

= + − =

 

Thus,  

 
( ){ },1 ,2 ,11/ 2

1           
2 1

c c c
S

+ + += = −
−

 

and 

 
( ){ },1 ,2 ,11/ 2

1           
2 1

c c c
S

− − −= =
+

 

 
( )
( )

2 222
,1 ,2 mon ,1 ,1

2
,1 ,1,1 ,2 mon

 [See Problem 18D.1] 0
c c c c

c cc c

µµ µ
µµ µ

+ + + ++ +

− − −− − −

 +  − 
 = = = =      ++    

 

 
 (b)  The secular determinant for N monomers has the dimension N×N. 

 

mon dimer

mon dimer

mon dimer

0

0
0

v v V
V v v V

V v v

−
−

=
−

 


 


 


   

 

 

 dimer mon
π2 cos           1, 2, 3,...,       [18B.1]

1
kv v V k N

N
 = + = + 

   

 ( )
2 2

2mon mon
3 3

0 0

(0) 1 3cos 0
4π 2π

V
hcr hcr

µ µ
β

ε ε
−

= = − =  

 
The following plot, Fig. 18D.3, shows the dimer transitions for θ = 0 and N = 15.  The shape of the transition 
distribution changes slightly with N and transition energies are symmetrically distributed around the monomer 
transition.  The lowest energy transition changes only slightly with N giving a value that goes to  
25000 cm–1 + 2V = 25000 cm–1 + 2×(–1289 cm–1) = 22422 cm–1 as N → ∞. 
 
Since the model considers only nearest neighbor interactions, the transition dipole moment of the lowest energy 
transition doesn’t depend upon the size of the chain. 
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Figure 18D.3 
 
 
 
Integrated activities 
 
18.2 The electron density distribution in a hydrogenic atom, ρ(r), is related to the radial wavefunction, R(r), by 

 ( ) ( ) ( ) ( )2 22

2 2 [given]  [9A.18b]
4π4π 4π

P r r R r R r
r

r r
ρ = = =  

where the radial wavefunctions are found in Table 9A.1. Substitution into eqn. 18A.3 for the scattering factor f 
yields a computational feasible expression for scattering from 1s (n = 1) and 2s (n = 2) atomic orbitals. 

 
( ) ( )

( )

2

0

2

0

sin 4π sin, , 4π ( , , ) d  [18A.3]     where     
4π

1 ( , , ) sin 4π d
4π

r
f Z n r Z n r r

r

R r Z n r r r

ξ θξ ρ ξ
ξ λ

ξ
ξ

∞

∞

= =

=

∫

∫
 

Plots of f against ξ are prepared in a  Mathcad Prime 2 worksheet. 

 

 

 
(a) Plot of scattering factor of a 1s hydrogen-like orbital against ξ = sin(θ)/λ for Z = 1 and 2. Scattering in the 
forward direction corresponds to θ = 0 and ξ = 0. The plot shows us that the scattering factor is a maximum in 

 
18:22 



 

the forward direction and it decreases as the reflection angle increases. The scattering factor decreases less 
rapidly for larger Z values. 

 

 
  
(b) Plot of scattering factor of a 2s hydrogen-like orbital against ξ = sin(θ)/λ for Z = 1 and 2. Scattering in the 
forward direction corresponds to θ = 0 and ξ = 0. The plot shows us that the scattering factor is a maximum in 
the forward direction and it decreases as the reflection angle increases. The scattering factor decreases less 
rapidly for larger Z values. Also, the 2s scattering factor decreases far more rapidly with θ than that of the 1s 
scattering factor of part (a) so we say that an increase in the principal quantum number n moves the scattering 
factor towards the forward direction while an increase in the atomic number effectively moves the scattering 
factor away from the forward direction. 
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19  Molecular motion 
 
19A  Transport properties of a perfect gas 
 

Answers to discussion questions 
 
19A.2 Simple molecular kinetic theory finds that the diffusion and viscosity coefficients are related to T, p, and 
the collision cross-section σ = πd 2 by the following expressions. It is important to recognize that these 
formulations are not applicable at either very low pressure where the mean free path becomes comparable to the 
container size or at very high densities where the mean free path becomes comparable to molecular size. Using 
L to represent container size, simple molecular kinetic theory approximately applies to the range σ << λ << L. 
 1

3 mean

rel rel1 1
3 3mean mean

rel

1/2

 [19A.10]

 [1B.12]  [1B.11b]
/

8  [1B.8]
3 π

D

z p kT

kT RT
p M

λ

σ

σ

=

  = =   
   

   = ×   
  

v

v vv v
v

  

The diffusion coefficient is inversely proportional to p so an increase in pressure causes the gas molecules to 
diffuse more slowly. The coefficient is proportional to T 3/2 so increasing the temperature causes molecules to 
diffuse more rapidly. The inverse relation to σ means that large molecules diffuse more slowly. Finally, simple 
kinetic theory predicts that the diffusion coefficient is inversely proportional to M 1/2 which means that 
molecules of larger mass diffuse more slowly. 

 
1/2

1/2

8 [19A.16c]
3 π

8
3 π

pMD pM kT RT
RT RT p M

k MT
R

η
σ

σ

    = = × ×    
    

   = ×   
  

 

Thus, the viscosity coefficient decreases with increasing size but it increases with increasing temperature as it is 
proportional to T 1/2. The gas phase viscosity is independent of pressure. Finally, the viscosity coefficient is 
proportional to M 1/2 so molecules of larger mass have greater viscosity. 
 
 

Solutions to exercises 
 

19A.1(b) For a perfect dinitrogen gas: 
A A 2

1 [1B.13]
[N ]

kT RT
p N p N

λ
σ σ σ

= = = . Thus, 

 

( ) ( )
( )

m1 1 1
3 3 3mean m 2 mean m 2 mean

A 2 A

1/2
m1

3
A

1 11 1
1

3 18 2 23 1

1[N ]  [19A.13b] [N ]
[N ]

8  [1B.8]
π

8 8.3145 J K  mol 29820.8 J K  mol
0.43 10  m 6.022 10  mol

V
V V

V

C
C C

N N

C RT
N M

κ λ
σ σ

σ

,
, ,

,

− −− −

− −

   
= = =   

   

   = ×   
  

  × ×
 = ×
 × × × 

v v v

( )
( )

1/2

3 1

2 1 1 1

 K

π 28.02 10  kg mol

1.3 10  J K  m  s

− −

− − − −

 
 
 × × 

= ×

 

Comment. This calculated value does not agree well with the value of κ  listed in Table 19A.1. 
Question. Can the differences between the calculated and experimental values of κ  be accounted for by the 
difference in temperature ( 298K here, 273K in Table 19A.1)? If not, what might be responsible for the 
difference? 
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19A.2(b) 1
3 mean

rel rel1 1
3 3mean mean

rel

1/2

1
3

 [19A.10]

 [1B.12]  [1B.11b]
/

8  [1B.8]
π

D

z p kT

kT RT
p M

λ

σ

σ

=

  = =   
   

   = ×   
  

v

v vv v
v

 

       
( ) ( )

( )
( ) ( )

( )

( )

1/223 1 1 1

1
3 18 2 3 1

2 1

1.381 10  J K 293.15 K 8 8.3145 J K  mol 293.15 K 1
/ Pa0.43 10  m Pa π 28.02 10  kg mol

11.48 m  s
/ Pa

p

p

− − − −

− − −

−

   × × × ×
   = × ×
   × × × ×   

= ×

 

 

( ) ( )
( )

A

A A A

2 1
5 1

1 1

2 1

d d [19A.3]
d d

d
d

1 1.48 m  s 1.20 10  Pa m
/ Pa8.3145 J K  mol 293.15 K

72.9 mol m  s
/ Pa

zJ N pD D
N N z N z RT

D p
RT z

p

p

−
−

− −

− −

 = − = −  
 

 = − 
 
    = − × × ×  ×   

= −





 

(i) p = 100.0 Pa, D = 1.5 m2 s−1 , Jz/NA = −0.73 mol m−2 s−1   
 
(ii) p = 100 kPa, D = 1.5×10−5 m2 s−1, Jz/NA = −7.3×10−6 mol m−2 s−1   
 
(iii) p = 20.0 MPa, D = 1.5×10−7 m2 s−1, Jz/NA = −3.6×10−6 mol m−2 s−1   
 
19A.3(b) For a perfect dihydrogen gas: CV,m = Cp,m – R = 28.824 J K–1 mol–1 − R = 20.510 J K–1 mol–1   

and 
A A 2

1 [1B.13]
[H ]

kT RT
p N p N

λ
σ σ σ

= = = . Thus, 

 

( ) ( )
( )

m1 1 1
3 3 3mean m 2 mean m 2 mean

A 2 A

1/2
m1

3
A

1 11 1
1

3 18 2 23 1

1[H ]  [19A.13B] [H ]
[H ]

8  [1B.8]
π

8 8.3145 J K  mol 220.510 J K  mol
0.27 10  m 6.022 10  mol

V
V V

V

C
C C

N N

C RT
N M

κ λ
σ σ

σ

,
, ,

,

− −− −

− −

   
= = =   

   

   = ×   
  

  × ×
 = ×
 × × × 

v v v

( )
( )

1/2

3 1

2 1 1 1

90 K

π 2.016 10  kg mol

7.34 10  J K  m  s

− −

− − − −

 
 
 × × 

= ×

 

 

( ) ( )2 1 1 1 1

2 1

d  [19A.4]
d

7.34 10  J K  m  s 8.5 K m

0.62 J m  s

z
TJ
z

κ

− − − − −

− −

= −

= − × ×

= −

 

 
19A.4(b) For a perfect dinitrogen gas: CV,m = Cp,m – R = 29.125 J K–1 mol–1 − R = 20.811 J K–1 mol–1   

m1 1 1
3 3 3mean m 2 mean m 2 mean

A 2 A

1/2
m1

3
A

1[N ]  [19A.13b] [N ]
[N ]

8  [1B.8]
π

V
V V

V

C
C C

N N

C RT
N M

κ λ
σ σ

σ

,
, ,

,

   
= = =   

   

   = ×   
  

v v v  
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Note: ( )
1/2 1/2

3 1 1 1 3 1 1 1
298 K 273 K

298 K 298 K 24.0 10  J K  m  s 25.1 10  J K  m  s
273 K 273 K

κ κ − − − − − − − −   = × × = ×   
   

  

Solve for σ. 

 

( ) ( )
( ) ( )

( )

1/2
m1

3
A

1/21 11 1
1

3 3 1 1 1 23 1 3 1

19 2 2

8
π

8 8.3145 J K  mol 298 K20.811 J K  mol
25.1 10  J K  m  s 6.022 10  mol π 28.02 10  kg mol

2.18 10  m 0.218 nm

VC RT
N M

σ
κ

,

− −− −

− − − − − − −

−

   = ×   
  

   × ×
   = ×
   × × × × ×   

= × =

 

The value reported in Table 1B.1 is 20.43 nm . Question: What approximations inherent in the equation used in 
the solution to this exercise are likely to cause a factor of 2 difference?  
 

19A.5(b) The thermal energy flux (“heat” flux) is described by: [ ]z
d(energy)  19A.4
d
TJ
z

κ= −  where the 

negative sign indicates flow toward lower temperature. This is the rate of energy transfer per unit area. The total 
rate of energy transfer across area A is 
 ( )energyd d

d dz
E TAJ At zκ= = −  

To calculate the temperature gradient with the given data, we assume that the gradient is in a steady-state. Then, 
recognizing that temperature differences have identical magnitude in Celsius or Kelvin units, 

 
( ) ( ){ } 3 1

2

0 70  Kd 1.4 10  K m
d 5.0 10  m

TT
z z

−
−

−∆
= = = − ×

∆ ×
 

We now assume that the coefficient of thermal conductivity of the gas between the window panes is comparable 
to that of nitrogen given in Table 19A.1: 1 1 10 0240 J K  m  sκ − − −≈ . .  Therefore, the rate of energy transfer, the 
rate of heat loss, toward the low temperature is 

 ( ) ( ) ( )1 1 1 2 3 1

1

d 0 0240 J K  m  s 2.00 m 1.4 10  K m
d
    62 J s      or     62 W

E
t

− − − −

−

≈ − . × × − ×

≈
 

 

19A.6(b) 
1/2

1/2

8 [19A.16c]
3 π

8
3 π

pMD pM kT RT
RT RT p M

k MT
R

η
σ

σ

    = = × ×    
    

   = ×   
   

 

Solve for σ. 

 

( ) ( )
( )

1/2

1/23 123 1
1

3 6 1 1 1 1 1

19 2 2

8
3 π

8 28.02 10  kg mol 273 K1.381 10  J K
166 10 10  kg m  s π 8.3145 J K  mol

4.24 10  m 0.424 nm

k MT
R

σ
η

− −− −

− − − − − −

−

   = ×   
  

 × × × ×  = ×   × × ×   

= × =

 

 

19A.7(b) 

( )
( )

7 1 1

1/2 1/2

1 23 123 1
1

3 18 2 1 1

 

8 8 [19A.16c]  [19A.10]
3 π 3 π

8 78.12 10 kg mol1.381 10  J K
0 88 10 m π 8 3145 J K  mol

(8.09 10 kg m s

pMD pM kT RT k MT
RT RT p M R

T

η
σ σ

− − −

− −− −

− − −

        = = × × = ×        
        

 × × × ×  = ×   . × × .   
= × 1 2 6 1 2) ( K) (8.09 10 P) ( K)T T/ − /× / = × × /

 

(i) At 273 K, η = 134 µP 
 
(ii) At 298 K, η = 140 µP 
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(iii) At 1000 K, η = 256 µP 
 
19A.8(b) ( ) ( ) 5 23.5 cm 4.0 cm 1.4 10  mA −= × = ×  
The collision frequency of the He gas molecules with surface area A equals ZWA. 

 

( )
( ) ( ) ( )

( ) ( ) ( ){ }

A
W 1/2

23 1 5 2

1/23 1 1 1

19 1

 [19A.17]
2π

111 Pa 6.022 10  mol 1.4 10  m
      

2π 4.00 10  kg mol 8.3145 J K  mol 1500 K

     5.29 10  s

paNZ A
MRT

− −

− − − −

−

=

× × × ×
=

× × ×

= ×

 

The number of helium molecule collisions within A in time interval t equals ZWAt if p does not change 
significantly during the period t. 

 ( ) ( )19 1 20
W 5.29 10  s 10 s 5.3 10Z At −= × × = ×  

 
19A.9(b) The mass loss equals the effusion mass loss multiplied by the time period t: 
 mloss = (rate of effusion) × t × m = (rate of effusion) × t × M / NA. 

 

( )

( ) ( ){ } ( ) ( ) ( )

0 A
loss 1/2

A

1/2

0

1/2
123

1 1

  [19A.17]
2π

      
2π

0.300 kg mol      0.224 Pa π 1.50 10  m 24 3600 s
2π 8.3145 J mol  K 450 K

      0.489 g

pA N Mtm
NMRT

MpA t
RT

−
−

− −

   
 = ×     

 = × 
 

 
 = × × × × ×
 × 

=

 

 
19A.10(b) The mass loss equals the effusion mass loss multiplied by the time period t: 
 mloss = (rate of effusion) × t × m = (rate of effusion) × t × M / NA. 

 
( )

1/2
0 A

loss 01/2
A

  [19A.17]
2π2π

pA N Mt Mm pA t
N RTMRT

      = × = ×        
 

Solving for p gives 

 
( ){ } ( )

( ) ( )

1/ 2
loss

0
1/ 21 16

123

3

2π

2π 8.3145 J mol  K 573 K277 10  kg  
0.200 kg molπ 0.25 10  m 500 s

  1.09 10  Pa

m RTp
A t M

− −−

−
−

 =  
 

 ××  =
 × ×  

= ×

 

 
19A.11(b) The pressure of this exercise changes significantly during time period t so it is useful to spend a 
moment finding an expression for p(t). Mathematically, the rate of effusion is the derivative –dN/dt. Substitution 
of the perfect gas law for N, N = pVNA/RT where V and T are constants, reveals that the rate of effusion can be 
written as (−NAV/RT)dp/dt. This formulation of the rate of effusion, along with eqn 19A.17, is used to find p(t). 

 
( )

0 AA
1/2

1/2
0

d   [19A.17]
d 2π

d
d 2π

pA NN V p
RT t MRT

pAp RT
t V M

 − = 
 

 = −  
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0

1/ 2

0

00

d d 2π     where     

d 1 d      where  is the initial pressure
p t

p

p t V M
p A RT

p t p
p

τ
τ

τ

 = − =  
 

= −∫ ∫
 

 
( ) /

0
0

ln      or     e tp t p t p
p

τ

τ
−= − =

 
The nitrogen and unknown fluorocarbon data can be used to determine the relaxation time, τ, for each. 

 
( ) ( )

unk
unk

0 unk

82.3 s 189 s
ln / ln 65.1/42.1

t
p p

τ = = =  

 
( ) ( )

2

2

2

N
N

0 N

18.5 s 42.4 s
ln / ln 65.1/42.1

t
p p

τ = = =  

 The above definition of τ shows that it is proportional to M1/2. Since the ratio of the relaxation times 
cancels the constant of proportionality, 

 

( )

2 2

2

2

1/ 2

unk unk

N N

2

unk
unk N

N

2
1 1189       28.02 g mol 557 g mol

42.4

M
M

M M

τ
τ

τ
τ

− −

 
=  

 

 
=   

 

 = × = 
 

 

 
19A.12(b) In Exercise 19A.11(b) it is shown that 

 ( )
1/2

/
0

0 0

2πln      or     e      where     tp t V Mp t p
p A RT

τ τ
τ

−  = − = =  
 

 

The relaxation time, τ, of nitrogen is calculated with the data. 

 
( )

( )
( ) ( )

1/23 13
7

2 1 13

2π 28.02 10  kg mol22.0 m 2.4 10  s 276 days
8.3145 J mol  K 293 Kπ 0.050 10  m

τ
− −

− −−

   ×  = × = × =   ××    

 

The time required for the specified pressure decline is calculated with the above eqn. 

 ( ) ( )0ln( / ) 276 days ln 122 /105 41.4 dayst p pτ= = × =  
 
 

Solutions to problems 
  

19A.1 m1 1 1
3 3 3mean m 2 mean m 2 mean

A 2 A

1/2
m1

3
A

1[N ]  [19A.13b] [N ]
[N ]

8  [1B.8]
π

V
V V

V

C
C C

N N

C RT
N M

κ λ
σ σ

σ

,
, ,

,

   
= = =   

   

   = ×   
  

v v v  

Thus, 
( )
( )

1/2
m300 K 300 K

1/2
10 K m 10 K

V

V

C T

C T
κ
κ

,

,

=  

 
The molar heat capacities at the two temperatures are estimated with the equipartition theorem. At 300 K the 
dihydrogen molecule has are three translational degrees of freedom and two rotational degrees of freedom, 
which gives ( ) 51

2 2,m 3 2VC R R≈ + = . At 10 K the rotational degrees of freedom are not significantly populated 
so there are three translational degrees of freedom alone, which gives 3

2,mVC R≈ .  

 
( )
( )

1/25
2300 K

1/2310 K 2

300 K
9.13

10 K

R

R
κ
κ

= =  
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19A.2 The number of molecules that escape in unit time is the number per unit time that would have collided 
with a wall section of area A equal to the area of the small hole. That is, 

 W 1/2  
d [19A.6]
d (2π )
N ApZ A
t mkT

−
= − =  

where p is the (constant) vapor pressure of the solid. The change in the number of molecules inside the cell in an 
interval t∆  is therefore WN Z A t∆ = − ∆ , and so the mass loss is 

 
1/2 1/2

2π 2π
m Mw Nm Ap t Ap t
kT RT

   ∆ = ∆ = − ∆ = − ∆   
   

 

Therefore, the vapor pressure of the substance in the cell is 

 
1/22πRTwp

A t M
−∆   = ×   ∆   

 

For the vapor pressure of germanium 

 ( ) ( )
( ) ( )

1/21 19

2 3 13

3

2π 8.3145 J K  mol 1273 K43 10  kg
72.64 10  kg molπ 0.50 10  m 7200 s

7.3 10  Pa 7.3 mPa

p
− −−

− −−

−

   × ××   = ×
   ×× × ×   

= × =

 

 
19A.3 An effusion oven has constant volume, fixed temperature, and effusion hole of area A.  Gas escapes 
through the hole, which makes the effusion rate negative. 

 
( )

A
W 1/2

d    [19A.6]
d 2π

pANN Z A
t MRT

− = =  

For a perfect gas, pV = nRT = NRT/NA and, therefore, N = NApV/RT. Differentiation gives  Ad d
d d

N VN p
t RT t

= . 

Substitution yields: 

 
( )

A A
1/2

1/2 1/2

d
d 2π

d 2π      where the time constant is 
d 2π

N V pANp
RT t MRT

p RT A p M Vp
t M V RT A

τ
τ

= −

   = − = − =   
   

 

 
0 0

1/2
/

0
0

d d

d 1 d

2πln           or          e  where 

p t

p

t

p t
p

p t
p

p t M Vp p
p RT A

τ

τ

τ

τ
τ

−

= −

= −

   = − = =   
  

∫ ∫  

When t = t1/2, p = ½ p0.  Substitution into the above equation gives 

 
1/2

0 1/2
1/2

0

2πln             or          ln(2) ln(2)
2
p t M Vt
p RT A

τ
τ

   = − = =   
  

 

 
The final equation indicates that the half-life for effusive loss is independent of p0.  Furthermore, the half-life 
increases with both the V/A and M 1/2 factors.  It decreases with the factor T –1/2. 
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19B Motion in liquids 
 

Answers to discussion questions 
 
19B.2 According to the Grotthuss mechanism, there is an effective motion of a proton that involves the 
rearrangement of bonds in a group of water molecules. Attention now focuses on the +

9 4H O  unit in which the 
nearly trigonal planar +

3H O  ion is linked to three strongly solvating 2H O  molecules. This cluster of atoms is 
itself hydrated, but the hydrogen bonds in the secondary sphere are weaker than in the primary sphere. It is 
envisaged that the rate-determining step is the cleavage of one of the weaker hydrogen bonds of this secondary 
sphere (Fig. 19B.1a). After this bond cleavage has taken place, and the released molecule has rotated through a 
few degrees (a process that takes about 1 ps), there is a rapid adjustment of bond lengths and angles in the 
remaining cluster, to form a +

5 2H O  cation of structure 2 2H O H OH+⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (Fig. 19B.1b). Shortly after this 
reorganization has occurred, a new +

9 4H O  cluster forms as other molecules rotate into a position where they can 
become members of a secondary hydration sphere, but now the positive charge is located one molecule to the 
right of its initial location (Fig. 19B.1c). According to this model, there is no coordinated motion of a proton 
along a chain of molecules, simply a very rapid hopping between neighbouring sites, with low activation energy. 
The model is consistent with the observation that the molar conductivity of protons increases as the pressure is 
raised, for increasing pressure ruptures the hydrogen bonds in water. 
 
Figure 19B.1 

 
 
 
  
Solutions to exercises 
  
19B.1(b) We take the natural logarithm of eqn 19B.2 and solve for the activation energy, Ea. 

 

a

1 2

/
0

0 a

a

1 2

e   [19B.2]
ln ln /

1 1ln ln

E RT

T T

E RT

E
R T T

η η
η η

η η

=

= +

 
− = × − 

 

 

Therefore, 
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( )

( ) ( )

1 2

a

1 2

1 1
1

ln /

1 1

8.3145 J K  mol ln 1.554 /1.450
   2.6 J mol

1 1
293 K 313 K

T TR
E

T T

η η

− −
−

=
 

− 
 

×
= =

 − 
 

 

 
19B.2(b) Molar ionic conductivity is related to mobility by 

 ( ) ( )8 2 1 1 1

3 2 1

  [19B.13]

1 4 24 10 m  s  V 96485 C mol

4.09 10  S m mol

zuFλ
− − − −

− −

=

= × . × ×

= ×

 

19B.3(b)  [19B.11]s u= E  and   [19B.7]
l
φ∆

=E  

Therefore, 

 8 2 1 1
3

4 1 1     

24 0V (4.01 10 m s V )
5 00 10 m

 1.92 10 m s or     192 μm s

s u
l
φ

− − −
−

− − −

∆ =  
 

 .
= × × . × 

= ×

 

 
19B.4(b) The limiting molar conductivities of KF, KCH3CO2, and Mg(CH3CO2)2 are 12.89 mS m2 mol−1, 11.44 
mS m2 mol−1 and 19B.78 mS m2 mol−1, respectively (all at 25 °C). What is the limiting molar conductivity of 
MgF2 at this temperature?  
The limiting molar conductivity of a dissolved salt is the sum of formula-weighted limiting molar conductivities 
of the formula ions, so 

 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ){ }

2+o o o o
m m 3 m m 32 2 2

2 1 2 1

= 2 F Mg CH CO 2 KF 2 K CH COMgF Mg

 18.78 2 12.89 2 11.44  mS m  mol 21.68 mS m  mol

Λ λ λ Λ Λ Λ−

− −

+ = + −

= + − =
 

 

19B.5(b)  [19B.13]u
zF
λ

= ; z = 1; 1 1 11 S 1 1 C V  s− − −= Ω =  

 
2 1

5 1 2 8 2 1 1
4 1

5.54 mS m  mol(F ) 5.74 10 mS C m 5.74 10  m  V  s
9 6485 10 C mol

u
−

− − − − − −
−= = × = ×

. ×
 

 
2 1

8 2 1 1
4 1

7.635 mS m  mol(Cl ) 7.913 10  m  V  s
9 6485 10 C mol

u
−

− − − −
−= = ×

. ×
 

 
2 1

8 2 1 1
4 1

7.81 mS m  mol(Br ) 8.09 10  m  V  s
9 6485 10 C mol

u
−

− − − −
−= = ×

. ×
 

 
19B.6(b) 1 1 1 [19B.19b];  1 P 10  kg m  s6π

kTa Dη
− − −= =  

 ( ) ( )
( ) ( )

23 1
10

3 1 1 9 2 1

1 381 10  J K 298 K
2.07 10 m     or     207 pm

6π 1.00 10  kg m  s 1.055 10  m  s
a

− −
−

− − − − −

. × ×
= = ×

× × × ×
 

 

19B.7(b)  [19B.16];  1;  1 C V 1 JuRTD z
zF

= = =  

 
( ) ( ) ( )8 2 1 1 1 1

9 2 1
4 1

4.24 10 m  V s 8.3145 J K  mol 298 K
1.09 10 m  s

1 9.6485 10  C mol
D

− − − − −
− −

−

× × ×
= = ×

× ×
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Solutions to problems 
 
19B.4 a /

a

e   [19B.2]
ln constant / ,

E RT

E RT
η

η
∝

= +
 

Substitute the base 10 logarithm relationship ln(z) = log(z)×ln(10), thereby giving 
 alog constant / ln(10)E RTη = +  
The constant is evaluated with the viscosity at T20 = 293.15 K, thereby providing the relationship 

 ( ) a
20

20

1 1log /
ln(10)

E
R T T

η η
  

= × −  
   

 

Inspection of the equation reveals that a plot of ( )20log /η η  against 1/T has a slope equal to Ea/ln(10)R. Thus, 

we prepare the requisite plot using the empirical relationship provided in the problem to compute ( )20log /η η  

values in the range 20–100° C, and perform a linear regression fit of ( )20log /η η  against 1/T, shown in Fig. 
19B.2. This yields the slope from which we calculate Ea with the expression Ea = slope×ln(10)R.  

 ( ) ( )1 1 1
a 774 K ln(10) 8.3145 J K  mol 14.8 kJ molE − − −= × × =  

 
Figure 19B.2 
 

19B.5 Conductivity is inversely proportional to resistance: 1   [19B.3]
R

κ ∝  

Because both solutions are aqueous, their conductivities include a contribution of 176 mS m−  from the water. 
Therefore, 

 (acid soln) (acid) (water) (KCl soln) 33 21 
(KCl soln) (KCl) (water) (acid soln) 300 0 

R
R

κ κ κ
κ κ κ

+ . Ω
= = =

+ . Ω
 

Hence, 

 
{ }

{ } 1 1

33.21(acid) (KCl) (water) (water)
300.0

33.21            1163.9 76 76  mS m 61 mS m
300.0

κ κ κ κ

− −

 = + × − 
 

  = + × − =    

 

 

m

1
1 3 3 2 1 1 3 3 4 2

3

2 1

 [19B.4]

61 mS m     61 10  S m  mol 61 10  S cm  mol
0.100 mol dm

     6.1 S cm  mol

c
κΛ

−
− − − − − +

−

−

=

= = × = ×

=

 

 

y = 773.63x − 2.6423 
R² = 0.9961 

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.0026 0.0028 0.003 0.0032 0.0034 0.0036

lo
g(

η/
η 2

0)
 

K/T 
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19B.6  [19B.11]s u= E   with 1100 V [19B.7] 20.0 V cm
5.00 cml

ϕ −∆
= = =E  

Table 19B.2 provides the ion mobilities, u. 

 + 4 2 1 1 1 1(Li ) (4 01 10  cm  s  V ) (20.0 V cm ) 80.2 μm ss − − − − −= . × × =  

 + 4 2 1 1 1 1(Na ) (5.19 10  cm  s  V ) (20.0 V cm ) 104 μm ss − − − − −= × × =  

 + 4 2 1 1 1 1(K ) (7.62 10  cm  s  V ) (20.0 V cm ) 152 μm ss − − − − −= × × =  

 1

5 0 cm( ) 623 sLi 80.2 μm s
t +

−

.
= = , (Na ) 481 st + = ,           (K ) 329 st + =  

(a) For the distance moved during a half-cycle, write 
1/2 1/2 1/2

0 00 0 0
d d sin(2π ) d [ sin(2π )]

v v v
d s t u t u vt t vt= = = =∫ ∫ ∫E E E E  

 
1

3 10
03 1  

(20.0V cm )    [assume 20V] 3 18 10  V s cm
π π (2 0 10 s )

u u u
v

−
− −

−

×
= = = = . ×

× . ×
E

E  

That is,  3 2 1 1cm (3 18 10 ) ( cm V s )d u− − −/ = . × × /  

 3 4(Li ) (3 18 10 ) (4 01 10 cm) 12.8 nmd + − −= . × × . × =  

 (Na ) 16.5 nmd + =   

 (K ) 24.2 nmd + =  

(b) These correspond to about 43 , 55 , and 81 solvent molecule diameters, respectively. 
 

19B.7   [19B.16]     and     [19B.12]
6π

uRT zeD a
zF uη

= =  

 
( ) ( )1 1

2
1

8.3145 J K  mol 298.15 K
2 569 10 V

96485 C mol

u
D u

− −
−

−

× ×
= = . × ×  

So, 2 1 2 2 1 1
   (cm s ) (2 569 10 ) (cm s V )D u− − − −/ = . × × /  

 
19

3 1 1

18 1
 2 2

 

1 602 10 C
(6π) (0 891 10 kg m  s )

9 54 10  m sC kg  (1 J 1 C V  1 J 1 kg m s )

a
u

u

−

− − −

− −
−

. ×
=

× . × ×

. ×
= = = , =

 

 
14

2 1 1

9 54 10m
cm  s  V

a
u

−

− −

. ×
/ =

/
 

Therefore, 
2

2 1 1

9 54 10pm
cm  s  V

a
u

−

− −

. ×
/ =

/
 

 We can now draw up the following table using data from Table 19B.2. 
  

 Li+  Na+  K+  Rb+  
4 2 1 1/(10  cm  s  V )u − − −  4.01 5.19 7.62 7.92 

5 2 1/10  cm  sD − −  1.03 1.33 1.96 2.04 
/ pma  238 184 125 120 

 
The ionic radii themselves (i.e. their crystallographic radii) are 
 

 Li+  Na+  K+  Rb+  
/ pmr+  59 102 138 149 

  
and it would seem that K+ and Rb+ have effective hydrodynamic radii that are smaller than their ionic radii. The 
effective hydrodynamic and ionic volumes of Li+ and Na+ are 34

3 πa  and 34
3 πr+ , respectively, and so the 

volumes occupied by hydrating water molecules are 
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(a) Li+: 3 3 36 3 29 34
3 π (238 59 ) 10 m 5 56 10 mV − −∆ = × − × = . ×  

(b) Na+: 3 3 36 3 29 34
3 π (184 102 ) 10 m 2 16 10 mV − −∆ = × − × = . ×  

The volume occupied by a single 2H O  molecule is approximately 3 29 34
3 π (150pm) 1 4 10 m−× = . ×  

Therefore, Li+ has about four  firmly attached 2H O  molecules whereas Na+ has only one to two  (according 
to this analysis). 
 
19B.8‡ +AB A B−+  

 ( )
( )

2 2

  where  is the degree of ionization
1 1c

c cK K K K K
cγ γ γ

α α α
α α

= = =
− −

 

Thus,  2

1–K c
K

γ α
α

=  

Now the molar conductivity is related to the degree of ionization by 
 ( )m – m, 1 m m, 1    so that    /Λ u u F Λ Λ Λα αα α α+ = == + = =  
Substitution into the equilibrium expression gives 

 

2

m

mm, 1

m, 1

2 2

m m m
2

m, 1 m, 1 m, 1

1

1–

1–1–

ΛK K c
ΛΛ
Λ

K cΛ Λ Λ
Λ Λ K Λ

γ
α

α

γ

α α α

α
α

=

=

= = =

 
    =        
 

     = × =             

 

and division by Λm gives the desired result. 

 
( )
( )

m
2

m m, 1 m, 1

1–1 1 Λ
Λ Λ Λα α

α

α= =

= +  

We must also examine the meaning of m, 1Λ α = . 

 ( )m, 1 – ions
ions

 [19B.4]   where  is the actual ion concentrationΛ u u F c
c cα
κ κ

α= += + = =  

Examination of the above relation tells us that m, 1Λ α =  is the molar conductivity of a solution for which ionization 
is complete but the preparation (analytical) concentration is αc. Consequently, by Kohlrausch’s law (eqn 19B.5) 
we conclude that  

 ( )1/ 2o
m, 1 mΛ Λ cα α= = −K  

 

19C  Diffusion 
 

Answers to discussion questions 
 
19C.2 The diffusion equation, also called “Fick’s second law of diffusion”, relates the rate of change of 
concentration to the spatial variation of the concentration at that point: 

 
2

2  [19C.7]c cD
t x

∂ ∂
=

∂ ∂
 

Physically, the diffusion equation accounts for the observation that, when the curvature of the concentration 

gradient (i.e., x
c c

x x x
∂ ∂ ∂  = ∇ ∂ ∂ ∂ 

) is positive within a small, macroscopic volume, mass moves spontaneously 

into the volume so as to increase c at a rate governed by the diffusion coefficient. If the curvature is negative 
within a small, macroscopic volume, mass moves spontaneously out of the volume so as to decrease c. If the 
curvature is zero, there is a steady-state distribution such that c within the small volume does not change in time; 
the net inflow of mass is balanced by the net outflow. 
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Solutions to exercises 
 
19C.1(b) Equation [19C.14], 2 2x Dt= , gives the mean square distance traveled in any one dimension in time 
t. We need the distance traveled from a point in any direction .The distinction here is the distinction between the 
one-dimensional and three-dimensional diffusion. The mean square three-dimensional distance can be obtained 
from the one-dimensional mean square distance since motions in the three directions are independent.  

2 2 2 2  [Pythagorean theorem]r x y z= + + , 

 2 2 2 22

2

3  [independent motion]

3 2  [19C.14 for ]

6

r x y z x

Dt x

Dt

= + + =

= ×

=

 

Therefore, 
2 2

3
9 2 1

(0.010 m) 7.4 10 s
6 (6) (2.26 10 m s )
r

t
D − −= = = ×

× ×
 

  
19C.2(b) The diffusion equation solution for these boundary conditions is provided in eqn 19C.11 with 

 ( ) 22
0 2

1 mol I
10.0 g 3.94 10  mol I

253.80 g
n − 

= × = × 
 

, 

 A = 10.0 cm2, D = 4.05 × 10–9 m2 s–1, and x = 5 cm. 

 ( )
( )

2 /40
1/2, e  [19C.11]

π
x Dtn

c x t
A Dt

−=  

 
( )

( ) ( ){ }
( ) ( )

( ) ( ) ( ) ( )

2 9 2 1

5

2
0.050 m /4 4.05 10  m  s

1/24 2 9 2 1 1/2

1.54 10 / /s1/25 3

3.94 10  mol10 cm, e
10.0 10  m π 4.05 10  m  s

                3.49 10  mol m /s e

t

t

c t
t

t

− −−
− × × ×

− − −

− ×−−

×
=

× × ×

= × ×

 

(i) t = 10 s: 

 ( ) ( ) ( ) ( ) ( )51.54 10 / 101/25 3 35 cm,10 s 3.49 10  mol m 10 e 0.00 mol dmc − ×−− −= × × =  
 
(ii) t = 24 × 3600 s = 8.64 × 104 s: 

 ( ) ( ) ( ) ( ) ( )5 41/2 1.54 10 / 8.64 104 5 3 4

3 3

5 cm,8.64 10  s 3.49 10  mol m 8.64 10 e

                                 200. mol m 0.0200 mol dm

c
− − × ×−

− −

× = × × ×

= =
 

 
19C.3(b) The parabolic decay/growth in concentration c has the form ( ) 2

0c x c Ax= −  where c0 is the 
concentration at x = 0 and the constant A is determined by the condition that c(8 cm) = ½c0. 

 
( )

( )
( ) ( )

1
0 2 3 2 20 0

0 02 2 7.81 10  cm 78.1 m
8 cm

c c x c c
A c c

x
− − −− −

= = = × × = ×  

The concentration becomes negligibly small at |x| = 11.3 cm so computations are limited to values of x for which 
|x| < 11.3 cm.  The thermodynamic force is determined with eqn 19C.2b. 

 

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )

2
0

2 1 1

3 2 2

1

23

d d 2 [19C.2b]
d d

2 78.1 m 8.3145 J K  mol 298 K
       

1 7.81 10  cm

3.87 kN mol / cm
       

1 7.81 10 / cm

RT c RT ARTxx c Ax
c x c x c

x

x

x

x

− − −

− −

−

−

= − = − − =

× × × ×
=

− × ×

×
=

− × ×

F
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 ( )
( )

( ) ( )

1
1

23

3.87 kN mol 8
8 cm +61.9 kN mol

1 7.81 10 8

−
−

−

×
= =

− × ×
F  

 ( )
( )

( ) ( )

1
1

23

3.87 kN mol 11
11 cm +774 kN mol

1 7.81 10 11

−
−

−

×
= =

− × ×
F  

The positive force indicates that the force points toward larger values of |x| values. 
 
19C.4(b) The Gaussian decay in concentration c has the form ( ) 2

0e
Axc x c −=  where c0 is the concentration at x = 

0 and the constant A is determined by the condition that c(10 cm) = ½c0. 

 
( )

( )
( ) ( )0 2 1 1

2 2

ln / ln 2 0.010 cm ln 2 1.00 cm  m ln 2
10 cm

c c
A

x
− − −= = = × = ×  

The thermodynamic force is determined with eqn 19C.2b. 

 

( )

( ) ( ) ( ) ( )
( ) ( )

2

0

1 1 1

1

d d [19C.2b] e 2
d d

       2 1.00 m ln 2 8.3145 J K  mol 291 K / cm

       3.35 kN mol / cm

AxRT c RTx c ARTx
c x c x

x

x

−

− − −

−

= − = − =

= × × × × ×

= ×

F

 

 ( ) ( ) ( )1 110 cm 3.35 kN mol 10 33.5 kN mol− −= × =F  
 
19C.5(b) Equation [19C.14], 2 2x Dt= , gives the mean square distance travelled in any one dimension in 
time t. We need the distance travelled from a point in any direction. The distinction here is the distinction 
between the one-dimensional and three dimensional diffusion. The mean square three dimensional distance can 
be obtained from the one dimensional mean square distance since motions in the three directions are 
independent. Since 2 2 2 2  [Pythagorean theorem]r x y z= + + , 

 2 2 2 22 3  [independent motion]r x y z x= + + =  
  3 2  [19C.14] 6Dt Dt= × = . 

Therefore, 
2 2 2

3
9 2 1

(1 0 10 m) 4.1 10  s
6 6 (4.05 10 m s )
r

t
D

−

− −

. ×
= = = ×

× ×
 

 
19C.6(b) 1 1 1 [19B.19b];  1 P 10  kg m  s6π

kTa Dη
− − −= =  

 
( ) ( )

( ) ( )
23 1

10
3 1 1 9 2 1

1 381 10  J K 298 K
2.07 10 m 207 pm

6π 1.00 10  kg m  s 1.055 10  m  s
a

− −
−

− − − − −

. × ×
= = × =

× × × ×
 

 
19C.7(b) The Einstein–Smoluchowski equation [19C.16] relates the diffusion constant to the jump distance λ 
and time τ required for a jump. 

 
2

 [19C.16]
2

D λ
τ

=  so 
2

2D
λτ =  

If the jump distance is about one molecular diameter, or two effective molecular radii, then the jump distance 
can be obtained by use of the Stokes–Einstein equation[20.52]. 

 2 2  [19B.19b]
6π 3π

kT kTa
D D

λ
η η

 
= = = 

 
 

 
( )

( ) ( )
( ) ( )

2
3 1 1

heptane

223 1

9 2 1 3 1 1 9 2 1

11

1  [ 0.386 10  kg m  s , CRC     ]
2 3π

1.381 10  J K 298 K1  
2 3.17 10  m  s 3π 0.386 10  kg m  s 3.17 10  m  s

  2.01 10

kT Handbook Chemistry and Physics
D D

τ η
η

− − −

− −

− − − − − − −

−

 
= × = × 

 

 × × = ×  
× × × × × ×  

= ×  s 20.1 ps=
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Comment. In the strictest sense we are dealing with three dimensional diffusion. However, since we are 
assuming that only one jump occurs, it is probably an adequate approximation to use an equation derived for one 
dimensional diffusion. For three dimensional diffusion the equation analogous to eqn 19C.16 is τ = λ2/6D. 
Question. Can you derive the equation? Use an analysis similar to that described in the solution to Exercise 
19C.5(a and b). 
 
19C.8(b) For three dimensional diffusion we use an equation analogous to eqn 19C.16 derived in Exercise 
19C.5(a and b). 

 
2

6

r
t

D
=  

(i) ( )22 3 6 21.0 10  m 1.0 10  mr − −= × = ×  

For iodine in benzene [Data from Table 19B.3]:  
6 2

9 2 1

1.0 10  m 78 s
6 (2 13 10  m  s )

t
−

− −

×
= =

× . ×
 

For sucrose in water:  
6 2

9 2 1

1.0 10  m 319 s
6 (0 522 10  m  s )

t
−

− −

×
= =

× . ×
 

(ii) ( )22 2 4 21.0 10  m 1.0 10  mr − −= × = ×  

For iodine in benzene [Data from Table 19B.3]:  
4 2

3
9 2 1

1.0 10  m 7.8 10  s 2.2 h
6 (2 13 10  m  s )

t
−

− −

×
= = × =

× . ×
 

For sucrose in water:  
4 2

4
9 2 1

1.0 10  m 3.2 10  s 8.9 h
6 (0 522 10  m  s )

t
−

− −

×
= = × =

× . ×
 

 
 

Solutions to problems 
 

19C.9   d  [19C.2b] with the axis origin at the center of the tube
d
cRT

c x
= − ×F  

 3 1 3 1
 2 48 10  J mol 2 48 10 N m molRT − −= . × = . ×  

 

2

2

3 2
0 0

0

( ) e  where 0.100 mol dm  and 0.10 cm
d 2 e 2
d

ax

ax

c c x c c a
c axc axc
x

− − −

−

= = = =

= − = −
 

  
Thus, the thermodynamic force per mole is given by the expression  

 ( )1 12 50. kN cm  molaRTx x− −= =F   

while the force per molecule is given by 

 ( )23 1 1
A2 / 8.2 10  kN cm  moleculeaRTx N x− − −= = ×F   

A plot of the absolute force per mole against x is shown in Fig. 19C.1. It demonstrates that mass is pushed by 
the thermodynamic force toward the ends of the tube where the concentration is lowest; a negative force pushes 
toward the left (i.e., x < 0), positive force pushes toward the right (i.e., x > 0). 
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Figure 19C.1 

 
 

19C.10   
( )

( ) ( )2 /40
03/2( , ) e   [19C.12] where 10.0 g 1 mol/342.3 g 0.0292 mol

8 π
r Dtn

c r t n
Dt

−= = × =  

Using D = 5.22 × 10–6 cm2 s–1 = 5.22 × 10–8 dm2 s–1 and r = 10 cm, the working equation becomes 

 
( )

( )6
7 3

4.79 10 / / s
3 / 2

5.50 10  mol dm(10 cm, ) e
/ s

tc t
t

−
− ××

=  

(a) 1 hr = 3600 s 

 
( )

( )6
7 3

4.79 10 / 3600 3
3/ 2

5.50 10  mol dm(10 cm,1 hr) e 0.00 mol dm
3600

c
−

− × −×
= =  

(b) 1 wk = 6.048 × 105 s 

 
( )

( )6 57 3
4.79 10 / 6.048 10 5 3

3/ 25

5.50 10  mol dm(10 cm,1 wk) e 4.25 10  mol dm
6.048 10

c
−

− × × − −×
= = ×

×
 

 

19C.11  The generalized diffusion equation is: [ ]
2

2  19C.10c c cD
t xx

∂ ∂ ∂
= −

∂ ∂∂
v . 

We confirm that ( ) ( )2
0

1 2, e b x x t tac x t
t

− − −= v , where 
( )

0
1 2

1 and 
44π

c
a b

DD
= = , is a solution to the generalized 

diffusion equation by taking the partial derivative w/r/t time and both the first and second partials w/r/t position 
to find whether they are related by eqn 19C.10. 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
0 00 0

3 2 1 2

0 0

1 e 2 e
2

    2
2

b x x t t b x x t tb x x t x x tc a a
t t tt t

b x x t x x tc c
t t t

− − − − − −− − − −         ∂ = − × + × × +      ∂           
− − − −      = − + × + ×   

      

v vv v
v

v v
v

 

 
( ) ( ) ( )2

00 0
1 2

2 2
e b x x t tb x x t b x x tc a c

x t tt
− − −− − − − − −   ∂     = × = ×    ∂         

vv v
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( )

( )

( ) ( )

( )

2
0

2

0

0 0

2
0

2

22

2 22

22

b x x tc c c
x x x tx

b x x tb cc
t t x

b x x t b x x tb c c
t t t

b x x tb c c
t t

 − − − ∂ ∂ ∂ ∂  = = ×  
∂ ∂ ∂∂     

− − − − ∂ = × + × 
∂  

− − − − − −   −    = × + × ×   
      

− − −  = × + × 
  

v

v

v v

v

 

Thus, 

 

( ) ( )

( ) ( ) [ ]

( ) ( )

22
0 0

2

2
0 0

0 0

2 22

21           1 / 4
2

2
2

b x x t b x x tc c bD D c c c
x t t tx

x x t b x x t
c b c c D b

t t t

b x x t x x tc c
t t t

 − − − − −   ∂ ∂ −     − = × + × − ×     
∂∂         

− − − −   −    = × + × + × =   
      
− − − −   −    = + × + ×   

      

v v
v v

v v
v

v v
v

 as required.c
t

∂=
∂

 

Initially the material is concentrated at 0x x=  because 0c =  for 0 0x x− >  when 0t =  on account of the very 

strong exponential factor ( )( )0
2

1 2
1e 0 more strongly than b x x t

t
− − → → ∞ . The term x0 + 𝑣𝑣 t in the concentration 

expression is the movement of the centroid due to fluid flow, xcentroid. 
 
To prepare a very general set of concentration profiles at a series of times without specifying either x0, 𝑣𝑣, or D, 
define z and C as follows. 

( ) ( )
centroid

1/ 2 1/ 2
0

 and 
/ 4  h 4  h

x xcC z
c D D

−
≡ ≡

π
 

The hour (h) has been chosen for the unit because of the slow pace of diffusion activity. With these definitions 
the concentration expression becomes 

( )
( )2 / / h

1/ 2

1( , ) e
/ h

z tC z t
t

−=  

Concentration profiles as C against t at various times (1, 5, and 20 h) are displayed in Fig. 19C.2. 
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Figure 19C.2 

 
 

19C.12  ( )
( )

2 4 2 2 2 20
3/2, e  [19C.12] where 

8 π
r Dtn

c r t r x y z
Dt

−= = + +  

 

( )
( )

( )
( )

( )
( )

( )

( )
( ) ( )

2

2

ln , , ,1 1
, ,

,1               2
, 4 2

rc r t c r t c r t
x c r t x c r t xr

c r t xx
c r t Dt Dt

∂∂ ∂ ∂
= =

∂ ∂ ∂∂

−  = × × = − 
  

 

Likewise, 
( ) ( )ln , ln ,

 and 
2 2

c r t c r ty z
y Dt z Dt

∂ ∂
= − = −

∂ ∂
 

Thus, 

 ln      where     
2
RTRT c x y z
Dt

F r r i j k= − ∇ = = + +  

 
19C.13  Using the definitions N = NR + NL and n = NR − NL, solve for NR and NL to find 
 NR = ½(N + n)     and     NL = ½(N − n) 
Following the discussion of Justification 19C.2, we then have 

 
( )

{ } { }

R

L R

number of paths with  steps to the right !( )
total number of paths ! ! 2

!
( ) ! ( ) ! 2

N

N

N NP n
N N

N
N n N n

λ = =

=
+ −½ ½

 

This is the "exact" random walk probability. After application of Stirling's approximation we have the 
"approximate" probability. PApprox may be written in terms of the variables (x,t) or (n,N) because x = nλ and t = 
Nτ. 

 
2 2 2

1/2 1/2
/2 /2

Approx  [192 2e e
π

C.1 ]
π

5x t n NP
t N

τ λτ − −=   =    
   

 

We calculate the probability P of being at x = 6λ for N = 6, 8,...180 using Mathcad Prime 2 and we plot PExact 
against N. We include a plot of the fractional deviation of PApprox against N from which we see that the deviation 
drops below 0.1% when N > 60. 
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19C.14  Eqn 19C.14, 2 2x Dt= , gives the mean square distance traveled in any one dimension in time t. We 
need the distance traveled from a point in any direction. The distinction here is the distinction between the one-
dimensional and three-dimensional diffusion. The mean square three-dimensional distance can be obtained from 
the one-dimensional mean square distance since motions in the three directions are independent. 
 
 2 2 2 2  [Pythagorean theorem]r x y z= + +  

 2 2 2 22

2

3  [independent motion]

3 2  [81.14 for ] 6

r x y z x

Dt x Dt

= + + =

= × =

 

 
Therefore,  

 
2 6 2 2

11 2 1
(1 0 10 m) 1.7 10 s

6 6(1 0 10 m s )
r

t
D

−
−

− −

. ×
= = = ×

. ×
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Integrated activities 
 
19B.2 The rate constant, kr, for a transport process in which a molecule and its hydration sphere move a single 
step is governed by the activation energy for the step, Ea, where the general definition of activation energy is 

2 r
a

d ln
d

kE RT
T

 =  
 

 

We expect that larger viscosities should retard the rate constant so let us assume that kr is inversely proportional 
to the viscosity. Then, 

( )r

r

2

a

a
2

ln constant ln
d ln 1 d

d d
d
d

d d

k
k

T T
RTE

T
E T
R T

η

η
η

η
η

η
η

= −

= −

= −

 = − 
 

 

In the case for which Ea is independent of temperature, the above working equation can be integrated. We chose 
the lower integration limit to be the viscosity at a reference temperature Tref, ηref. The upper integration limit is 
the viscosity at temperature T, η. 

 
ref ref

a a ref

a
2

/ /a
ref

ref ref

d d

1 1ln      or     e  where e

T

T

E RT E RT

E T
R T

E
A A

R T T
−

 = − 
 

    = × − = =    
    

∫ ∫
η

η

η
η

η η η
η

 

Thus, we see that, when Ea is a constant, the pre-exponential factor A is a constant and a /eE RT∝η [19B.2]. This 

demonstrates that the general definition 2 r
a

d ln
d

kE RT
T

 =  
 

 is compatible with eqn. [19B.2] when the activation 

energy is a constant.  

We explore the possibility that the Problem 19B.2 empirical equation for the viscosity of water reflects an 
activation energy that has a dependence upon temperature by applying the above working equation prior to the 
constancy assumption. The reference temperature is 20° C and from the CRC Handbook (71st ed., 1990-1991) 
η20 = 1002 μPa s = 1.002 × 10–3 kg m–1 s–1 (the value is not actually necessary in the following calculations). 

 

( ) ( ) ( ){ } ( )

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ) ( )

220 / C 20 / C / / C

20

2( )
20

( ) ( )
20 20

10  [Problem 19B.2] where 1.3272,  0.001053,  and 105

10  where /  C and ( ) 20 20 /

d d d d10 10 ln 10 ( ) ln 10 ( )
d d d d

    

a b c

f x

f x f x

a b c

x x f x a x b x x c

f x x f x
x x x x

θ θ θ
η θ η

η η θ

η η η η

− ° − − ° ° +
= = = =

= = ° = − − − +

= = × × = × ×

= ( ) ( ) ( ) ( ) ( )
( )

2

2

2 20 20 20
ln 10

a b x a x b x
x

x c x c
η

 − + − − − − × × − 
+ +  

 

( )
( )

( )
( )

( ){ } ( ) ( ) ( ) ( )
( )

22

a

2
2

2

273.15 K dd
d d

2 20 20 20
   273.15 K ln 10

R x xRTE
T x x

a b x a x b x
R x

x c x c

× +
= − = −

 − + − − − − = − × + × × − 
+ +  

ηη
η η

 

This equation is used to make the plot of Ea against θ/°C (i.e., x) shown in Fig. 19.1. The activation energy drops 
from 17.5 kJ mol–1 at 20° C to 12.3 kJ mol–1 at 100° C. This decrease may be caused by the density decrease 
that occurs across this temperature range because the increased average intermolecular distance may cause a 
decrease in the hydrogen bond strength between water molecules. There may also be a decrease in the hydration 
sphere of a molecule, thereby, making movement easier. 
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Figure I19.1 
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20     Chemical Kinetics  

20A  The rates of chemical reactions 
 

Answers to discussion question 
 
D20A.2     Reaction orders need not be integers, except for elementary reactions.  Indeed, reaction orders can 

change during the course of the reaction.  Consider the zero-order reaction mentioned in the text 
(Section 20A.2(c)), the decomposition of phosphine on hot tungsten.  As long as enough phosphine 
is present, the rate of reaction is independent of that concentration; what limits the rate is the 
availability of catalytic sites on the tungsten.  Clearly the integrated rate law for a zero-order reaction 
cannot be correct at long times, where it would predict negative concentrations.  Before that 
unphysical situation would occur, the concentration of the reactant drops to such an extent that it 
limits the rate of reaction, and the reaction order changes from zero to a non-zero value.  The text’s 
treatment of the Lindemann–Hinshelwood mechanism (Section 20F.1) also illustrates how a reaction 
order can change from first- to second-order over the course of a reaction. 

 
D20A.4 The determination of a rate law is simplified by the isolation method in which the concentrations of 

all the reactants except one are in large excess. If B is in large excess, for example, then to a good 
approximation its concentration is constant throughout the reaction. Although the true rate law might 
be v = kr[A][B], we can approximate [B] by [B]0 and write 
 v = kr'[A], where kr' = kr[B]0 
which has the form of a first-order rate law. Because the true rate law has been forced into first-order 
form by assuming that the concentration of B is constant, it is called a pseudo first-order rate law. 
The dependence of the rate on the concentration of each of the reactants may be found by isolating 
them in turn (by having all the other substances present in large excess), and so constructing the 
overall rate law. 
  
In the method of initial rates, which is often used in conjunction with the isolation method, the rate is 
measured at the beginning of the reaction for several different initial concentrations of reactants. We 
shall suppose that the rate law for a reaction with A isolated is v = kr[A]a; then its initial rate, v0, is 
given by the initial values of the concentration of A, and we write v0 = kr[A]0

a.  Taking logarithms 
gives 
 log v0 = log kr + a log [A]0  
For a series of initial concentrations, a plot of the logarithms of the initial rates against the logarithms 
of the initial concentrations of A should be a straight lime with slope a. 
  
The method of initial rates might not reveal the full rate law, for the products may participate in the 
reaction and affect the rate. For example, products participate in the synthesis of HBr, where the full 
rate law depends on the concentration of HBr. To avoid this difficulty, the rate law should be fitted 
to the data throughout the reaction. The fitting may be done, in simple cases at least, by using a 
proposed rate law to predict the concentration of any component at any time, and comparing it with 
the data. 
  
Because rate laws are differential equations, we must integrate them if we want to find the 
concentrations as a function of time. Even the most complex rate laws may be integrated 
numerically. However, in a number of simple cases analytical solutions are easily obtained and prove 
to be very useful. These are summarized in Table 20B.3. In order to determine the rate law, one plots 
the right hand side of the integrated rate laws shown in the table against t in order to see which of 
them results in a straight line through the origin. The one that does is the correct rate law. 

 
 

Solutions to exercises 
 
E20A.1(b) The initial amount of NH3 is assumed to be zero.  Let its final amount be nam, and let α be the 

fraction of that final amount produced during any given time.  Thus, α varies from 0 to 1 over the 
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course of the reaction.  At any given time, the amount of ammonia produced up to that time is αnam, 
the amount of nitrogen consumed is αnam/2, and the amount of hydrogen consumed is 3αnam/2.  If 
we let ninitial be the total quantity of gas initially present (H2 and N2), then the total at any given time 
will be 
 ntotal = ninitial – αnam/2 – 3αnam/2 + αnam = ninitial – αnam  
 
  
Thus, the total amount of gas changes from ninitial to ninitial – nam over the course of the reaction.  
(Note that total gas amount decreases at the same rate as ammonia is produced.)  Since the volume 
and temperature do not change, we may also write 
 ptotal = pinitial – αpam  

 

E20A.2(b)  
J

1 d[J]
d

v
tν

=  [20A.3b] so J
d[J]
d

v
t

ν=  

Rate of consumption of A = v = 2.7 mol dm–3 s–1 
Rate of consumption of B = 3v = 8.1 mol dm–3 s–1 
Rate of formation of C = v = 2.7 mol dm–3 s–1 
Rate of formation of D = 2v = 5.4 mol dm–3 s–1 

 
 

E20A.3(b)  3 1 3 11
3

J

1 d[J] 1 d[B] [20A.3b] (2.7 mol dm s ) 0.9moldm  s
d 3 d

v
t tν

− − − −= = = × =  

Rate of formation of C = v = 0.9 mol dm–3 s–1 
Rate of formation of D = 2v = 1.8 mol dm–3 s–1 
Rate of consumption of A = v = 0.9 mol dm–3 s–1 
Rate of consumption of B = 3v =2.7 mol dm–3 s–1 

 
E20A.4(b)  The rate is expressed in mol dm–3 s–1; therefore 

mol dm–3 s–1 = [kr] × (mol dm–3) × (mol dm–3)2  
 where [kr] denotes units of kr, requires the units to be dm6 mol–2 s–1 
 (i) Rate of consumption of A = v = kr[A][B]2 
 (ii) Rate of formation of C = v = kr[A][B]2 

 

E20A.5(b) Given 1
r

d[C] [A][B][C]
d

k
t

−=  

 the rate of reaction is [20A.3b] 

 1
r

J

1 d[J] d[C] [A][B][C]
d d

v k
t tν

−= = =  

 The units of kr, [kr], must satisfy  
 mol dm–3 s–1 = [kr] × (mol dm–3) × (mol dm–3) × (mol dm–3)–1 
 Therefore, [kr] = s–1  

 
E20A.6(b)  (i) For a second-order reaction, denoting the units of kr by [kr] 

 molecule m–3 s–1 = [kr] × (molecule m–3)2; therefore [kr] = m3 molecule–1 s–1 or m3 s–1 
 For a third-order reaction 
 molecule m–3 s–1 = [kr] × (molecule m–3)3; therefore [kr] = m6 molecule–2 s–1 or m6 s–1 
 Comment.  Technically, “molecule” is not a unit, so a number of molecules is simply a number of   
individual objects, that is, a pure number.  In the chemical kinetics literature, it is common to see 
rate constants reported in molecular units of m3 s–1, m6 s–1, cm3 s–1, etc. with the number of 
molecules left unstated. 

 (ii) For a second-order reaction 
 Pa s–1 = [kr] × Pa2; therefore [kr] = Pa–1 s–1 
 For a third-order reaction 
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 Pa s–1 = [kr] × Pa3; therefore [kr] = Pa–2 s–1 
 
Solutions to problems 
 
P20A.2 We suppose that the rate law for the reaction of isolated glucose (glu) with the enzyme hexokinase at 

1.34 mmol dm−3 is v = kr,eff[glu]a. Evaluating this rate law at initial conditions and taking the logarithms 
gives  

[ ]0 r,eff 0
log log log glu  v k a= +  

 Thus, if the supposition is correct, a plot of 0log v  against [ ]0log glu  with be linear with a slope equal to 
the reaction order a and an intercept equal to r,efflog k . We draw the following table with the requisite 
logarithm transformations, prepare the plot (see Figure 20A.1), and check whether the plot is linear. 

 

[glu]0 / mmol dm–3 1.00 1.54 3.12 4.02 

v0 / mol dm–3 s–1 5.0 7.6 15.5 20.0 

log ([glu]0/mmol dm–3) 0.00 0.188 0.494 0.604 

log(v0/mol dm–3 s–1) 0.699 0.881 1.19 1.30 

 
Figure 20A.1 

  
 

 
 Inspection of the plot reveals that it is linear so we conclude that the supposed form of the rate law is 

valid and we perform the computation of the linear least squares regression fit of the data, which is 
shown in Figure 20A.1. 

 (a) The plot slope is extremely close to 1.00 so we conclude that the reaction order w/r/t glucose is 1. 

 (b) The regression intercept tells us that  ( )3 1
r,efflog / mol dm  sk − − = 0.6968. Thus, 

 kr,eff = 100.6968 mol dm−3 s−1 = 5.0 mol dm−3 s−1. 
 
 
E20A.4 (a) v = kr [ICl] [H2] 

In order to deduce this rate law, compare experiments that have identical initial H2 concentration then 
compare experiments that have identical initial ICl concentration. Experiments 1 and 2 have identical 
[H2]0 values but the 2nd has twice the [ICl]0 value and an initial rate that is twice as large. The rate must 
be first-order in [ICl]. Similarly, Experiments 2 and 3 have identical [ICl]0 values but the 3rd has thrice 

y = 0.9986x + 0.6968 
R²  = 0.9999 
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the [H2]0 value and an initial rate that is three times as large. Once again, the rate is proportional to the 
concentration so it must be first-order in [H2]. 

 (b) kr = v / ([ICl] [H2])  
      = 3.7×10−7 mol dm−3 s−1 / (1.5×10−3 mol dm−3)2 = 0.16 dm3 mol−1 s−1 
 (c) v0 = (0.16 dm3 mol−1 s−1)×( 4.7×10−3 mol dm−3)×( 2.7×10−3 mol dm−3)  
                   =  2.0×10−6 mol dm−3 s−1  

20B  Integrated rate laws 
 

Answers to discussion questions 
 

D20B.2 (a) r
dA
d

k
t
= − , (b) r

d[A] [A]
d

k
t

= − , (c) 2
r

d[A] [A]
d

k
t

= −  

 
 
Solutions to exercises 

 
E20B.1(b) Table 20B.3 gives a general expression for the half-life of a reaction of the type A P→  for orders 

other than 1: 

 
1

1 1
1 2 0 01

r 0

2 1 [A]
( 1) [A]

n
n n

nt p
n k

−
− −

/ −

−
= ∝ ∝

−
 

Form a ratio of the half-lives at different initial pressures: 

 
1 1

1 2 0 1 0 1 0 2

1 2 0 2 0 2 0 1

( )
( )

n n
t p p p
t p p p

− −

/ , , ,

/ , , ,

   
= =      
   

 

Hence 1 2 0 1 0 2

1 2 0 2 0 1

( )
ln ( 1) ln

( )
t p p

n
t p p
/ , ,

/ , ,

   
= −      

   
 

or 
( )

( )
340 sln 178 s( 1) 0 992 1

28.9 kPaln 55.5 kPa

n − = = − . ≈ −  

Therefore, n = 0  
 
E20B.2(b) The rate law is 

 r
1 d[A] [A]
2 d

v k
t

= − =  

The half-life formula in eqn. 20B.2 is based on the assumption that 

 r
d[A] [A]

d
k

t
− =  

That is, it would be accurate to take the half-life from the table and say 

 1 2
r

ln 2t
k/ =
′

 

where kr' = 2kr .  Thus 

 5
1 2 7 1

ln 2 9.74 10  s  
2(3.56 10 s )

t / − −= = ×
×

 

Likewise, we modify the integrated rate law (eqn. 20B.1)), noting that pressure is proportional to 
concentration: 
 r2

0e
k tp p −=  

(i) Therefore, after 50 s, we have 
 

7 12 (3.56 10 s ) (50s)(33.0kPa)e 32.999 kPa p
− −− × × ×= =  
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(ii) After 20 min, 
 

7 12 (3.56 10 s ) (20 60s)(33.0kPa)e 32.97 kPa p
− −− × × × ×= =  

 
E20B.3(b) The integrated rate law is 

 0 0
r

0 0 0 0

[A] ([B] 2[C])1 ln
[B] 2[A] ([A] [C])[B]

k t
−

=
− −

 [Table 20B.3] 

Solving for [C] yields, after some rearranging 

 
( )r 0 0

r 0 0

([B] 2[A] )
0 0

([B] 2[A] )
0 0

[A] [B] e 1
[C]

[B] e 2[A]

k t

k t

−

−

−
=

−
 

so 
0.34 (0.130 2 0.027) /s 0.026 /s

3 0.34 (0.130 2 0.027) /s 0.026 /s

[C] (0.027) (0.130) (e 1) 0.027 (e 1)
mol dm (0.130) e 2 (0.027) e 0.42

t t

t t

× − × × ×

− × − × × ×

× × − × −
= =

× − × −
 

(i) 
0.026 20

3 3
0.026 20

0.027 (e 1)[C]  mol dm 0.014 mol dm
e 0.42

×
− −

×

× −
= =

−
 

(ii) 
0.026 15 60

3 3
0.026 15 60

0.027 (e 1)[C]  mol dm 0.027 mol dm
e 0.42

× ×
− −

× ×

× −
= =

−
 

Comment.  Note that part (ii) tells us that the reaction is essentially complete after 15 min.  In fact, it 
is essentially complete considerably before this time.  When is the reaction 99% complete? 

 
E20B.4(b)  The rate law is 

 3
r

1 d[A] [A]
2 d

v k
t

= − =  

 which integrates to 

 r 2 2 2 2
r0 0

1 1 1 1 1 12 so
2 4[A] [A] [A] [A]

k t t
k

   
= − = −   

   
 

 
4 6 2 1 3 2 3 2

6

1 1 1
4(6 50 10 dm mol s ) (0 015moldm ) (0 067 moldm )

1.6 10  s 19 days .

t − − − − −

   
= × −   . × . .   

= × =

 

 
 

Solutions to problems 
 
P20B.2 The concentration of A varies with time as 

 
  
[A] =

[A]0

1+ krt[A]0

 [20B.4] 

Dimensionless concentrations [A]/[A]0 and [B]/[A]0 are plotted against the dimensionless time krt[A]0 
in Fig. 20B.1(a). The same variables are plotted against a logarithmic horizontal axis in Fig. 20B.1(b). 
The second-order plots have longer “tails” than the first-order plots of Problem 20B.1 
 

 
 
 
 
 
 
 
 
 
 
 

Figures 20B.1(a) and (b) 
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P20B.4 A simple but practical approach is to make an initial guess at the order by observing whether the half-

life of the reaction appears to depend on concentration. If it does not, the reaction is first-order; 
otherwise refer to Table 20B.3.  Visual inspection of the data seems to indicate that the half-life is 
roughly independent of the concentration. Therefore, we first try to fit the data to eqn. 20B.1: 

 r
0

[A]ln
[A]

k t
 

= − 
 

 

We plot 
0

[A]ln
[A]
 
 
 

 against time to see if a straight line is obtained. We draw up the following table (A 

= (CH3)3CBr): 
 

t / h 0 3.15 6.20 10.00 18.30 30.80 

[ ] ( )2 3A 10 mol dm− −  10.39 8.96 7.76 6.39 3.53 2.07 

0

[A]
[A]

 1 0.862 0.747 0.615 0.340 0.199 

0

[A]ln
[A]
 
 
 

 0 –0.148 –0.292 –0.486 –1.080 –1.613 

( )3 11 dm mol
[A]

/ − 
 
 

 9.62 11.16 12.89 15.65 28.3 48.3 

 
 
 
 
 
Figure 20B.2 
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The data are plotted in Fig. 20B.2. The fit to a straight line is only fair, but the deviations look more 
like experimental scatter than systematic curvature. The correlation coefficient is 0.996. If we try to fit 
the data to the expression for a second-order reaction in Table 21.3, the fit is not as good; that 
correlation coefficient is 0.985. Thus we conclude that the reaction is most likely first-order. A non-
integer order, neither first nor second, is also possible. 
  
The rate constant kr is the negative of the slope of the first-order plot: 

 1 5 1
r 0 0542h 1.51 10  sk − − −= . = ×  

At 43.8 h 

 1

0

[A]ln (0.0542 h ) (43.8 h) 2 374
[A]

− 
= − × = − . 

 
 

 2 3 2.359 3 3[A] (10.39 10  mol dm ) e 9.67 10 mol dm− − − − −= × × = ×  

 
P20B.6 From Table 20B.3, we see that for A + 2B → P the integrated second-order rate law is 

 
  
krt =

1
[B]0 − 2[A]0

ln
[A]0 ([B]0 − 2[P])
([A]0 − [P])[B]0









  

By the time [B] falls to 0.010 mol dm–3, it has dropped by 0.020 mol dm–3, so [A] has fallen by 0.010 
mol dm–3 to 0.040 mol dm–3, and the [P] has risen by 0.010 mol dm–3 to 0.010 mol dm–3. 
(a) Substituting the data after solving for kr 

 

  

kr =
1

(3.6 ×103 s) × (0.030 − 2 × 0.050) moldm−3 × ln (0.050 × (0.030 − 2 × 0.010)
(0.050 − 0.010) × 0.030











= 3.5×10−3dm3  mol−1  s−1

 

(b) The half-life in terms of A is the time when [A] = [A]0/2= 0.025 mol dm–3. The stoichiometry 
requires [B] to drop by 0.050 mol dm–3; however, since [B]0 was only 0.030 mol dm–3, this 
concentration cannot be reached from the given initial conditions. The half-life of A, then, is infinite, 
since there is not enough B to react with it. 
The half-life in terms of B is the time when [B] = [B]0/2 = 0.015 mol dm–3 
[A] = [A]0 – [B]0/4 = 0.0425 mol dm–3, and [P] = [B]0/4 = 0.0075 mol dm–3 

 

  

t1/2 (B) = 1
kr ([B]0 − 2[A]0 )

ln
[A]0 ([B]0 − 2[P])
([A]0 − [P])[B]0











=
1

(3.5×10−3 dm3 mol−1 s−1) × (0.030 − 2 × 0.050) moldm−3 )

× ln 0.050 × 0.015
0.0425× 0.030







= 2.2 ×103 s = 0.61 h .
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P20B.8 A simple but practical approach is to make an initial guess at the order by observing whether the half-

life of the reaction appears to depend on concentration. If it does not, the reaction is first-order; if it 
does, it may be second-order. Examination of the data shows that the half-life is roughly 90 minutes, 
but it is not exactly constant. (Compare the 60-150 minute data to the 150-240 minute data; in both 
intervals the concentration drops by roughly half.  Then examine the 30-120 minute interval, where the 
concentration drops by less than half.) If the reaction is first-order, it will obey 

 r
0

ln c k t
c

 
= − 

 
 [20B.1] 

If it is second-order, it will obey 

 r
0

1 1k t
c c
= +  [20B.4] 

See whether a first-order plot of ln c vs. time or a second-order plot of 1/c vs. time has a substantially 
better fit.  We draw up the following table: 
 

t / min 30 60 120 150 240 360 480 
c / (ng cm–3) 699 622 413 292 152 60 24 
(ng cm–3) / c 0.00143 0.00161 0.00242 0.00342 0.00658 0.0167 0.0412 
ln {c/(ng cm–3)} 6.550 6.433 6.023 5.677 5.024 4.094 3.178 

 
 
 
 Figure 20B.3(a) 

 
 
 
 
 
 
 
 
 
Figure 20B.3(b) 
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The data are plotted in Figs. 20B.3(a) and (b).  The first-order plot fits closely to a straight line with 
just a hint of curvature near the outset. The second-order plot, conversely, is strongly curved 
throughout.  Hence, the reaction is first-order.  The rate constant is the negative of the slope of the 
first-order plot:  kr = 0.00765 min–1 = 0.459 h–1 .  The half-life is (eqn. 20B.2) 

 1 2 1
r

ln 2 ln 2 1.51 h 91 min
0.459 h

t
k/ −= = = =  

Comment.  As noted in the problem, the drug concentration is a result of absorption and elimination of 
the drug, two processes with distinct rates.  Elimination is characteristically slower, so the later data 
points reflect elimination only, because absorption is effectively complete by then.  The earlier data 
points, by contrast, reflect both absorption and elimination.  It is, therefore, not surprising that the early 
points do not adhere so closely to the line so well defined by the later data. 

 
 
P20B.10 Since both reactions are first-order, 

 1 2 1 2
d[A] [A] [A] ( )[A]

d
k k k k

t
− = + = +  

so 1 2( )
0[A] [A] e k k t− +=  [20B.1 with kr = k1 + k2 ] 

We are interested in the yield of ketene, CH2CO; call it K: 

 1 2( )
2 2 0

d[K] [A] [A] e
d

k k tk k
t

− += =  

Integrating yields 

 

1 2

1 2

[K]
( )

2 0
0 0

( )2 0 2
0

1 2 1 2

d[K] [A] e d

[A]
[K] (1 e ) ([A] [A])

t
k k t

k k t

k t

k k
k k k k

− +

− +

=

= − = −
+ +

∫ ∫
 

The percent yield is the amount of K produced compared to complete conversion; since the 
stoichiometry of reaction (2) is one-to-one, we can write: 

 1 2( )2

0 1 2

[K]% yield 100% (1 e ) 100%
[A]

k k tk
k k

− += × = − ×
+

 

which has its maximum value when the reaction reaches completion 

 
1

2
1

1 2

4.65 smax % yield 100% 100% 55.4%
(3.74 4.65) s

k
k k

−

−= × = × =
+ +

 

Comment. If we are interested in yield of the desired product (ketene) compared to the products of 
side reactions (products of reaction 1), it makes sense to define the conversion ratio, the ratio of desired 
product formed to starting material reacted, namely 

 
0

[K]
[A] [A]−
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which works out in this case to be independent of time 

 2

0 1 2

[K]
[A] [A]

k
k k

=
− +

 

If a substance reacts by parallel processes of the same order, then the ratio of the amounts of products 
will be constant and independent of the extent of the reaction, no matter what the order. 
Question. Can you demonstrate the truth of the statement made in the above comment? 

 
 
P20B.12 The stoichiometry of the reaction relates product and reaction concentrations as follows: 

 0[A] [A] 2[B]= −  
  When the reaction goes to completion, [B] = [A]0/2; hence [A]0 = 0.624 mol dm–3. We can therefore 
tabulate [A], and examine its half-life.  We see that the half-life of A from its initial concentration is 
approximately 20 min, and that its half-life from the concentration at 20 min is also 20 min. This 
indicates a first-order reaction. We confirm this conclusion by plotting the data accordingly (in Fig. 
20B.4), using 

 0
A

[A]
ln

[A]
k t=  [20B.1] 

  which follows from 

 A
d[A] [A]

d
k

t
= −  

 
t / min 0 10 20 30 40 ∞ 

3[B] (mol dm )−  0 0.089 0.153 0.200 0.230 0.312 

3[A] (mol dm )−  0.624 0.446 0.318 0.224 0.164 0 

0

[A]ln
[A]

 0 –0.34 –0.67 –1.02 –1.34  

 
 
Figure 20B.4 

 
 

The points lie on a straight line, which confirms first-order kinetics. Since the slope of the line is –
3.4×10–2 min–1, we conclude that kA = 3.4×10–2 min–1. To express the rate law in the form 
v = kr[A] we note that 

 ( )1 1
A A2 2

1 d[A] ( [A]) [A]
2 d

v k k
t

= − = − × − =  

and hence 2 11
r A2 1.7 10 mink k − −= = ×  

 
P20B.14 If the reaction is first-order the concentrations obey 
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 r
0

[A]ln
[A]

k t
 

= − 
 

 [20B.1] 

and, since pressures and concentrations of gases are proportional, the pressures should obey 

 0
rln

p
k t

p
=  

and 01 ln
p

t p
 should be a constant. We test this by drawing up the following table: 

 
p0 / Torr 200 200 400 400 600 600 

t / s 100 200 100 200 100 200 

p / Torr 186 173 373 347 559 520 

4 0110 ln
/ s

p
t p

 
 
 

 7.3 7.3 7.0 7.1 7.1 7.2 

 
The values in the last row of the table are virtually constant, and so (in the pressure range spanned by 
the data) the reaction has first-order kinetics with kr = 7.2×10–4 s–1  

 
 
P20B.16 The rate of change of [A] is 

 r
d[A] [A]

d
nk

t
= −  

Hence, 
0

[A]

r r
[A] 0

d[A] d
[A]

t

n k t k t= − = −∫ ∫  

Therefore, r 1 1
0

1 1
1 [A] [A]n nk t

n − −

 1 = × −  −   
 

At t = t1/2 , [A] = [A]0/2  

 1 2

1 1

r 1 1 1
0 0 0

1 2 1 2 1 1
1 1[A] [A] [A]

n n

n n nk t
n n/

− −

− − −

    − = × − = ×     − −      
 

and 1 2

1

1
r 0

2 1
( 1)[A]

n

nt
k n/

−

−

−
=

−
 [as in Table 20B.3] 

Now let  t1/3 be the time at which [A] = [A]0/3.  Substitute these expressions into the integrated rate 
law: 

 1 3

1 1

r 1 1 1
0 0 0

1 3 1 3 1 1
1 1[A] [A] [A]

n n

n n nk t
n n/

− −

− − −

    − = × − = ×     − −      
 

and 1 3

1

1
r 0

3 1
( 1)[A]

n

nt
k n/

−

−

−
=

−
 

 

P20B.18  2
r

d[A] 2 [A] [B] 2A B P
d

k
t

= − , + →  

(a) Let x represent [P] at time t, A0 represent [A]0, and B0 represent [B]0.  Then 

 0[A] 2A x= −  and 0
0[B]

2
A

B x x= − = −  

Therefore, 2
r 0 0

dd[A] 2 2 ( 2 ) ( )
d d

x k A x B x
t t

= − = − − × −  

 ( )2 3
r 0 0 r 0

d 1 1( 2 ) ( 2 )
2 2d

x k A x A x k A x
t
= − × − = −   
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2 2

r 30 0 00

1 1 1 1
2 4 2( 2 )

x dxk t
A x AA x

    = = × −    −−      
∫  

Therefore, 0

2 2
0 0

r
2 ( )

( 2 )

x A xk t
A A x

−
=

−
 

(b) Now B0 = A0, so 

 2 2
0 0 0 0r r

d ( 2 ) ( ) ( 2 ) ( )
d
x k A x B x k A x A x
t
= − × − = − × −  

 r 20 0 0( 2 ) ( )

x dxk t
A x A x

=
− × −∫  

We proceed by the method of partial fractions (which is employed in the general case too), and look for 
the values of α, β, and γ such that 

 2
0 0

2
0 00

1
( 2 ) ( ) 2( 2 )A x A x A x A xA x

α β γ
= + +

− × − − −−
 

This requires that 
 2

0 0 0 0( ) ( 2 ) ( ) ( 2 ) 1A x A x A x A xα β γ− + − × − + − =  
Expand and gather terms by powers of x: 
 0

2 2 2
0 0 0 0( ) ( 3 4 ) (2 4 ) 1A A A A A x xα β γ α β γ β γ+ + − + + + + =  

This must be true for all x; therefore 
 2 2

0 0 0 1A A Aα β γ+ + =  
 0 03 3 0A Aα β γ+ + =  
and 2 4 0β γ+ =  

Solving this system yields 2
0 0

2 2 
A A

α β −
= , = ,  and 2

0

1
A

γ =  

Therefore, 

 

0

0 0

0 0

0

2 2
0 0

r 20 0

0
2 2

0 0 0

0
2 2

00 0 0

(2 ) (2 ) (1 )
d

2( 2 )

(1 ) 1 1 ln( 2 ) ln( )
2

22 1 ln
( 2 )

x

x A A A
k t x

A x A xA x

A
A x A x

A x A A

A xx
A xA A x A

 / / /
= − + − −− 

 /
= + − − − − 

     −
= +     −−     

∫

 

 

20C  Reactions approaching equilibrium 
 

Answers to discussion questions 
 
D20C.2  If the equilibrium position shifts with pressure, pressure jumps, usually by ultrasonic methods, can be 
used to alter the rate of the reaction. rV∆ for the reaction must be non-zero. 

 
 
 
 
Solutions to exercises 

 
E20C.1(b) The equilibrium constant of the reaction is the ratio of rate constants of the forward and reverse 

reactions: 

 20:12 



 

 
  
K =

kr

′kr

 so kr = Kkr´  

The relaxation time for the temperature jump is (Example 20C.1): 
   τ = {kr + ′kr ([B]+ [C])}−1 so kr = τ

−1 − ′kr ([B]+ [C])  

 Setting these two expressions for  kr equal yields 

 
  
K ′kr = τ

−1 − ′kr ([B]+ [C]) so ′kr =
1

τ (K + [B]+ [C])
 

Hence 

  

′kr =
1

(3.0 ×10−6 s) × (2.0 ×10−16 + 2.0 ×10−4 + 2.0 ×10−4 ) moldm−3

= 8.3×108 dm3 mol−1 s−1

 

and 
  
kr = (2.0 ×10−16 moldm−3 ) × (8.3×108 dm3 mol−1s−1) = 1.7 ×10−7 s−1  

 
 

Solutions to problems 
 
P20C.2 We proceed as in Section 20C.1. The individual reactions are (analogous to eqn. 84.1) 

 A → 2 B  v = kr[A] 
and 2 B → A  v = kr´[B]2 
The net rate of change of A is 

 
  
d[A]

dt
= −kr [A]+ ′kr [B]2  

If this reaction were run starting with no B and an initial concentration of A equal to [A]0, then the 
reaction stoichiometry requires that 
 [B] = 2([A]0 – [A]) 
Substituting this into the differential equation for [A] yields 

 
  
d[A]

dt
= −kr [A]+ 2 ′kr{[A]0 − [A]}2 = 2 ′kr [A]0

2 −{kr + 4 ′kr [A]0}[A]+ 2 ′kr [A]2  

Note that the resulting equation is non-linear in [A]. Early on, the concentration of A would decay 
exponentially, but eventually the decay would slow as [A] approaches its equilibrium value. At 
equilibrium 

 
  
d[A]

dt
= 0 = −kr [A]+ ′kr [B]2   

so kr[A]eq = kr´[B]eq
2  and 

  

kr

′kr

=
[B]eq

2

[A]eq

= K  

The approach of concentrations to their equilibrium values is plotted in Fig. 84.1 for initial 
concentration [A]0 = 1.0 mol dm–3 (and no B initially) and rate constants kr = 1.0 min–1 and kr´ = 1.0 
dm3 mol min–1. 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 20C.1 
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P20C.4 Consider a two-step equilibrium involving an intermediate I: 

 A  I  with rate constants k1 and k1´ 

 I  B  with rate constants k2 and k2´ 
The rate of change of [A] is 

 
  
d[A]

dt
= −k1[A]+ ′k1[I]  

and at equilibrium 

 
  
d[A]

dt
= 0 = −k1[A]eq + ′k1[I]eq  so 

  

[I]eq

[A]eq

=
k1

′k1

 

But we wish to express our equilibrium constant in terms of reactant and product concentrations, 
eliminating intermediates. So consider the rate of change of [B]: 

 
  
d[B]
dt

= k2[I]− ′k2[B]  

and at equilibrium 

 
  
d[B]
dt

= 0 = k2[I]eq − ′k2[B]eq  so 
  

[B]eq

[I]eq

=
k2

′k2

 

Multiplying these two expressions together yields the desired expression: 

 
  

[I]eq

[A]eq

[B]eq

[I]eq

=
[B]eq

[A]eq

=
k2

′k2

k1

′k1

 

Now suppose B is also an intermediate and there is another step to arrive at a final product C: 
 B  C  with rate constants k3 and k3´ 
Now consider the rate of change of [C]: 

 
  
d[C]
dt

= k3[B]− ′k3[C]  

and at equilibrium 

 
  
d[C]
dt

= 0 = k3[B]eq − ′k3[C]eq  so 
  

[C]eq

[B]eq

=
k3

′k3

 

Multiplying this expressions with the previous one yields: 

 
  

[B]eq

[A]eq

[C]eq

[B]eq

=
[C]eq

[A]eq

=
k3

′k3

k2

′k2

k1

′k1

 

It should be clear that this process can be carried on for any number of steps, if the procedure to this 
point is correct. One possible objection is worth addressing here, and that is that once B becomes an 
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intermediate rather than a final product, the expression for its rate of change becomes more 
complicated, namely 

 
  
d[B]
dt

= k2[I]− ′k2[B]− k3[B]+ ′k3[C]  

This is true in general. However, at equilibrium, forward and reverse rates of reaction are equal for 
each step. Therefore it is still true that each of the following is true separately 
 

  
0 = k2[I]eq − ′k2[B]eq  and 

  
0 = k3[B]eq − ′k3[C]eq  

and the same would be true for any additional steps. 
 

P20C.6  r

r

2
2 r r 2

d[A]2 A A           2 [A] 2 [A ]
d

k
k

k k
t′

′= − +



  

Define the deviation from equilibrium, x, by the following equations, which satisfy the law of mass 
conservation. 
 eq 2 2 eq[A] [A] 2           and          [A ] [A ]x x= + = −  
Then, 

 eq 2
r eq r 2 eq

d([A] 2 )
2 ([A] 2 ) 2 ([A ] )

d
x

k x k x
t
+

′= − + + −  

 

( ) ( )
( ){ }

( ){ }

2 2 2
r eq r 2 eq r eq eq r 2 eq

2 2
r r r eq r eq r 2 eq

2
r r eq r eq r 2 eq

d ([A] 2 ) ([A ] ) [A]  4[A] 4 [A ]
d
     4 4 [A] [A] [A ]

     4 [A] [A] [A ]

x k x k x k x x k x
t

k x k k x k k

k k x k k

′ ′= − + + − = − + + + −

′ ′= − + + + −

′ ′≈ − + + −

 

In the last equation the term containing x2 has been dropped because x will be small near equilibrium 
and the x2 term will be negligibly small.  The equation may now be rearranged and integrated using the 
following integration, which is found in standard mathematical handbooks. 

 ( )d 1 lnw aw b
aw b a

= +
+∫  

 
( )

( ) ( ){ }

2
r r eq r eq r 2 eq

2
r r eq r eq r 2 eq

r r eq

d d
4 [A] [A] [A ]

1 ln 4 [A] [A] [A ] constant.
4 [A]

x t
k k x k k

k k x k k t
k k

= −
′ ′+ + −

′ ′+ + − = − +
′ +

∫ ∫
 

Let ( ) ( ) 2
r r eq r r eq r eq r 2 eq

0

ln 4 [A]      where     4 [A] [A] [A ]y k k t y k k x k k
y

 
′ ′ ′= − + = + + − 

 
 

Then ( )r r eq4 [A]
0e

k k ty y ′− +=  
Comparison of the above exponential to the decay equation /

0e
ty y τ−=  reveals that 

 
r r eq

1
4 [A]k k

τ =
′ +

 

Comment.  Note that this equation can be used as the basis of an alternate derivation of the equation 
discussed in Problem 20C.5.  The manipulations use the facts that K = [A2]eq / [A]eq

2 = kr / kr´ and [A]tot 
= [A]eq + 2[A2]eq by conservation of mass, which can be used to show that  

 2r
tot eq eq

r

2
[A] [A] [A]

k
k

= +
′

             or            2r
eq eq tot

r

2
[A] [A] [A] 0

k
k

+ − =
′

 

This quadratic equation can be solved for [A]eq. 

 r totr
eq

r r

8 [A]
[A] 1 1

4
kk

k k
 ′

= + −  ′ 
 

Substitution of this equation into ( )2

r r eq2

1 4 [A]k k
τ

′= +  and some algebraic manipulation yields the 

result of Problem 20C.5:  2
r r r tot2

1 8 [A]k k k
τ

′ ′= +  
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20D  The Arrhenius equation 
 

Answers to discussion question 
 

 
D20D.2  The temperature dependence of some reactions is not Arrhenius-like, in the sense that a straight line is 

not obtained when ln k is plotted against 1/T. However, it is still possible to define an activation energy 
as 

 
  
Ea = RT 2 d ln k

dT






 [20D.3] 

 This definition reduces to the earlier one (as the slope of a straight line) for a temperature-independent 
activation energy. However, this latter definition is more general, because it allows Ea to be obtained 
from the slope (at the temperature of interest) of a plot of ln k against 1/T even if the Arrhenius plot is 
not a straight line. Non-Arrhenius behaviour is sometimes a sign that quantum mechanical tunnelling 
(Section 8A)  is playing a significant role in the reaction. In biological reactions it might signal that an 
enzyme has undergone a structural change and has become less efficient. A reaction with a very small 
or zero activation energy, so that kr = A, such as for some radical recombination reactions in the gas 
phase, has a rate that is largely temperature independent. 

 
 
Solutions to exercises 

 
E20D.1(b) The Arrhenius equation for two different temperatures can be rearranged to yield the activation 

energy: 

 

  

Ea =

R ln
kr ,2

kr ,1

1
T1

−
1
T2








=
(8.3145 J K−1  mol−1) ln 4.01×10−2

2.25×10−3

1
(273+ 29) K

−
1

(273+ 37) K






= 5.62 ×104  J mol−1 = 56.2 kJ mol−1

 

With the activation energy in hand, the pre-exponential factor can be found from either rate constant 
by rearranging eqn. 20D.4. 
   A = kre

Ea / RT = (2.25×10−2  dm3  mol−1  s−1)e5.62×104  J mol−1/(8.3145 J K−1  mol−1 )(273+29) K  
 A = 1.19×108 dm3 mol–1 s–1  
Computing A from both provides a useful check on the calculation. 
   A = kre

Ea / RT = (4.01×10−2  dm3  mol−1  s−1)e5.62×104  J mol−1/(8.3145 J K−1  mol−1 )(273+37) K  
 A = 1.19×108 dm3 mol–1 s–1  

 
E20D.2(b) Proceed as in Exercise 20D.1(b): 

 a

r 2
1 1

r 1 1

1 2

( ) ln ( ) (8.3145 J K  mol ) ln 2 53kJ mol
1 11 1

298K 308K

k TR k T
E

T T

− −
−

 
  × = = =

  −− 
 

 

 
 

Solutions to problems 
 
P20D.2 A simple but practical approach is to make an initial guess at the order by observing whether the half-

life of the reaction appears to depend on concentration. If it does not, the reaction is first-order; 
otherwise refer to Table 20B.3.  Visual inspection of the data seems to indicate that the half-life is 
roughly independent of the concentration. Therefore, we first try to fit the data to eqn. 20B.1: 
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 r
0

[A]ln
[A]

k t
 

= − 
 

 

As in Example 20B.1 we plot 
0

[A]ln
[A]
 
 
 

 against time to see if a straight line is obtained. We draw up 

the following table (A = (CH3)3CBr): 
 

t / h 0 3.15 6.20 10.00 18.30 30.80 

[ ] ( )2 3A 10 mol dm− −  10.39 8.96 7.76 6.39 3.53 2.07 

0

[A]
[A]

 1 0.862 0.747 0.615 0.340 0.199 

0

[A]ln
[A]
 
 
 

 0 –0.148 –0.292 –0.486 –1.080 –1.613 

( )3 11 dm mol
[A]

/ − 
 
 

 9.62 11.16 12.89 15.65 28.3 48.3 

 
 
Figure 20D.1 

 
The data are plotted in Fig. 20D.1. The fit to a straight line is only fair, but the deviations look more 
like experimental scatter than systematic curvature. The correlation coefficient is 0.996. If we try to fit 
the data to the expression for a second-order reaction in Table 21.3, the fit is not as good; that 
correlation coefficient is 0.985. Thus we conclude that the reaction is most likely first-order. A non-
integer order, neither first nor second, is also possible. 
  
The rate constant kr is the negative of the slope of the first-order plot: 

 1 5 1
r 0 0542h 1.51 10  sk − − −= . = ×  

At 43.8 h 

 1

0

[A]ln (0.0542 h ) (43.8 h) 2 374
[A]

− 
= − × = − . 

 
 

 2 3 2.359 3 3[A] (10.39 10  mol dm ) e 9.67 10 mol dm− − − − −= × × = ×  

 
P20D.4 The Arrhenius expression for the rate constant is (eqn. 20D.1) 
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 ln kr = ln A – Ea/RT 
A plot of ln kr versus 1/T will have slope –Ea/R and y-intercept ln A. The transformed data and plot 
(Fig. 85.2) follow: 
 

T / K 295 223 218 213 206 200 195 

10–6kr/(dm3 mol–1 s–1) 3.55 0.494 0.452 0.379 0.295 0.241 0.217 

ln kr/(dm3 mol–1 s–1) 15.08 13.11 13.02 12.85 12.59 12.39 12.29 

10–3 K / T 3.39 4.48 4.59 4.69 4.85 5.00 5.13 
 
Figure 20D.2 

 
 

So Ea = –(8.3145 J K–1 mol–1) × (–1642 K) = 1.37×104 J mol–1 = 13.7 kJ mol–1 

and A = e20.585 dm3 mol–1 s–1 = 8.7×108 dm3 mol–1 s–1  

20E  Reaction mechanisms 
 

Answers to discussion questions 
 
D20E.2 The rate-determining step is not just the slowest step: it must be slow and be a crucial gateway for 

the formation of products. If a faster reaction can also lead to products, then the slowest step is 
irrelevant because the slow reaction can then be side-stepped. The rate-determining step is like a 
slow ferry crossing between two fast highways: the overall rate at which traffic can reach its 
destination is determined by the rate at which it can cross on the ferry. 

 If the first step in a mechanism is the slowest step with the highest activation energy, then it is rate-
determining, and the overall reaction rate is equal to the rate of the first step because all subsequent 
steps are so fast that once the first intermediate is formed it results immediately in the formation of 
products. Once over the initial barrier, the intermediates cascade into products. However, a rate-
determining step may also stem from the low concentration of a crucial reactant or catalyst and need 
not correspond to the step with highest activation barrier. A rate-determining step arising from the 
low activity of a crucial enzyme can sometimes be identified by determining whether or not the 
reactants and products for that step are in equilibrium: if the reaction is not at equilibrium it suggests 
that the step may be slow enough to be rate-determining 

 
D20E.4 Refer to Table 20B.3.  We will consider only reactions whose rates depend on the concentration of a 

single reactant. 
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In a first-order reaction, the rate of reaction is directly proportional to the concentration of the 
reactant: 
 v = kr[A]  and ln [A] = ln [A]0 – krt [20B.1] 
A plot of the logarithm of reactant concentration against time is a straight line. 
  
In a zero-order reaction, the rate of reaction is constant, independent of the reactant concentration: 
 v = kr  and [A] = [A]0 – krt [based on Table 20D.3] 
A plot of the reactant concentration itself against time is a straight line. 
  
In a second-order reaction, the rate of reaction is proportional to the square of the reactant 
concentration: 

 v = kr[A] 2 and r
0

1 1
[A] [A]

k t= +  

A plot of the reciprocal of reactant concentration against time is a straight line. 
  
Reaction orders need not be integers, except for elementary reactions.  Indeed, reaction orders can 
change during the course of the reaction.  Consider the zero-order reaction mentioned in the text 
(Section 20A.2(c)), the decomposition of phosphine on hot tungsten.  As long as enough phosphine 
is present, the rate of reaction is independent of that concentration; what limits the rate is the 
availability of catalytic sites on the tungsten.  Clearly the integrated rate law for a zero-order reaction 
cannot be correct at long times, where it would predict negative concentrations.  Before that 
unphysical situation would occur, the concentration of the reactant drops to such an extent that it 
limits the rate of reaction, and the reaction order changes from zero to a non-zero value.  The text’s 
treatment of the Lindemann–Hinshelwood mechanism (Section 20F.1) also illustrates how a reaction 
order can change from first- to second-order over the course of a reaction. 

 
D20E.6 Yes, a negative activation energy is quite possible for composite reactions. The rate constant of a 

composite reaction can be a product or ratio of rate constants and equilibrium constants of 
elementary reactions that contribute to the composite reaction, as illustrated in Section 20E.5.  In 
general, elementary reactions that have a positive activation energy whose rate constants appear in 
the denominator of a composite rate constant tend to reduce the activation energy of the overall 
reaction, as illustrated in eqn 20E.13. There is no reason why that reduction cannot be to a negative 
value. 
  
The most common molecular interpretation of the activation energy is as the “height” of an energy 
barrier that must be overcome by reactants in order to form products, as discussed in connection with 
collision theory in Section 21A.  Among the limitations of collision theory is that it is only 
applicable to elementary reactions, those which can possibly occur in one collision or reactive 
molecular encounter. Thus, it is no surprise that this interpretation fails to apply to composite 
reactions.  The more general interpretation of the activation energy, as a measure of the temperature-
dependence of the reaction rate (eqn. 20D.3), does apply. 
Question.  Show that the following mechanism leads to an overall negative activation energy for the 
rate of formation of P if Ea(2) > Ea(3). 
 A → I k1 (slow) 
 I → B k2 
 I → P k3 

 
 

Solutions to exercises 
 

E20E.1(b) Call the stable double helix S and the unstable one U.  The rate of the overall reaction is 

  2
d[S] [U]
d

v k
t

= =  

however, we cannot have the concentration of an intermediate in the overall rate law. 
(i) Assume a pre-equilibrium with 

 [U]
[A][B]

K = , which implies [U] = K[A][B] 

 20:19 



 

and v = k2[U] = k2K[A][B] = keff[A][B] with keff = k2K  
(ii) Apply the steady-state approximation: 

 1 1 2
d[U] 0 [A][B] [U] [U]

d
k k k

t
′≈ = − −  

so 1

1 2

[A][B]
[U]

k
k k

=
′ +

 and 1 2
eff

1 2

[A][B]
[A][B]

k kv k
k k

≈ =
′ +

 with 1 2
eff

1 2

k kk
k k

=
′ +

 

Comment.  The steady-state rate law reduces to the pre-equilibrium rate law if k1´>>k2, which is 
likely to be the case if the first step is characterized as fast and the second slow.  The steady-state 
approximation also encompasses the opposite possibility, that k1´<<k2, in which case keff ≈ k1, 
implying that the first step is rate limiting. 

 
E20E.2(b)  Let the steps be 

 A + B  I (fast:  ka, ka´)  
 and I → P  (kb) 
 Then the rate of reaction is 

 b
d[P] [I]
d

v k
t

= =  

 Applying the pre-equilibrium approximation yields 

 a

a

[I]
[A][B]

k
K

k
= =

′
 so a

a

[A][B]
[I]

k
k

=
′

 

 and a b a b
r r

a a

[A][B]
[A][B]        with      

k k k k
v k k

k k
= = =

′ ′
 

Thus Ea = Ea,a + Ea,b – Ea,a´ [20E.13] = (27 + 15 – 35) kJ mol–1 = 7 kJ mol–1  
 
 

Solutions to problems 
 
P20E.2 Using spreadsheet software to evaluate eqns. 20E.4a, 20E.4b, and 20E.4c, one can draw up a plot [A], 

[I], and [P] against time. Figs. 20E.1(a), 20E.1(b), and 20E.1(c) show plots of these concentrations 
(scaled by [A]0) vs. the dimensionless time kbt. What differs in the three plots is the ratio of rate 
constants ka/kb; it drops from 0.99 in the first plot (to avoid indeterminate forms in eqns. 20E.4b and 
20E.4c when ka/kb = 1) to 0.10 in the second and 0.01 in the third. The curves for A and P are 
remarkably similar in all three plots, although the time scale becomes successively longer. (After all, 
[A] decays with rate constant ka, which becomes successively smaller compared to kb.) The dramatic 
difference is in the curve for I, whose concentration becomes successively more suppressed. In each 
successive plot, I is consumed more and more quickly compared to the rate at which it is formed. The 
steady-state approximation, illustrated in Fig. 20E.2 of the main text, becomes successively a better 
approximation. 

 
 
 
 
 
 
 
 
 
 
 
Figure 20E.1(a) 
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Figure 20E.1(b) 

 
 

 
Figure 20E.1(c) 

 

 
 

P20E.4 Let the forward rates be written as 
 1 1 2 2 3 3[A] [B] [C]r k r k r k= , = , =  
and the reverse rates as 
 1 1 2 2 3 3[B] [C] [D]r k r k r k′ ′ ′ ′ ′ ′= , = , =  
The net rates are then 
 1 1 1 2 2 2 3 3 3[A] [B] [B] [C] [C] [D]R k k R k k R k k′ ′ ′= − , = − , = −  
But [A] = [A]0 and [D] 0= , so that the steady-state equations for the net rates of the individual steps 
are 
 1 0 1 2 2 3[A] [B] [B] [C] [C]k k k k k′ ′− = − =  
From the second of these equations we find 

 2

2 3

[B]
[C]

k
k k

=
′ +

 

After inserting this expression for [C]  into the first of the steady-state equations we obtain 
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2
1 0 2

2 31 0 2

1 2 1 2

[B][A]
[A] [C]

[B]

kk k
k kk k

k k k k

 
′+  ′ +′+  = =

′ ′+ +
 

which yields, upon isolating [B], 

 
( )2 2

2 3

1
0

1 2

[B] [A]
k k

k k

k
k k ′

′ +

= ×
′ + −

 

Thus, at the steady-state 

 
( )2 2

2 3

1 2 3 01
1 2 3 0 1

1 2 1 3 2 31 2

[A]
[A] 1

k k
k k

k k kkR R R k
k k k k k kk k ′

′ +

 
 = = = × − =

′ ′ ′  + +′ + − 
 

Comment.  At steady-state, not only are the net rates of reactions 1, 2, and 3 steady but so are the 
concentrations [B] and [C].  That is, 

 1 0 1 2 2
d[B] [A] ( )[B] [C] 0
d

k k k k
t

′ ′= − + + ≈  

and 2 2 3
d[C] [B] ( )[C] 0
d

k k k
t

′= − + ≈  

In fact, another approach to solving the problem is to solve these equations for [B] and [C]. 
 
P20E.6 (a) For the mechanism 

 a

a

k

k
hhhh hchh

′
→... ...←  

 b

b

k

k
hchh cccc

′
→... ...←  

the rate equations are 

 a a
d[ ...] [ ...] [ ...]

d
hhhh k hhhh k hchh

t
′= − +  

 a a b b
d[ ...] [ ...] [ ...] [ ...] [ ...]

d
hchh k hhhh k hchh k hchh k cccc

t
′ ′= − − +  

 b b
d[ ...] [ ...] [ ...]

d
cccc k hchh k cccc

t
′= −  

(b) Apply the steady-state approximation to the intermediate: 

 a a b b
d[ ...] [ ...] [ ...] [ ...] [ ...] 0

d
hchh k hhhh k hchh k hchh k cccc

t
′ ′= − − + =  

so a b

a b

[ ...] [ ...]
[ ...]

k hhhh k cccc
hchh

k k
′+

=
′ +

 

Therefore, a b
a a

a b

a a a a b b
a

a b a b

a b a b

a b a b

[ ...] [ ...]d[ ...] [ ...]
d

( ) [ ...]
[ ...]

[ ...] [ ...]

k hhhh k cccchhhh k hhhh k
t k k

k k k k k k cccc
hhhh k

k k k k
k k k k

hhhh cccc
k k k k

′ +′= − +  ′ + 
′ ′ ′   − + ′= +   ′ ′+ +   

′ ′
= − +

′ ′+ +

 

This rate expression may be compared to that given in the text [Section 21.4] for the mechanism 
r

r

A B
k
k

→←′
 

Here eff

eff

... ...
k

hhhh cccc
k

→←′
 with a b a b

eff eff
a b a b

k k k k
k k

k k k k
′ ′

′= =
′ ′+ +
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20F  Examples of reaction mechanisms 
 

Answers to discussion questions 
 

D20F.2 In the analysis of stepwise polymerization, the rate constant for the second-order condensation is 
assumed to be independent of the chain length and to remain constant throughout the reaction. It 
follows, then, that the degree of polymerization is given by 
 r 01 [A]N k t= +  [20F.12] 
Therefore, the average molar mass can be controlled by adjusting the initial concentration of 
monomer and the length of time that the polymerization is allowed to proceed. 
 Chain polymerization is a complicated radical chain mechanism involving initiation, 
propagation, and termination steps (see Section 21.9(b) for the details of this mechanism). The 
derivation of the overall rate equation utilizes the steady-state approximation and leads to the 
following expression for the average number of monomer units in the polymer chain: 
 1/2

r2 [M][In]N k −=  [20F.16] 
where kr = (1/2)kp(fkikt)–1/2 , where kp, ki, and kt are the rate constants for the propagation, initiation, 
and termination steps respectively, and f is the fraction of radicals that successfully initiate a chain. 
We see that the average molar mass of the polymer is directly proportional to the monomer 
concentration, and inversely proportional to the square root of the initiator concentration and to the 
rate constant for initiation. Therefore, the slower the initiation of the chain, the higher the average 
molar mass of the polymer. 

 
 

Solutions to exercises 
  

E20F.1(b)  a

r a b a A

1 1k
k k k k p

′
= + [analogous to 20F.8] 

Therefore, for two different pressures we have 

 
r 1 r 2 a 1 2

1 1 1 1 1
( ) ( )k p k p k p p

 
− = − 

 
 

so 
1

a
1 2 r 1 r 2

1

3 3 1 4 1

6 1 1 1 1

1 1 1 1
( ) ( )

1 1 1 1
25Pa1 09 10 Pa 1 7 10 s 2 2 10 s

9.9 10 s  Pa 9.9 s  MPa .

k
p p k p k p

−

−

− − − −

− − − − −

  
= − −  
  

   
= − × −   . × . × . ×   

= × =

 

 
 
E20F.2(b) The degree of polymerization is [20F.12] 

 r 0

2 3 1 1 1 2 3

1 [A]

1 (2.80 10  dm  mol  s ) 10.00 h 3600 s h 5.00 10  mol dm

51.4 .

N k t
− − − − − −

= +

= + × × × × ×

=

 

The fraction condensed is related to the degree of polymerization by 

 1
1

N
p

=
−

 so 
1 51.4 1 0.981

51.4
N

p
N
− −

= = =  
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E20F.3(b) The kinetic chain length varies with concentration as 
 ν = kr[M][In]–1/2 [20F.13] 
so the ratio of kinetic chain lengths under different concentrations is 

 ( )
1/2

1/22 2 1

1 1 2

[M] [In]
5.0 10.0 15.8

[M] [In]
ν
ν

 
= × = × = 

 
 

 
 

Solutions to problems 
 
P20F.2 In termination by disproportionation, the chain carriers do not combine. The average number of 

monomers in a polymer molecule equals the average number in a chain carrier when it terminates, 
namely, the kinetic chain length, v. 

 1/2
r [ M][In]N v k −= = ⋅  

Comment.  Contrast this result to the reasoning before eqn. 20F.16 in the text, in which the average 
number is the sum of the average numbers of a pair of combining radicals. 

20G  Photochemistry 
 

Answers to discussion questions 
  
D20G.2 The shortening of the lifetime of an excited state is called quenching. Quenching effects may be 

studied by monitoring the emission from the excited state that is involved in the photochemical 
process. The addition of a quencher opens up an additional channel for the deactivation of the 
excited singlet state. 
 Three common mechanisms for bimolecular quenching of an excited singlet (or triplet) state 
are: 
Collisional deactivation:  *S Q S Q+ → +  
Energy transfer:   * *S Q S Q+ → +  
Electron transfer:   * + +S Q S Q or S Q− −+ → + +  
 Collisional quenching is particularly efficient when Q is a heavy species, such as an iodide 
ion, which receives energy from S* and then decays primarily by internal conversion to the ground 
state. Pure collisional quenching can be detected by the appearance of vibrational and rotational 
excitation in the spectrum of the acceptor. 
 In many cases, it is possible to prove that energy transfer is the predominant mechanism of 
quenching if the excited state of the acceptor fluoresces or phosphoresces at a characteristic 
wavelength. In a pulsed laser experiment, the rise in fluorescence intensity from Q* with a 
characteristic time which is the same as that for the decay of the fluorescence of S* is often taken as 
an indication of energy transfer from S to Q. 
 Electron transfer can be studied by time-resolved spectroscopy. The oxidized and reduced 
products often have electronic absorption spectra distinct from those of their neutral parent 
compounds. Therefore, the rapid appearance of such known features in the absorption spectrum after 
excitation by a laser pulse may be taken as an indication of quenching by electron transfer. 

  
 

Solutions to exercises 
 

E20G.1(b)  The quantum yield tells us that each mole of photons absorbed causes 1.2×102 moles of A to react   
[20G.1a]; the stoichiometry tells us that 1 mole of B is formed for every mole of A which reacts. 
From the yield of 1.77 mmol B, we infer that 1.77 mmol A reacted, caused by the absorption of 

 
3 23 1

18
2 1

(1.77 10 mol) (6 022 10 )einstein 4.4 10
1.2 10 moleinstein

− −

−

× × . ×
= ×

×
 photons 
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E20G.2(b)  The Stern-Volmer equation [20G.8] relates the ratio of fluorescence quantum yields in the absence   
and presence of quenching 

 F,0 F,0
0 Q

F F

1 [Q]
I

k
I

φ
τ

φ
= + =  

 The last equality reflects the fact that fluorescence intensities are proportional to quantum yields.      
Solve this equation for [Q]: 

 F,0 F 3
9 9 3 1 1

0 Q

( / ) 1 (100 / 75) 1[Q] 0.038 mol dm
(3.5 10  s) (2.5 10  dm  mol  s )

I I
kτ

−
− − −

− −
= = =

× × ×
 

 
 

Solutions to problems 
 
P20G.2 The rate of reaction is the rate at which ozone absorbs photons times the quantum yield. The rate at 

which ozone absorbs photons is the rate at which photons impinge on the ozone times the fraction of 
photons absorbed. That fraction is 1 – T, where T is the transmittance. T is related to the absorbance A 
by 
 A = –log T = εcL  so 1 – T = 1 – 10–εcL 
and 

3 1 1 9 -3 5{(260dm mol cm ) (8 10 moldm ) (10 cm)1 1 10 0 38T
− − −− × × ×− = − = .  

If we let F stand for the flux of photons (the rate at which photons impinge on our sample of ozone), 
then the rate of reaction is 

 
( ) ( ) ( )

( ) ( )
( ) ( )

14 2 1 3 -3

23 1 5

13 3 1

1 10 cm s 1000cm dm
1 0 94 0 38

6 022 10 mol 10 cm

5.9 10 moldm s

v T Fφ
− −

−

− − −

× ×
= − = . × . ×

. × ×

= ×

 

 
P20G.4 

iM Mhν ∗+ → ,  Iabs [M = benzophenone] 

M Q M Q∗ + → + ,  kQ 

fM M hν∗ → + ,  kF 

 
*

* *
abs F Q

d[M ] [M ] [Q][M ] 0
d

I k k
t

= − − ≈  [steady state] 

and hence * abs

F Q

[M ]
[Q]

I
k k

=
+

 

Then F abs
F

F Q

[M ]
[Q]

k I
I

k k
∗= =

+
 

and so Q

F abs F abs

[Q]1 1 k
I I I I

= +  

If the exciting light is extinguished, [M*], and hence IF, decays as Fe k t−  in the absence of a quencher. 
Therefore we can measure kQ / kFIabs from the slope of 1 / IF plotted against [Q], and then use kF to 
determine kQ. 
 We draw up the following table: 
 

103[Q] / M 1 5 10 

1 / IF 2.4 4.0 6.3 
 
The points are plotted in Fig. 20G.1. 
 

Figure 20G.1 
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The intercept lies at 2.0, and so abs
1 0 50

2.0
I = = . . The slope is 430, and so 

 Q 3 1

F abs

430dm  mol
k

k I
−=  

Then, since Iabs = 0.50 and F
1/2

ln 2k
t

=  

 ( ) ( )3 1 6 3 1 1
Q 6

ln 20 50 430dm mol 5.1 10  dm  mol  s
29 10 s

k − − −
−

 
= . × × = × × 

 

 
P20G.6 The efficiency of resonance energy transfer is given by [20G.9] 

 F
T

F,0

1 0.15
φ

η
φ

= − =  

Förster theory relates this quantity to the distance R between donor-acceptor pairs by 

 
6

0
T 6 6

0

R
R R

η =
+

 [20G.10] 

where R0 is an empirical parameter listed in Table 20G.3.  Solving for the distance yields 

 
1/6 1/6

0
T

1 11 (2.2 nm) 1 2.9 nm
0.15

R R
η
   = − = × − =   

  
 

 
 
P20G.8 We approach the lifetime via the efficiency of resonant energy transfer: 

 F
T

F,0 0

1 [20G.9] 1
φ τη
φ τ

= − = −  

and 
6
0

T 6 6
0

R
R R

η =
+

 [20G.10]    

Equating these two expressions for ηT and solving for R gives: 

 
6 6 6
0 0 0 0

6 6 6
0 0 00 0

1           so          
R R R

R R R
τ τ ττ

τ τ τ τ
− +

= − = =
−+

 

 
6 1/6

0 0 0
0

0 0 0 0 0

1           or          R R R
R

τ τ τ τ τ τ
τ τ τ τ τ τ τ τ

   − +
= − = = =   − − − −   

 

τ/τ0 = 10 ps / 103 ps = 0.010       and        
1/60.0105.6 nm 2.6 nm

1 0.010
R  = = − 
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20H Enzymes 
 

Answers to discussion questions 
 
D20H.2 As temperature increases we expect the rate of an enzyme-catalyzed reaction to increase. However, at a 

sufficiently high temperature the enzyme denatures and a decrease in the reaction rate is observed. 
Temperature related denaturation is caused by the action of vigorous vibrational motion, which 
destroys secondary and tertiary protein structure. Electrostatic, internal hydrogen bonding, and van der 
Waals interactions that hold the protein in its active, folded shape are broken with the protein unfolding 
into a random coil. The active site and enzymatic activity is lost. 

 The rate of a particular enzyme-catalyzed reaction may also appear to decrease at high temperature in 
the special case in which an alternative substrate reaction, which has a relatively slow rate at low 
temperature, has the faster rate increase with increasing temperature. A temperature may be reached at 
which the alternative reaction predominates. 

 
D20H.4 Figure 20H.1 is a sketch of the enzyme-catalyzed reaction rate against substrate concentration both 

with and without product inhibition. Inhibition reduces the reaction rate and lowers the maximum 
achievable reaction rate. 

 
 
Figure 20H.1 
 

 
 
 
 
Solutions to exercises 
 
E20H.1(b) The fast, reversible step suggests the pre-equilibrium approximation: 

  
+

+
+

[HAH ]      and     [HAH ] [HA][H ]
[HA][H ]

K K+= = . 

  Thus, the rate of product formation is 

  + +
b b

d[P] [HAH ][B] [HA][H ][B]
d

k k K
t
= = . 

 

[S]

v

v max

Reaction rate without inhibition.

Reaction rate with product inhibition.
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E20H.2(b) max

M 0

Since   [20H.3a],
1 / [S]K

ν
ν =

+
 

 

( )
( ) ( )

max M 0

3 1

3 1

1 /[S]

      1 0.032 / 0.875 0.205 mmol dm  s

      0.212 mmol dm  s

Kν ν
− −

− −

= +

= + ×

=

 

  
E20H.3(b)  Eqn 20H.7 describes competitive inhibition as the case for which I1 [I] / Kα = +  and 1α′ = . Thus, 

  max

M 01 /[S]K
ν

ν
α

=
+

. 

 By setting the ratio ν ([I]=0)/ν ([I]) equal to 1/0.25 (4.00) and solving for α, we can subsequently 
solve for the inhibitor concentration that reduces the catalytic rate by 75%. 

  ( )
( )

M 0

M 0

[I] 0 1 /[S]
4.00

[I] 1 /[S]
K

K
ν α
ν

= +
= =

+
 

  

( )

( )

( )
( )

M 0

M 0

I

3 3

1.333 1 /[S] 1
/[S]

4.00 1 7.5 /1.0 1
  4.40

7.5 /1.0
[I] 1

   3.40 0.56 mmol dm 1.90 mmol dm

K
K

K

α

α
− −

+ −
=

+ −
= =

= −

= × =

 

 
 
Solutions to problems 
 
 
P20H.2 Mathcad Prime 2 worksheets are present with easily changed parameters for studying the effect of 
property variations. 
 
(a) vmax is constant: 

 

 
 
KM is constant: 
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(b)  Competitive inhibition: α > 1 and α′ = 1 
 Uncompetitive inhibition: α = 1 and α′ > 1 
 Non-competitive inhibition: α > 1 and α′ > 1 

 

 
 
 
P20H.4 (a) cat max 0/ [E]   [20H.4]k ν=  

  ( ) ( )3 1 6 3 4 1     0.0224 mmol dm  s / 1.60 10  mmol dm 1.40 10  s− − − − −= × = ×  
 
  
 (b) 

  
( ) ( )

cat M

4 1 5 3 3 1 1

/  [20H.5]

  1.40 10  s / 9.0 10  mol dm 0.015 dm  mol  s

k Kη
− − − −

=

= × × =
 

 Diffusion limits the catalytic efficiency, η, to a maximum of about 108–109 dm3 mol–1 s–1. Since the 
catalytic efficiency of this enzyme is much, much smaller than the maximum, the enzyme is not 
'catalytically perfect'. 
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P20H.6 (a) We add to the Michaelis−Menten mechanism the inhibition by the substrate 

ISES ES S           [ES][S]/[SES]K+ =  
 where the inhibited enzyme, SES, forms when S binds to ES and, thereby, prevents the formation of 

product. This inhibition might possibly occur when S is at a very high concentration. Enzyme mass 
balance is written in terms of [ES], KI, KM (= [E][S]/[ES]), and [S]. (For practical purposes the free 
substrate concentration is replaced by [S]0 because the substrate is typically in large excess relative 
to the enzyme.) 

  

[ ] [ ] [ ] [ ]
[ ]
[ ] [ ] [ ][ ]

[ ]
[ ] [ ]

0

M

I

M

I

E E ES SES

ES ES S
      ES

S

S
      1 ES

S

K
K

K
K

= + +

= + +

 
= + +  
 

 

 Thus,  

  [ ] [ ]

[ ]
[ ]

0

M

I

E
ES

S
1

S
K

K

=
 
+ +  

 

 

 and the expression for the rate of product formation becomes 

  [ ]

[ ]
[ ] [ ]max

b max b 0
0M

I0

ES      where     E
S

1
S

k k
K

K

ν
ν ν= = =

+ +
. 

 The denominator term [S]0/KI reflects a reduced reaction rate caused by inhibition as the 
concentration of S becomes very large. 

 
 (b) To examine the effect that substrate inhibition has on the double reciprocal, Lineweaver-Burk 

 plot of 1/ν against 1/[S]0 take the inverse of the above rate expression and compare it to the 
 uninhibited expression [20H.3b]: 

[ ]
M

max max 0

1 1 1  
S

K
ν ν ν

 
= +  

 
. 

 The inverse of the inhibited rate law is 

  
[ ]

[ ]
[ ]

[ ]
[ ]

2

0M

max max max I0 0

2

0M

max max max I 0

S1 1 1 1 +
S S

S1 1  .
S

K
K

K
K

ν ν ν ν

ν ν ν

    = +       
 
 = + +
 
 

 

 The uninhibited and inhibited line shapes are sketched in Figure 20H.1. 
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Figure 20H.1 

 
 
 Comparing the two expressions, we see that the two curves match at high values of 1/[S]0. However, as 

the concentration of [S]0 increases (1/[S]0 decreases) the 1/ν curve with inhibition curves upward 
because the reaction rate is decreasing. 

 

Integrated activities 
 
 
20.2 The description of the progress of infectious diseases can be represented by the mechanism 

S I R→ → . 
 Only the first step is autocatalytic  as indicated in the first rate expression. If the three rate equations 

are added 
dS dI dR 0
d d dt t t

+ + =  

 and, hence there is no change with time of the total population, that is 
S( ) I( ) R( )t t t N+ + = . 

 Whether the infection spreads or dies out is determined by 
dI SI I
d

r a
t
= − . 

 At 00,  I I(0) It = = = . Since the process is auto catalytic, I(0) ≠ 0. 

( )
0

0 0
dI S I
d t

r a
t =

  = − 
 

 

 0
0

dIIf S , 0
d t

a r
t =

 > < 
 

, and the infection dies out. If 
0

dIS,   0
d t

a r
t =

 < > 
 

 and the infection spreads 

(an epidemic). Thus, 

 0Sa
r
<  [infection spreads]     and     0>Sa

r
 [infection dies out]. 

  
20.4 The number-average molar mass of the polymer is the average chain length times the molar mass of the 

monomer 
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 1
1 1

MM N M
p

= =
−

 [20F.12(a)] 

The probability PN that a polymer consists of N monomers is equal to the probability that it has N – 1 
reacted end groups and one unreacted end group. The former probability is pN–1; the latter 1 – p.  
Therefore, the total probability of finding an N-mer is 
 PN = pN–1(1–p) 
We need this probability to get at 2M , again using number averaging: 

 2 2 2 2 2 2 2 1
1 1 1

2
2 2 1 1

1 1 2

(1 )

(1 )d d d d(1 ) (1 ) (1 )
d d d d (1 )

N
N

N N

N

N

M M N M N P M p N p

M pM p p p M p p p
p p p p p

−

−

= = = −

+
= − = − − =

−

∑ ∑

∑

 

Thus 
( ) ( )

2
22 2 1

1 2 2 2

1 1
(1 ) 1 1NN

pMpM M M
p p p

 + − = − =
 − − − 

 

and ( )
1/21/222 1

1NN

p MM M
p

− =
−

 

The time dependence is obtained from 

 r 0

r 0

[A]
1 [A]

k t
p

k t
=

+
 [20F.11] 

and r 0
1 1 [A]

1
N k t

p
= = +

−
 [20F.12] 

Hence { }
1 2

1/21 2
r 0 r 0 r 0(1 [A] ) [A] (1 [A] )

1
p p k t k t k t

p
= + = +

−
 

and ( ) { }
1/22 1 22

1 0 0[A] (1 [A] )
NN

M M M kt kt− = +  

  
20.6 The rates of the individual steps are 

 A → B a
d[B]
d

I
t

=  

 B → A 2
r

d[B] [B]
d

k
t

= −  

In the photostationary state, Ia – kr[B]2 = 0 .  Hence, 

 
1/2

a

r

[B]
I
k

 
=  
 

 

This concentration can differ significantly from an equilibrium distribution because changing the 
illumination may change the rate of the forward reaction without affecting the reverse reaction.  
Contrast this situation to the corresponding equilibrium expression, in which [B]eq depends on a ratio of 
rate constants for the forward and reverse reactions.  In the equilibrium case, the rates of forward and 
reverse reactions cannot be changed independently. 
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21 Reaction dynamics 

21A Collision theory 

Answers to discussion questions 
21A.2 To the extent that real gases deviate from perfect gas behavior, they do so because of 

intermolecular interactions. Interactions tend to be more important at high pressures, when 
the size of the molecules themselves is not negligible compared to the average 
intermolecular distance (mean free path). Attractive interactions, might enhance a reaction 
rate compared to the predictions of collision theory, particularly if the parts of the molecules 
that are attracted to each other are the reactive sites. (In that case, the both the collision 
frequency and the steric factor might be enhanced.) Similarly, repulsive interactions might 
reduce the frequency of collisions compared to what would be predicted for perfect gases. 
In supercritical fluids, densities can be comparable to those of liquids, so the considerations 
explored in the next topic (Diffusion-controlled reactions, Topic 21B) for reactions in 
solution might be more relevant than those of a perfect gas. 

21A.4 The RRK theory proposes a P-factor that is more related to statistical energetic 
considerations than to geometric (“steric”) ones. The P-factor in RRK theory is [21A.10a]: 

 
  
P = 1− E *

E






s−1

 

where E* is the energy required to break a bond (leading to reaction), E the energy of the 
collision, and s the number of modes over which the energy can be dissipated. Like more 
geometric interpretations of the P-factor, the RRK theory assigns smaller P factors to 
complex molecules than to simple ones, but for different reasons. A more geometric theory 
would say that an active site is only a small fraction of the “surface area” of a complex 
molecule, whereas RRK theory says that complex molecules are much more effective than 
simple ones at dispersing energy away from the reactive site. 

Solutions to exercises 

21A.1(b) The collision frequency is [1B.11a] 
 z = σvrelN 

where 
  
vrel =

16kT
πm







1/2

 [1B.10a & 1B.9], σ = πd2 = 4πR2, and 
  
N =

p
kT

 

Therefore, 

   

z = σN
16kT
πm







1/2

= 16 pR2 π
mkT







1/2

= 16 × (120 ×103  Pa) × (180 ×10−12  m)2

×
π

28.01 mu ×1.661×10−27  kg mu
−1 ×1.381×10−23  J K−1 × 303 K











1/2

= 7.90 ×109  s−1

 

The collision density is [Justification 21A.1] 

 

   

Z =
zN A

2
=

z
2

p
kT






=

7.90 ×109  s−1

2
120 ×103  Pa

1.381×10−23  J K−1 × 303 K







= 1.13×1035  s−1  m−3

 

For the percentage increase at constant volume, note that N is constant at constant volume, 
so the only constant-volume temperature dependence on z (and on Z) is in the speed factor. 

 z ∝ T1/2 so 
  

1
z

∂z
∂T





V

=
1

2T
 and 

  

1
Z

∂Z
∂T





V

=
1

2T
 

 
 
 
 

1 



Therefore 
  

δ z
z
= δZ

Z
≈ δT

2T
=

1
2

10 K
303 K






= 0.017  

so both z and Z increase by about 1.7% . 

21A.2(b) The fraction of collisions having at least Ea along the line of flight may be inferred by 
dividing out of the collision-theory rate constant (eqn. 21A.9) those factors that can be 
identified as belonging to the steric factor or collision rate:   f = e

−Ea /RT  

(i) (1) 
  
f = exp

−15×103 −1J mol
(8.3145 J K−1  mol−1) × (300 K)









 = 2.4 ×10−3  

 (2) 
  
f = exp

−15×103 −1J mol
(8.3145 J K−1  mol−1) × (800 K)









 = 0.105  

(ii) (1) 
  
f = exp

−150 ×103 −1J mol
(8.3145 J K−1  mol−1) × (300 K)









 = 7.7 ×10−27  

 (2) 
  
f = exp

−150 ×103 −1J mol
(8.3145 J K−1  mol−1) × (800 K)









 = 1.6 ×10−10  

21A.3(b) A straightforward approach would be to compute   f = e
−Ea /RT  at the new temperature and 

compare it to that at the old temperature. An approximate approach would be to note that f 

changes from   f0 = e
−Ea /RT

 to 
  
exp

−Ea

RT (1+ x)






, where x is the fractional increase in the 

temperature. If x is small, the exponent changes from –Ea/RT to approximately –Ea(1–x)/RT 
and f changes from f0 to 

 ( )a a a(1 )/ / /
0 0e e e

xE x RT E RT E RT xf f f
−− − − − −≈ = =  

Thus the new fraction is the old one times a factor of f0
–x . The increase in f expressed as a 

percentage is 

 
  

f − f0

f0

×100% =
f0 f0

− x − f0

f0

×100% = ( f0
− x −1) ×100%  

(1) (1)   f0
− x = (2.4 ×10−3 )−10/300 = 1.2  and the percentage change is 20% . 

 (2)   f0
− x = (0.105)−10/800 = 1.03 and the percentage change is 3% . 

(ii) (1)   f0
− x = (7.7 ×10−27 )−10/300 = 7.4  and the percentage change is 640% . 

 (2)   f0
− x = (1.61 ×10−10 )−10/800 = 1.33  and the percentage change is 33% . 

21A.4(b)  
  
kr = Pσ 8kT

πµ













1/2

NAe−Ea /RT  [21A.9] 

We take P = 1, so 

 

  

kr = [0.30 × (10−9 m)2 ]×

1/2

8(1.381×10−23 −1J K ) × (450 K)

π (3.930 mu ) × (1.661×10−27 −1kg mu )













×(6.022 ×1023  mol−1) × exp
−200 ×103 −1J mol

(8.3145 J K−1  mol−1) × (450 K)











= 1.7 ×10−15 m3  mol−1  s−1 = 1.7 ×10−12  dm3  mol−1s−1 .

 

21A.5(b) The steric factor, P, is 

 
  
P =

σ *
σ

[Topic 21A.1(c)] 

The mean collision cross-section is σ = πd2 with d = (dA + dB)/2  
 
 
 
 

2 



Get the diameters from the collision cross-sections: 
 dA = (σA/π)1/2 and dB = (σB/π)1/2 , 

so 
( ) { }2 22 1/2 1/2 2 1/2 2 1/21/2 1/2

A BA B

2

(0.88 nm ) (0.40 nm )

4 4 4

0.62 nm .

σ σσ σπσ
π π

+ +     = + = =    
     

=

 

Therefore, 
  
P = 8.7 ×10−22 m2

0.62 × (10−9 m)2 = 1.41×10−3  

21A.6(b) According to RRK theory, the steric P-factor is given by eqn. 21A.10a 

 
  
P = 1− E *

E






s−1

 

where s is the number of vibrational modes in the reacting molecule. For a non-linear 
molecule composed of N atoms, the number of modes is [Topic 12E.1] 
 s = 3N – 6 = 3×4 – 6 = 6. 
Rearranging eqn. 21A.10a yields 

 
  
E *
E

= 1− P
1

s−1 = 1− (0.025)
1
5 = 0.52  

21A.7(b) According to RRK theory, the steric P-factor is given by eqn. 21A.10a 

 
  
P = 1− E *

E






s−1

= 1− 300 kJ mol−1

500 kJ mol−1








12−1

= 4.2 ×10−5  

Solutions to problems 
21A.2 Draw up the following table as the basis of an Arrhenius plot: 

 
T / K 600 700 800 1000 

103 K / T 1.67 1.43 1.25 1.00 

kr / (cm3 mol–1 s–1) 4.6×102 9.7×103 1.3×105 3.1×106 

ln (kr / cm3 mol–1 s–1) 6.13 9.18 11.8 14.9 
 
The points are plotted in Figure 21A.1. 

 
Figure 21A.1 

 
The least-squares intercept is at 28.3, which implies that 
 A / (cm3 mol–1 s–1) = e28.3 = 2.0×1012  
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But comparison of eqn. 21A.9 to the Arrhenius equation tells us that 
  
A = NA Pσ 8kT

πµ






1/2

 so 
  
P =

A
NAσ

πµ
8kT







1/2

 

The reduced mass is 
 µ = m(NO2)/2 = 46 mu × (1.661×10–27 kg mu

–1) / 2 = 3.8×10–26 kg  
so, evaluating P in the center of the range of temperatures spanned by the data, 

 

  

P =
2.0 ×1012 × (10−2  m)3  mol−1  s−1

(6.022 ×1023  mol−1) × 0.60 × (10−9  m)2 ×
π × 3.8 ×10−26  kg

8 ×1.381×10−23  J K−1 × 800 K







1/2

= 6.5×10−3 .

 

 σ* = Pσ = (6.5×10–3) × (0.60 nm2) = 3.9×10–3 nm2 = 3.9×10–21 m2  

21A.4 Example 21A.1 estimates a steric factor within the harpoon mechanism: 

 
  

σ *

σ
≈

e2

4πε0d(I − Eea )







2

 

Taking σ = πd2 gives 

 
  
σ * ≈ π e2

4πε0[I(M) − Eea (X2 )]







2

=
6.5 nm2

{(I − Eea ) / eV}2
 

Thus, σ* is predicted to increase as I – Eea decreases. We construct the following table from 
the data: 
 

σ* /nm2 Cl2 Br2 I2 
Na 0.45 0.42 0.56 
K 0.72 0.68 0.97 
Rb 0.77 0.72 1.05 
Cs 0.97 0.90 1.34 

 
All values of σ* in the table are smaller than the experimental ones, but they do show the 
correct trends down the columns. The variation with Eea across the table is not so good. 

21A.6 Collision theory gives for a rate constant with no energy barrier 

 
  
kr = Pσ

1/2
8kT
πµ







NA  [21A.9] so P =
kr

σ NA

1/2
πµ
8kT







 

 

  

P =
kr / (dm3  mol−1 s−1) × (10−3 m3 dm−3 )

(σ / nm2 ) × (10−9 m)2 × (6.022 ×1023  mol−1)

×

1/2
π × (µ / u) × (1.66 × 10−27 kg)

8 × (1.381× 10−23 −1J K ) × (298 K)











=
(6.61×10−13 )kr / (dm3  mol−1 s−1)

(σ / nm2 ) × (µ / mu )1/2

 

The collision cross-section is 

 
  
σAB = πdAB

2 where dAB =
1
2

(dA + dB ) =
σA

1/2 + σ B
1/2

2π 1/2 so σAB =
(σA

1/2 + σ B
1/2 )2

4
 

The collision cross-section for O2 is listed in the Data Section. We would not be far wrong if 
we took that of the ethyl radical to equal that of ethene; similarly, we will take that of 
cyclohexyl to equal that of benzene. For O2 with ethyl 

 
 
σ =

(0.401/2 + 0.641/2 )2

4
nm2 = 0.51nm2  
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µ =

mOmet

mO + met

=
(32.0 mu ) × (29.1mu )

(32.0 + 29.1) mu

= 15.2 mu  

so 
  
P =

(6.61×10−13 ) × (4.7 ×109 )
(0.51) × (15.2)1/2 = 1.6 ×10−3  

For O2 with cyclohexyl 

 
 
σ =

(0.401/2 + 0.881/2 )2

4
nm2 = 0.62 nm2  

 
  
µ =

mOmC

mO + mC

=
(32.0 mu ) × (77.1mu )

(32.0 + 77.1) mu

= 22.6 mu  

so 
  
P =

(6.61×10−13 ) × (8.4 ×109 )
(0.62) × (22.6)1/2 = 1.8 ×10−3  

 

21B Diffusion-controlled reactions 

Answer to discussion question 
D21B.2 In the cage effect, a pair of molecules may be held in close proximity for an extended period 

of time (extended on the microscopic scale, mind you) by the presence of other neighboring 
molecules, typically solvent molecules. Such a pair is called an encounter pair, and their 
time near each other an “encounter” as opposed to a simple collision. An encounter may 
include a series of collisions. Furthermore, an encounter pair may pick up enough energy to 
react from collisions with neighboring molecules, even though the pair may not have had 
enough energy at the time of its initial collision. 

 
Solutions to exercises 

21B.1(b) The rate constant for a diffusion-controlled bimolecular reaction is 
 kd = 4πR*DNA [21B.3] 
where D = DA + DB = 2×(5.2×10–9 m2 s–1) = 1.04×10–8 m2 s–1  
 kd = 4π × (0.4×10–9 m) × (1.04×10–8 m2 s–1) × (6.022×1023 mol–1)  

 
  
kd = 3.1 ×107 m3 mol−1 s−1 = 3.1 ×1010 dm3 mol−1 s−1  

21B.2(b) The rate constant for a diffusion-controlled bimolecular reaction is 

 
  
kd =

8RT
3η

 [21A.4] = 8× (8.3145 J K−1  mol−1)× (298 K)
3η

=
6.61×103 J mol−1

η
 

(i) For decylbenzene, η = 3.36 cP = 3.36×10–3 kg m–1 s–1  

 
  
kd =

6.61×103  J mol−1

3.36 ×10−3  kg m−1  s−1 = 1.97 ×106  m3  mol−1  s−1 = 1.97 ×109  dm3  mol−1  s−1  

(ii) In concentrated sulfuric acid, η = 27 cP = 27×10–3 kg m–1 s–1  

 
  
kd =

6.61×103  J mol−1

27 ×10−3  kg m−1  s−1 = 2.4 ×105  m3  mol−1  s−1 = 2.4 ×108  dm3  mol−1  s−1  

21B.3(b) The rate constant for a diffusion-controlled bimolecular reaction is [21B.4] 

 

  

kd =
8RT
3η

= 8× (8.3145 J K−1  mol−1)× (320K)
3× (0.601×10−3 kgm−1 s−1)

= 1.18×107 m3 mol−1 s−1 = 1.18×1010  dm3 mol−1 s−1

 

Since this reaction is elementary bimolecular it is second-order; hence 
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t1/2 =

1
2kd [A]0

 [Table 20B.3, with kr = 2kd because 2 atoms are consumed] 

so 
  
t1/2 =

1
2 × (1.18 ×1010 dm3  mol−1 s−1) × (2.0 ×10−3 mol dm−3 )

= 2.1×10−8 s  

21B.4(b) Since the reaction is diffusion-controlled, the rate-limiting step is bimolecular and therefore 
second-order; hence 

 
  
d[P]
dt

= kd [A][B]  

where 

  

kd = 4πR∗DNA[88.3] = 4πNA R∗(DA + DB )

= 4πNA × (RA + RB )× kT
6πη

1
RA

+
1
RB







[19B.19b] = 2RT

3η
(RA + RB )× 1

RA

+
1
RB








 

 

  

kd =
2 × (8.3145 J K−1  mol−1) × (293K)

3 × (1.35 × 10−3  kg m−1 s−1)
× (421+ 945) × 1

421
+

1
945







   = 5.64 ×106  m3 mol−1 s−1 = 5.64 ×109  dm3 mol−1 s−1.

 

Therefore, the initial rate is 

 

  

d[P]
dt

= (5.64 ×109  dm3 mol−1 s−1) × (0.155mol dm−3 ) × (0.195mol dm−3 )

= 1.71×108 mol dm−3 s−1

 

Comment. If the approximation of eqn. 21B.4 is used, kd = 4.81×109 dm3 mol–1 s–1 . In this 
case the approximation results in a difference of about 15% compared to the expression 
used above. 

 
Solutions to problems 

21B.2 See Brief illustration 21B.3 for a sample scenario. In the graphs shown here, the same 
parameters are used, except for the value of the rate constant. That is, n0 = 3.9 mmol of I2, A = 
5.0 cm2, and D = 4.1×10–9 m2 s–1. Using these parameters, we will plot the spatial variation in 
concentration at 102 s, 103 s, and 104 s. In Figure 21B.1(a), the concentration is plotted against 
position in the absence of reaction. That is, kr = 0. The concentration profile spreads with time. 
That is, the maximum concentration (which stays at the origin throughout) decreases, but the 
distance over which there is appreciable concentration increases. Introducing a first-order 
reaction with a rate constant kr = 4.0×10–5 s–1, as in the Brief illustration, has a barely 
noticeable effect on the concentration profiles (plotted in Figure 21B.1(b)); the longer-time 
profiles are very slightly depressed. Making the rate constant a factor of 10 greater suppresses 
the 104-s profile: by that time the material has practically all reacted away (Figure 21B.1(c)). 
Speeding up the reaction by a further factor of 10 (Figure 21B.1(d)) suppresses the 103-s 
profile practically completely as well, and even the 102-s is visibly lower. 
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Figure 21B.1(a) 

 
Figure 21B.1(b) 

 

 
Figure 21B.1(c) 

 

 
Figure 21B.1(d) 

 

 
Examination of eqn. 21B.9 suggests that the spatial variation is not significantly changed by 
reaction; it is merely scaled equally at all positions by the factor   e

−krt . 
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21B.4 (a) The rate constant of a diffusion-limited reaction is 

 

  

kd =
8RT
3η

[21B.4] = 8 × (8.3145 J K−1  mol−1)× (298 K)
3× (1.06 × 10−3 kg m−1  s−1)

= 6.23× 106 m3 mol−1  s−1 = 6.23× 109 dm3 mol−1s−1

 

(b) The rate constant is related to the diffusion constants and reaction distance by 
 kd = 4πR*DNA [21B.3] 

so 

  

R * =
kd

4πDNA

=
(2.77 × 109 dm3 mol−1 s−1) × (10−3  m3  dm−3 )
4π × (1× 10−9  m2 s−1) × (6.022 × 1023  mol−1)

= 4 ×10−10  m = 0.4 nm  

 

 

21C Transition-state theory 

Answers to discussion questions 
21C.2 See Topic 21C.1(e) for detailed examples of how femtosecond spectroscopy has been used 

to detect activated complexes and transition states of reactions. Because the activated 
complexes are not even local minima on potential energy surfaces, they are extremely 
transitory, and laser pulses of duration less than 1 ps are needed in order to detect them. 
Typically one very short pulse will initiate the reaction under investigation, thereby creating 
a dissociative activated complex, and a second pulse will detect a reaction product. Not only 
must the pulses themselves be very short, but the delay between the creation of the complex 
and the detection of its effects must also be short. By such techniques, investigators have 
been able to determine just how stretched the bond in ICN must get before it breaks 
(yielding free CN). Also, decay of the ion pair Na+I– has been studies in detail, revealing the 
existence of two potential energy surfaces, one largely ionic and one corresponding to a 
covalent NaI. 

21C.4 The primary isotope effect is the change in rate constant of a reaction in which the breaking 
of a bond involving the isotope occurs. The reaction coordinate in a C–H bond-breaking 
process corresponds to the stretching of that bond. The vibrational energy of the stretching 
depends upon the effective mass of the C and H atoms (µCH). Upon deuteration, the zero 
point energy of the bond is lowered due to the greater mass of the deuterium atom. 
However, the height of the energy barrier is not much changed because the relevant 
vibration in the activated complex has a very low force constant (bonding in the complex is 
very weak), so there is little zero point energy associated with the complex and little change 
in its zero point energy upon deuteration. The net effect is an increase in the activation 
energy of the reaction. We then expect that the rate constant for the reaction will be lowered 
in the deuterated molecule and that is what is observed. See the derivation leading to eqns 
21C.19 and 21C.20 for a quantitative description of the effect. 
Sometimes the rate of reaction is lowered upon deuteration to an extent even greater than 
can be accounted for by these equations. In such cases, quantum-mechanical tunneling 
(Topic 8A) may be part of the reaction mechanism. The probability of tunneling is highly 
sensitive to mass, so it is much less likely (and therefore much slower) for deuterium than 
for 1H. 
If the rate of a reaction is altered by isotopic substitution it implies that the substituted site 
plays an important role in the mechanism of the reaction. For example, an observed effect 
on the rate can identify bond breaking events in the rate determining step of the mechanism. 
On the other hand, if no isotope effect is observed, the site of the isotopic substitution may 
play no critical role in the mechanism of the reaction. 

 
Solutions to exercises 

21C.1(b) The enthalpy of activation for a bimolecular solution reaction is [Topic 21C.2(a) footnote] 
 ∆‡H = Ea – RT = 8.3145 J K–1 mol–1 × (5925 K – 298 K) = 46.9 kJ mol–1  

 
 
 
 

8 



 
‡ ‡

‡
a a

2

r O Oe e

   e e e e

S R H RT

E RT E RTS R

kT RT kRTk B B
h p hp

B A

∆ / −∆ /

− / − /∆ /

  = , = × =  
   

= =

 

Therefore, 
‡

e e S RA B ∆ /= , implying that ‡ ln 1AS R
B

 ∆ = − 
 

 

 

  

B =
(1.381×10−23 J K−1) × (8.3145J K−1  mol−1) × (298 K)2

6.626 ×10−34 J s ×105 Pa
= 1.54 ×1011 m3

 mol−1 s−1 = 1.54 ×1014 dm3
 mol−1 s−1

 

and hence 

   

∆‡ S = R ln 6.92 ×1012  dm3  mol−1 s−1

1.54 ×1014 dm3  mol−1 s−1







−1













= 8.3145 J K−1  mol−1 × (−4.10) = −34.1 J K−1  mol−1

 

21C.2(b) The enthalpy of activation for a bimolecular solution reaction is [Topic 21C.2(a) footnote] 
 ∆‡H = Ea – RT = 8.3145 J mol–1 K–1 × (4972 K – 298 K) = 38.9 kJ mol–1  
The entropy of activation is [Exercise 21C.1(b)] 

 ‡ ln 1AS R
B

 ∆ = − 
 

 

with 
  
B =

kRT 2

hp O = 1.59 ×1014 dm3  mol−1  s−1  

Therefore, 
13

‡ 1 1 1 1
14

4.98 108.3145 J K  mol ln 1 17.7 J K  mol
1 54 10

S − − − −  ×
∆ = × − = −  . ×  

 

Hence, ∆‡G = ∆‡H – T∆‡S = {38.9 – (298) × (–17.7×10–3)} kJ mol–1 = +44.1 kJ mol–1  

21C.3(b) Use eqn. 21C.15(a) to relate a bimolecular gas-phase rate constant to activation energy and 
entropy: 

 
‡

a2
r e e e E RTS Rk B − /∆ /=  

where 

  

B =
kT
h






×

RT
p O







 [21C.14]

=
(1.381×10−23  J K−1)× (338 K)2 × (8.3145 J mol−1  K−1)

(6.626×10−34  J s)× (105  Pa)
= 1.98×1011 m3 mol−1  s−1

 

Solve for the entropy of activation: 

 ‡ arln 2
EkS R

B T
 ∆ = − + 
 

 

Hence 
3 1 1 3 1

‡ 1 1
11 3 1 1

1 1

0.35 m  mol  s 39.7 10  J mol8.3145 J K  mol ln 2
338 K1.98 10  m  mol  s

124 J K  mol

S
− − −

− −
− −

− −

  ×
∆ = × − + × 

= −

 

21C.4(b) For a bimolecular gas-phase reaction [Exercise 21C.3(b)], 

 ‡ a a arln 2 ln 2 ln 2
E E Ek A AS R R R

B T B RT T B
    ∆ = − + = − − + = −         

 

where 
  
B =

kRT 2

hp O  

For two structureless particles, the rate constant is the same as that of collision theory 

 
  
kr = NAσ

∗ 8kT
πµ







1/2

e−∆E0 /RT  [Example 21C.1] 
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The activation energy is [20D.3] 

 

  

Ea = RT 2 d ln kr

dT
= RT 2 d

dT
ln NAσ

∗ +
1
2

ln 8k
πµ

+
1
2

lnT −
∆E0

RT







= RT 2 1
2T

+
∆E0

RT 2







= ∆E0 +

RT
2

,

 

so the prefactor is 

 ( )a 0 0

1/2 1/2
/ / 1/2 1/2

r A A
8 8e e e e eE RTE RT E RTkT kTA k N Nσ σ
πµ πµ

−∆ /∗ ∗∆   
= = =   

   
 

Hence 
1/2 1/22 O

‡
A O 3/2

8 1 8 3ln ln 2 ln .
2 2( )

kT kRT p hS R N R
p h kT

σσ
πµ πµ

∗
∗

         ∆ = + − − = −      
         

 

For identical particles, 
  µ =m/2 = (92 u)(1.661×10–27 kg u–1)/2 = 7.6×10–26 kg , 
and hence 
 ‡ 1 1

1/29 2 5 34

23 1 3/2 26

1 1

8.3145 J K  mol

0.45 (10  m) 10  Pa 6.626 10  J s 8 3ln
2(1.381 10  J K 450 K) 7.6 10  kg

79 J K  mol .

S

π

− −

− −

− − −

− −

∆ =

  × × × × × −  × × × ×   

= −

 

21C.5(b) At low pressure, the reaction can be assumed to be bimolecular. (The rate constant is 
certainly second-order.) 

(a) ‡ ln 2AS R
B

 ∆ = − 
 

 [Exercise 21C.4(b)] 

where 

  

B =
kRT 2

hp O  [Exercise 21C.4(b)] = 1.381×10−23  J K−1 ×8.3145 J K−1  mol−1 × (298 K)2

6.626×10−34  J s×105  Pa
= 1.54×1011 m3 mol−1  s−1 = 1.54×1014  dm3 mol−1  s−1.

 

Hence 
13 3 1 1

‡ 1 1
14 3 1 1

1 1

2.3 10  dm  mol  s8.3145 J K  mol ln 2
1.54 10  dm  mol  s

32 J K  mol

S
− −

− −
− −

− −

 ×
∆ = × − × 

= −

 

(b)  The enthalpy of activation for a bimolecular gas-phase reaction is [Topic 21C.2(a) 
footnote] 
 ∆‡H = Ea – 2RT = 30.0 kJ mol–1 – 2 × 8.3145 J mol–1 K–1 × 298 K = 25.0 kJ mol–1  
(c) The Gibbs energy of activation at 298 K is 
 ∆‡G = ∆‡H – T∆‡S = 25.0 kJ mol–1 – (298 K) × (–32×10–3 kJ K–1 mol–1)  
 ∆‡G = +34.7 kJ mol–1  

21C.6(b) Use eqn. 21C.18 to examine the effect of ionic strength on a rate constant: 
 log kr = log kr° + 2A|zAzB|I1/2  
Hence log kr° = log kr – 2A|zAzB|I1/2 = log 1.55 – 2 × 0.509 × |1×1| × (0.0241)1/2 = 0.032, 
and kr° = 1.08 dm6 mol–2 min–1 . 

 
Solutions to problems 

21C.2    log kr = log kr
o + 2AzA zB I1/2 [21C.18] 

This expression suggests that we should plot log kr against I1/2 and determine zB from the 
slope, since we know that |zA| = 1. We draw up the following table: 
 

I / (mol kg–1) 0.0025 0.0037 0.0045 0.0065 0.0085 
{I / (mol kg–1)}1/2 0.050 0.061 0.067 0.081 0.092 
log {kr / (dm3 mol–1 s–1)} 0.021 0.049 0.064 0.072 0.100 
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These points are plotted in Figure 21C.1. 

 
 
Figure 21C.1 

 
The slope of the limiting line in Figure 21C.1 is approximately 2.5. Since this slope is equal to 

  2AzA zB × (mol dm−3 )1/2 = 1.018 zA zB , we have   zA zB ≈ 2.5 . But |zA| = 1, and so |zB| = 2. 
Furthermore, zA and zB have the same sign because zAzB > 0. (In fact, the data refer to I– and 

 S2O8
2− .) 

21C.4 Figure 21C.2 shows that log kr is proportional to the ionic strength even when one of the 
reactants is a neutral molecule. 

 
Figure 21C.2 

 
From the graph, the intercept at I = 0 is –0.182, so the limiting value of kr is 
 kr° = 10–0.182 = 0.658 dm3 mol–1 min–1  
Compare the equation of the best-fit line to eqn 21C.16b: 

 ‡ 2 2

‡2 2

H OIC
r r r r

H OI C

log log log log log log logk k K k kγ

γ γγ
γ γ γ

−

−

= ° − = ° − = ° +  

which implies that 2 2

‡

H OI

C

log 0.145I
γ γ
γ
−

=  

If the Debye-Hückel limiting law holds (an approximation at best), the activity coefficients of 
I– and the activated complex are equal, which would imply that 

  
logγ H2O2

= 0.145I , that is, 

that the activity coefficient of a neutral molecule depends on ionic strength. 
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21C.6  
  
Ka =

[H+ ][A− ]
[HA]γ HA

γ ±
2 ≈

[H+ ][A− ]γ ±
2

[HA]
 

Therefore, 
  
[H+ ] =

[HA]Ka

[A− ]γ ±
2

 

and 
  
log[H+ ] = log Ka + log [HA]

[A− ]
− 2 logγ ± = log Ka + log [HA]

[A− ]
+ 2AI1/2  

Write   v = kr [H
+ ][B] . 

Then 

  

log v = log(kr [B]) + log[H+ ]

= log(kr [B]) + log [HA]
[A− ]

+ 2AI1/2 + log Ka

= log v° + 2AI1/2 , v° = kr

[B][HA]Ka

[A− ]
.

 

That is, the logarithm of the rate should depend linearly on the square root of the ionic 
strength. 

 1 2log 2v AI
v

/=
°

 so 
1 2210 AIv v
/

= °×  

That is, the rate depends exponentially on the square root of the ionic strength. 

21C.8 We use the Eyring equation (combining eqns. 21C.9 and 21C.10) to compute the bimolecular 
rate constant 

 
‡ ‡

2 2

O 2 O
A C 0 C 0

r O O O O O O
H D H D

( )
exp exp

N RTE EkT RTk
h RT RTp hp

κ
  −∆ −∆   = ≈     

    

q q

q q q q
 

We are to consider a variety of activated complexes, but the reactants, (H and D2) and their 
partition functions do not change. Consider them first. The partition function of H is solely 
translational: 

 
1/2

O O H
H HO 3 O

HH

 and  so 
RT kTmRT h

kTmp p hΗ
π

Λ
πΛ

3/22

3

  (2 )
= = = 2 

q q  

We have neglected the spin degeneracy of H, which will cancel the spin degeneracy of the 
activated complex. The partition function of D2 has a rotational term as well. 

 2

2

22 2

2 3/2
DO

D O 3 O 4
DD D

(2 )
2

RkT kTmRT kT
hcBp p h cB

π
σΛ

= × =q  

We have neglected the vibrational partition function of D2, which is very close to unity at the 
temperature in question. The symmetry number σ is 2 for a homonuclear diatomic, and the 
rotational constant is 30.44 cm–1. Now, the partition function of the activated complex will 
have a translational piece that is the same regardless of the model: 
 

   
q

C‡
O = q

C‡
TO × q

C‡
R × q

C‡
V  

where 
    
q

C‡
TO =

RT (2πkTmHD2
)3/2

p O h3
 

Let us aggregate the model-independent factors into a single term, F where 

 

‡ 2 2

2 2

2

3 3/22 TO
D HDC 0 0

O O O 3/2
H D H D

1/23
3 4 3 1 10

D 3 3 3 3 5
H

2( )
exp exp

(2 )

5 exp 2.71 10  dm  mol  s
2 (4)

h cB mRT E E
F

RT RThp kT m m kT

E
h cB

RTm p T k

π

− −

−∆ −∆   = =   
   

  −∆ = = ×   
  

q

q q
 

where we have taken 
  
mHD2

= 5mH  and 
  
mD2

= 4mH . 

Now 
    
kr = F × q

C‡
R × q

C‡
V  
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The number of vibrational modes in the activated complex is 3×3–6=3 for a non-linear 
complex, one more for a linear complex; however, in either case, one mode is the reaction 
coordinate, and is removed from the partition function. Therefore, assuming all real vibrations 
to have the same wavenumber v   

 
   
q

C‡
V = q mode

2 (non-linear) or q mode
3 (linear)  

where 
1

mode 1 exp 1.028hcv
kT

−
 −  = − =    



q  

if the vibrational wavenumbers are 1000 cm–1 . The rotational partition function is 

 ‡
R

C
(linear) or non-linear)kT kT

hchcB ABC
π

σσ

3/2 1/21    = (   
     

q  

where the rotational constants are related to moments of inertia by 

  where 
4

B I mr
cIπ

2
= = ∑

  

and r is the distance from an atom to a rotational axis. 
(a) The first model for the activated complex is triangular, with two equal sides of 
 s =1.30 × 74 pm = 96 pm 
and a base of 
 b =1.20 × 74 pm = 89 pm 

 
The moment of inertia about the axis of the altitude of the triangle (z axis) is 

 2 2
1 D H2 ( / 2)  so  cmI m b m b A

cm bπ
−1

2
Η

= = = = 21.2
4



  

To find the other moments of inertia, we need to find the center of mass. Clearly it is in the 
plane of the molecule and on the z axis; the center of mass is the position z at which 
 

  
mi

i
∑ (zi − z) = 0 = 2(2mH )(0 − z) + mH (H − z)  

where H is the height of the triangle, 
   H = [s2 − (b / 2)2]1/2 = 85 pm  
so the center of mass is z = H / 5 . 
The moment of inertia about the axis in the plane of the triangle perpendicular to the altitude 
is 
   I2 = 2(2mH )(H / 5)2 + mH (4H / 5)2 = (4mH / 5)H 2  

so 1
2

H

28.3 cm
4 (4 / 5)

B
c m Hπ

−= =


  

The distance from the center of mass to the D atoms is 
   rD = [(H / 5)2 + (b / 2)2 ]1/2 = 48 pm  
and the moment of inertia about the axis perpendicular to the plane of the triangle is 
 

  

I3 = 2(2mH )rD
2 + mH (4H / 5)2 = 2(2mH )[(H / 5)2 + (b / 2)2 ]+ mH (4H / 5)2

= (4mH / 5)(s2 + b2 ).

 

so  
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 1
2 2

H

12.2 cm
4 (4 / 5)( )

C
c m s bπ

−= =
+



  

The rotational partition function is 

 ‡

3/2 1/2
R
C

1 47.7kT
hc ABC

π
σ
   = =   
    

q  

(The symmetry number σ is 2 for this model.) The vibrational partition function is 
 

   
q

C‡
V = q mode

2 = 1.057  
So the rate constant is: 

 
    
kr = F × q

C‡
R × q

C‡
V = 1.37 ×106  dm3  mol−1  s−1  

(b) To compute the moment of inertia, we need the center of mass. Let the terminal D atom be 
at x = 0, the central D atom at x = b, and the H atom at x = b + s. The center of mass is the 
position X at which 
 

  
mi (xi − X )

i
∑ = 0 = 2mH (0 − X ) + 2mH (b − X ) + mH (s + b − X )  

   5X = 3b + s so x = (3b + s) / 5  
The moment of inertia is 

 

  

I = mi (xi − X )2

i
∑ = 2mH X 2 + 2mH (b − X )2 + mH (s + b − X )2

= 3.97 ×10−47 m kg2
 

and 17.06 cm
4

B
cIπ

−= =


  

The rotational partition function is 

 ‡
R

C
39.4kT

hcBσ
= =



q  

(The symmetry number σ is 1 for this model.) The vibrational partition function is 
 

   
q

C‡
V = q mode

3 = 1.09  
So the rate constant is 

 
    
kr = F × q

C‡
R × q

C‡
V = 1.16 ×106  dm3  mol−1  s−1  

(c) Both models are already pretty good, coming within a factor of 3 to 4 of the experimental 
result, and neither model has much room for improvement. Consider how to try to change 
either model to reduce the rate constant toward the experimental value. The factor F is model-
independent. The factor 

   
q

C‡
V  is nearly at its minimum possible value, 1, so stiffening the 

vibrational modes will have almost no effect. Only the factor 
   
q

C‡
R  is amenable to lowering, and 

even that not by much. It would be decreased if the rotational constants were increased, which 
means decreasing the moments of inertia and the bond lengths. Reducing the lengths s and b 
in the models to the equilibrium bond length of H2 would only drop kr to 6.5×105 (model a) or 
6.9×105 (model b) dm3 mol–1 s–1, even with a stiffening of vibrations. Reducing the HD 
distance in model (a) to 80% of the H2 bond length does produce a rate constant of 4.2× 
105 dm3 mol–1 s–1 (assuming stiff vibrations of 2000 cm–1); such a model is not intermediate in 
structure between reactants and products, though. It appears that the rate constant is rather 
insensitive to the geometry of the complex. 

21C.10 Eqn. 21C.18 may be written in the form: 

 
( )o

r r2
A 1/2

log /1
2

k k
z

A I
=  

where we have used zA = zB for the cationic protein. This equation suggests that zA can be 

determined through analysis that uses the mean value of 
( )o

r r

1/2

log /k k

I
 from several 

experiments over a range of various ionic strengths. 
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( )o

r r
A 1/2

log /1
2

k k
z

A I
=  

We draw up a table that contains data rows needed for the computation: 
 
I 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 
kr/kr

o 8.10 13.30 20.50 27.80 38.10 52.00 
log(kr/kr

o) / I1/2 9.08 9.18 9.28 9.13 9.13 9.17 
 

  
( )o

r r

1/2

log /
9.17

k k

I
=  

 

 
( )

( )

o
r r

A 1/2

log /1 9.16 3.0
2 2 0.509

k k
z

A I
= = = +  

We used the positive root because the protein is cationic. 

 

21D The dynamics of molecular collisions 

Answers to discussion questions 
21D.2 The saddle point on the potential energy surface corresponds to the transition state of a 

reaction. The saddle-point energy is the minimum energy required for reaction; it is the 
minimum energy for a path on the potential energy surface that leads from reactants to 
products. Because many paths on the surface between reactants and products do not pass 
through the saddle point, they necessarily pass through points of greater energy, so the 
activation energy can be greater than the saddle-point energy. Thus, the saddle-point energy 
is a lower limit to the activation energy.  

21D.4 Attractive and repulsive potential-energy surfaces are discussed in Section 21D.4(b). An 
attractive surface is one whose saddle point is closer to reactants than to products, so that 
the transition state occurs early in the reaction. On such a surface, trajectories in which 
excess energy is translational tend to end in products whereas trajectories in which the 
reactant is vibrationally excited tend not to cross the saddle point and end in products. 
Conversely, on a repulsive surface, the oscillatory motion of a trajectory that has excess 
vibrational energy in the reactant enhances the likelihood that the trajectory will end in 
products rather than simply reflect back to reactants. 

 
Solutions to exercises 

21D.1(b) Refer to Figure 21D.20 of the main text, which shows a repulsive potential energy surface 
as well as trajectories of both a successful reaction and an unsuccessful one. The trajectories 
begin in the lower right, representing reactants. The successful trajectory passes through the 
transition state (marked by a circle with the symbol ‡ near it). The unsuccessful trajectory is 
fairly straight from the lower right through the transition state, indicating little or no 
vibrational excitation in the reactant. Therefore most of its energy is in translation. That 
trajectory runs up a steep portion of the surface and rolls back down the valley representing 
the reactant. Without vibrational energy, it cannot go around the corner to the transition 
state. The successful trajectory, conversely, is able to turn that corner only because it has a 
substantial amount of energy in vibration (which is represented by side to side motion in the 
valley representing reactants). That is, the reactant is relatively high in vibrational energy. 
Once that successful trajectory passes through the transition state, it rolls pretty much 
straight into the valley representing products, so the product is high in translational energy 
and low in vibrational energy. 
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21D.2(b) The numerator of eqn. 21D.6 is 

 ( ) ( )/ / / /

0 0 0

1 1( )e d e d e 1 e
E VVE RT E RT E RT V RT

E
P E E E

RT RT
=−∞ − − − −

=
= = − = −∫ ∫  

Thus, if the cumulative reaction probability were a step function that vanishes at high 
temperature, then the numerator would decrease with increasing temperature. (The 
exponential term increases with increasing temperature, but it diminishes the expression 
because of the negative sign in front of it. The 1/T factor also decreases with increasing 
temperature.) The rate constant, then, would also decrease with increasing temperature. (In 
fact, the rate constant would decrease with increasing temperature even faster, because the 
denominator of eqn. 21D.6 would increase with increasing temperature.) 
Comment: The cumulative reaction probability is more likely to be a step function in the 
opposite sense, one that vanishes for energies below a threshold. 
Comment: The solution to Exercise 21D.2(a) can be obtained from this solution by taking 
the limit V → ∞. 

 
Solutions to problems 

21D.2 The number density of scatterers (Ns) and the path length L are the same in the two 
experiments. Because 

    I = I0e
−σN L  [Problem 21D.1] so 

   
ln I

I0

= −σN L , 

we have 
 

σ (CH2F2 )
σ (Ar)

=
ln 0.6
ln 0.9

= 5  

CH2F2 is a polar molecule; Ar is not. CsCl is a polar ion pair and is scattered more strongly by 
the polar CH2F2. 

21D.4 Refer to Figure 21D.1. 
 
Figure 21D.1 

 
The scattering angle is θ = π – 2α if specular reflection occurs in the collision (angle of impact 

equal to angle of departure from the surface). For b ≤ R1 + R2, 
  
sinα =

b
R1 + R2 (v)

 

 

  

θ(v) =
π − 2arcsin b

R1 + R2 (v)






b ≤ R1 + R2 (v)

0 b > R1 + R2 (v)










 

where R2(v) = R2e-v/v* , R1 = R2/2 = b. 

(a) 
  
θ(v) = π − 2arcsin 1

1+ 2e−v/v*







 

(Note: The restriction b ≤ R1 + R2(v) transforms into R2/2 ≤ R2/2 + R2e-v/v* , which is valid for 
all v.) This function is plotted as curve (a) in Figure 21D.2. 
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Figure 21D.2 

 
 (b) The kinetic energy of approach is E = mv2/2, so 

 
  
θ(E) = π − 2arcsin 1

1+ 2e−( E / E*)1/2







 where E* = m(v*)2/2 . 

This function is plotted as curve (b) in Figure 21.6. 

 

21E Electron transfer in homogeneous systems 

Answer to discussion question 
21E.2 Electron tunneling plays an important role in electron transfer. From considerations in 

Topic 8A, we would expect that tunneling would be more important for electrons than any 
other particles that participate in chemical reactions because they are so much lighter than 
even the lightest atoms or ions. Tunneling is responsible for the exponential distance 
dependence of the factor Het(d)2 (eqn. 21E.4), which is directly proportional to the electron-
transfer rate constant (eqn. 21E.5). A more thorough discussion can be found in Topic 
21E.2(a). 

Solutions to exercises 

21E.1(b) For a donor–acceptor pair separated by a constant distance, assuming that the reorganization 
energy is constant, eqn. 21E.9 holds: 

 
  
ln ket = −

(∆ rG
O )2

4RT∆ER

−
∆ rG

O

2RT
+ constant  

or, using molecular units rather than molar units, 

 
  
ln ket = −

(∆ rG
O )2

4kT∆ER

−
∆ rG

O

2kT
+ constant  

Two sets of rate constants and reaction Gibbs energies can be used to generate two 
equations (eqn. 21E.9 applied to the two sets) in two unknowns, ∆Gr and the constant. 

 
  
ln ket,1 +

(∆ rG1
O )2

4kT∆ER

+
∆ rG1

O

2kT
= constant = ln ket,2 +

(∆ rG2
O )2

4kT∆ER

+
∆ rG2

O

2kT
 

so 
  

(∆ rG1
O )2 − (∆ rG2

O )2

4kT∆ER

= ln
ket,2

ket,1

+
∆ rG2

O − ∆ rG1
O

2kT
 

and 
( )

O 2 O 2
r 1 r 2

R
et,2 O O

r 2 r 1
et,1

( ) ( )

4 ln 2
k

G GE
k

kT G G

∆ − ∆
∆ =

+ ∆ −∆
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∆ER =
(−0.665 eV)2 − (−0.975 eV)2

4(1.381×10−23
 J K−1)(298 K)

1.602 ×10−19  J eV−1 ln 3.33×106

2.02 ×105 − 2(0.975− 0.665) eV
= 1.53 eV  

If we knew the activation Gibbs energy, we could use eqn. 21E.5 to compute Het (d) from 
either rate constant, and we can compute the activation Gibbs energy from eqn. 21E.6: 

 
O 2 2

‡ r r

r

( ) {( 0 665 1 53) eV} 0 123 eV
4 4(1 53 eV)

G EG
E

∆ + ∆ − . + .
∆ = = = .

∆ .
 

Now 
1/22 3 ‡

et
et

R

2{ ( )}
exp

4
H d Gk

h kT E kT
π   −∆

=    ∆   
 

so 

1 2 1 4 ‡
et R

et 3

1/234 5 1

1/419 1 23 1

3

19 1

4
( ) exp

2 2

(6.626 10  J s)(2.02 10  s )
2

4(1.53 eV)(1.602 10  J eV )(1.381 10  J K )(298 K)

(0.123 eV)(1.602 10  J eV )exp
2(1

hk kT E GH d
kTπ

π

/ /

− −

− − − −

− −

 ∆ ∆   =    
    

 × ×
=  
 

 × ×
× 
 

×
× 23 1

24

.381 10  J K )(298 K)

9.6 10  J

− −

−

 
 × 

= ×   

21E.2(b) Equation 21E.8 applies: 
 ln ket = –βd + constant  
The slope of a plot of ket versus d is –β. The slope of a line defined by two points is: 

 
  
slope = ∆y

∆x
=

ln ket,2 − ln ket,1

d2 − d1

= −β =
ln  4.51×104 − ln  2.02 ×105

(1.23−1.11) nm
 

so  β = 12.5 nm−1  
Inserting data from either rate constant allows calculation of the constant: 
  constant = ln 2.02 ×105 + (12.5 nm−1)(1.11 nm) = 26.1 
Taking the exponential of eqn. 21E.8 yields: 

 
  
ket = e−βd + constant s−1 = e−(12.5/nm)(1.59 nm)+26.1s−1 = 5.0 ×102 s−1  

Solutions to problems 
21E.2 Estimate the bimolecular rate constant kr for the reaction 

 
 
Ru(bpy)

3
3+ + 2+

Fe(H2O)6 → Ru(bpy)3
2+ +Fe(H2O)6

3+  
by using the approximate Marcus cross-relation: 
 kr ≈ (kDDkAAK)1/2  
The standard cell potential for the reaction is 
   E

O = Ered
O (Ru(bpy)3

3+ ) − Ered
O (Fe(H2O)6

3+ ) = (1.26 − 0.77)V = 0.49 V  
so the equilibrium constant is 

 
  
K = exp νF E O

RT





= exp (1)(96485  C mol−1  s−1)(0.49 V)

(8.3145 J K−1  mol−1)(298 K)






= 1.9 ×108  

The rate constant is approximately 
 kr ≈ {(4.0×108 dm3 mol–1 s–1)(4.2 dm3 mol–1 s–1)(1.9×108)}1/2  
 kr ≈ 5.7×108 dm3 mol–1 s–1  

21E.4 Does eqn. 21E.8 
   ln ket = −βd + constant  
apply to these data? Draw the following table and plot ln ket vs. d (Figure 21E.1): 
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d / nm ket / s–1 ln ket / s–1 
0.48 1.58×1012 28.1 
0.95 3.98×109 22.1 
0.96 1.00×109 20.7 
1.23 1.58×108 18.9 
1.35 3.98×107 17.5 
2.24 6.31×101 4.14 

 
Figure 21E.1 

 
The data fall on a good straight line, so the equation appears to apply. The least-squares linear 
fit equation is: 
   ln ket / s = 34.7 −13.4d / nm R2 (correlation coefficient) = 0.991 

so we identify β = 13.4 nm−1  

 

21F Processes at electrodes 

Answer to discussion question 
21F.2 For electron transfer to occur at an electrode, several steps are necessary. A species in a 

bulk solution phase must lose its solvating species and make its way through the electode-
solution interface to the electrode. Once there, its hydration sphere must be adjusted by the 
electron transfer itself, and then the species must detach and reverse its steps as it were, 
passing back through the interface into the bulk solution phase. Because there are energy 
requirements associated with these steps, they are said to be activated. How the activation 
Gibbs function depends on applied potentials and on the resemblance of transition state to 
oxidized and reduced species is treated in Topic 21F.2(a).  

 
Solutions to exercises 

21F.1(b) The conditions are in the limit of large, positive overpotentials, so eqn 21F.5b applies: 
 ln j = ln j0 + (1 – α)fη 

where  
  
f = F

RT
=

96845 C mol−1

(8.3145 J K−1  mol−1) × (298 K)
= 38.9 V−1  

Subracting this equation from the same relationship between another set of currents and 
overpotentials, we have 
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ln ′j

j
= (1−α ) f ( ′η −η)  

which rearranges to 

 
  
′η = η + ln ( ′j / j)

(1−α ) f
= (105×10−3 V) + ln(72 / 17.0)

(1− 0.42) × (38.9 V)−1 = 0.169 V  

21F.2(b) Use eqn 21F.5a; then 
 j0 = j e–(1–α)ηf = (17.0 mA cm–2) × e–(1-0.42)×0.105 V×38.9/V = 1.59 mA cm–2 . 

21F.3(b) In the high overpotential limit [21F.5a] 

 
  
j = j0e

(1−α ) fη
so

j1
j2
= e(1−α ) f (η1−η2 ) and  j2 = j1e

(1−α ) f (η2−η1)
.  

So the current density at 0.60 V 

 
  
j2 = (1.22 mA cm−2 ) × e

(1−0.50)×(0.60 V−0.50 V)×(38.9/V)
= 8.5 mA cm−2  

about a 7-fold increase compared to the current at 0.50 V. 

21F.4(b) (i) The Butler–Volmer equation is [21F.1] 

 

  

j = j0 (e(1−α ) fη − e−α fη )

= (2.5×10−3  A cm−2 ) × (e(1−0.58)×(0.30 V)×(38.9/V) − e−0.58×(0.30 V)×(38.9/V) ) = 0.34 A cm−2
 

(ii) Eqn 21F.5a (also known as the Tafel equation) corresponds to the neglect of the second 
exponential above, which is very small for an overpotential of 0.3 V. (Even when it was 
kept, in part (a), it was negligible.) Hence 
 j = 0.34 A cm–2 . 
The validity of the Tafel equation increases with higher overpotentials, but decreases at 
lower overpotentials. A plot of j against η becomes linear (non-exponential) as η → 0. 
The validity of the Tafel equation improves as the overpotential increases. 

21F.5(b) The Butler–Volmer equation (21F.1]), with transfer coefficients from Table 21F.1, is 
   j = j0 (e 1−α( )fη − e−α fη ) = j0 (e0.42 fη − e−0.58 fη )  
Recall that η is the overpotential, defined as the working potential E′ minus the zero-current 
potential E. The latter is given by the Nernst equation (6C.4): 

 
  
E = E O −

RT
vF

ln Q = E O −
1
f

ln a(Fe2+ )
a(Fe3+ )

= 0.77 V −
1
f

ln a(Fe2+ )
a(Fe3+ )

 

Thus 
  
η = ′E − 0.77 V +

1
f

ln a(Fe2+ )
a(Fe3+ )

= ′E − 0.77 V +
1
f

ln r , 

where r is the ratio of activities. Specializing to the condition that the ions have equal 
activities yields 
 η = E′ – 0.77 V 
and   j = (2.5 mA cm−2 ) × (e0.42 f ′E −0.42 f ×0.77  V − e−0.58 f ′E +0.58 f ×0.77  V ) . 
Evaluating the constant parts of the exponentials (with f = 38.9 V–1). and incorporating them 
as numerical factors yields 

 
  
j = (8.6 ×10−6 mA cm−2 ) × e0.42 f ′E − (8.8 ×10−7 mA cm−2 )e−0.58 f ′E  

21F.6(b) The current density of electrons is j0/e because each one carries a charge of magnitude e. 
Look up j0 values in Table 21F.1, and recall that 1 A = 1 C s–1 . 
For Cu | H2 | H+ j0 = 1.0×10–6 A cm–2  

 
  

j0

e
=

1.0 ×10−6 A cm−2

1.602 ×10−19 C
= 6.2 ×1012  cm−2  s−1  

For Pt | Ce4+, Ce3+ j0 = 4.0×10–5 mA cm–2 

 
  

j0

e
=

4.0 ×10−5 A cm−2

1.602 ×10−19 C
= 2.5×1014  cm−2 s−1  
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There are approximately 
 

(1.0 ×10−2  m)2

(260 ×10−12 m)2 = 1.5×1015  atoms in each square centimeter of 

surface. The numbers of electrons per atom are therefore 4.2×10–3 s–1 and 0.17 s–1, 
respectively. 

21F.7(b) When the overpotential is small, its relation to the current density is [21F.4] 

 
  
η =

RTj
Fj0

=
j

fj0

 

which implies that the current through surface area S is 
 I = Sj = Sj0fη . 
An ohmic resistance r obeys η = Ir, and so we can identify the resistance as 

 
  
r = η

I
=

1
Sj0 f

=
1

1.0 cm2 × 38.9 V−1 × j0

=
2.57 ×10−2 Ω
( j0 / A cm−2 )

  [1V = 1AΩ]  

(a) Pb | H2 | H+ j0 = 5.0×10–12 A cm–2  

 
  
r = 2.57 ×10−2 Ω

5.0 ×10−12 = 5.1×109  Ω = 5.1 GΩ  

(b) Pt | Fe3+, Fe2+ j0 = 2.5×10–3 mA cm–2 

 
  
r = 2.57 ×10−2 Ω

2.5×10−3 = 10. Ω  

21F.8(b) Zn can be deposited if the H+ discharge current is less than about 1 mA cm–2. The exchange 
current, according to the high negative overpotential limit, is 
 j = j0e–αfη [21F.6a] = (0.79 mA cm–2) × e–0.5×(38.9/V)×(–0.76 V) = 2.1×106 mA cm–2  
This current density is much too large to allow deposition of zinc; that is, H2 would begin 
being evolved, and fast, long before zinc began to deposit. 

Solutions to problems 

21F.2 Deposition may occur when the potential falls to below E. (Recall that η < 0 for cathodic 
processes.) E is given by the Nernst equation (6C.4): 

 
  
E = E O +

RT
zF

ln a(M+ )  

Simultaneous deposition will occur if the two potentials are the same; hence the relative 
activities are given by 

 
  
E O (Sn, Sn2+ ) + RT

2F
ln a(Sn2+ ) = E O (Pb, Pb2+ ) + RT

2F
ln a(Pb2+ )  

or ( )2
O 2 O 2

2

1

(Sn ) 2ln { (Pb, Pb ) (Sn, Sn )}
(Pb )

2 (38.9 V ) ( 0 126 0 136) V 0 78

a F E E
RTa

+
+ +

+

−

= −

= × × − . + . = .

 

That is, we require a(Sn2+) = e0.78a(Pb2+) = 2.2a(Pb2+) . 

21F.4 This problem differs somewhat from the simpler one-electron transfers considered in the text. 
In place of Ox + e– → Red we have here 
 In3+ + 3 e– → In 
namely, a three-electron transfer. Therefore equations that contain the Faraday constant F (or 
f, which is proportional to F) need to be modified by including the factor z (in this case 3). In 
place of eqns 21F.5b and 21F.6b, we have 
 ln j = ln j0 + z(1 – α)fη anode 
 ln(–j) = ln j0 – zαfη cathode 
We draw up the following table 

j/(A m–2) –E/V η/V ln (j/A m–2) 
0 0.388 0  
0.590 0.365 0.023 –0.5276 
1.438 0.350 0.038 0.3633 
3.507 0.335 0.053 1.255 
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We carry out a linear regression of ln j against η with the following results (see Figure 20F.1). 
 
Figure 20F.1 

 
 slope = z(1 – α)f = 59.42 V–1, standard deviation = 0.0154 
 y-intercept = ln j0 = –1.894, standard deviation = 0.0006 
 R = 1 almost exactly 
The fit of the three data points to the Tafel equation is almost exact. Solving for α from the 
slope, we obtain 

 
  
α = 1− 59.42 V−1

3 f
= 1− 59.42 V−1

3× (38.9 V−1)






= 0.50  

which matches the usual value of α exactly. 
 j0 = e–1.894 A m–2 = 0.150 A m–2 . 
The cathodic current density at E = –0.365 V is obtained from 

 
  

ln(− jc ) = ln j0 − zα fη

= −1.894 − (3× 0.50 × 0.023 V) × (38.9 V−1) = −3.26
 

so 
  
jc = e−3.26 = 0.038Am−2  

21F.6  Start from the Butler-Volmer equation (21F.1), and expand it in powers of η: 
  (1 )

0

2 2 2 2 2 2
0

0

1
2

21
2

( )
1{1 (1 ) (1 ) 1 }2

{ ( ) (1 2 ) }

f fj j e e

j f f f f

j f f

α η α η

α η α η α η α η

η η α

− −= −

= + − + − + − + − +

= + − +

 



 

Average over one cycle (of period 2π/ω): 
 { }0

2 21
2 (1 2 )j j f fη α η= + − +  

where 
 
η = 0 , because 

  
ω
2π

cosωt dt
0

2π /ω

∫ = 0  

 
 
η2 = 1

2η0
2 , because 

  
ω
2π

cos2 ωt dt
0

2π /ω

∫ = 1
2  

Therefore, 
  

j = 1
4 (1− 2α ) f 2 j0η0

2  

and 
  

j = 0  when  α = 1
2 . For the mean current, 
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I = 1
4 (1− 2α ) f 2Sj0η0

2

=
1− 0.76

4
× (1.0 cm2 ) × (7.90 ×10−4  A cm−2 ) × (0.0389 mV−1) × (10 mV)2

= 7.2 µA

 

21F.8 (a) The roughly symmetrically distributed positive maximum and negative minimum suggest 
a reversible one-electron transfer. Compare to Figures 21F.12 and 21F.13(b) of the main part 
of the chapter as discussed in Topic 21F.3 and Example 21F.2. 
(b) There are two roughly symmetrically distributed positive maxima and negative minima, 
suggesting a reversible two-electron transfer brought about by sequential reversible one-
electron transfers. 
(c) The shape is typical of an irreversible reduction: the positive maximum has no 
corresponding negative minimum. Compare to Figure 21F.13(a) of the main part of the 
chapter as discussed in Example 21F.2. 
(d) Two reductions are apparent in this voltammogram, the second of which is reversible and 
the first not. (The first positive maximum has no corresponding minimum; the second does.) 
Compare to Figure 21F.14 of the main part of the text. 

 
Integrated activity 

21.2 Both the Marcus theory of photo-induced electron transfer (Topic 21E) and the Förster 
theory of resonance energy transfer (Topic 20G) examine interactions between a molecule 
excited by absorption of electromagnetic energy (the chromophore S) and another molecule 
Q. They explain different mechanisms of quenching, that is, different ways that the 
chromophore gets rid of extra energy after absorbing a photon through intermolecular 
interactions. Another common feature of the two is that they depend on physical proximity 
of S and Q: they must be close for action to be efficient. 
In the Marcus theory, the rate of electron transfer depends on the reaction Gibbs energy of 
electron transfer, ∆rG, and on the energy cost to S, Q, and the reaction medium of any 
concomitant molecular rearrangement. The rate is enhanced when the driving force (∆rG) 
and the reorganization energy are well matched. 
Resonant energy transfer in the Förster mechanism is most efficient when Q can directly 
absorb electromagnetic radiation from S. The oscillating dipole moment of S is induced by 
the electromagnetic radiation it absorbed. It transfers the excitation energy of the radiation 
to Q via a mechanism in which its oscillating dipole moment induces an oscillating dipole 
moment in Q. This energy transfer can be efficient when the absorption spectrum of the 
acceptor (Q) overlaps with the emission spectrum of the donor (S). 
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22  Processes on surfaces 

22A  An introduction to solid surfaces 
 

Answers to discussion questions 
 
22A.2 AFM, atomic force microscopy, drags a sharp stylus attached to a cantilever across a surface and 
monitors the deflection of a laser beam from the back of the cantilever. Tiny changes in deflection indicate 
attraction to or repulsion from atoms on a sample surface. Since no current is involved, both conductive and 
nonconductive surfaces may be viewed. Surface damage is avoided by using a cantilever that has a very small 
spring constant. The method does not require a vacuum, and it has been applied in a liquid environment. 
Biological polymers may be viewed and nanometre resolutions have been achieved. However, an incorrect 
probe choice may cause image artifacts and distortions. Thermal drift of adsorbates may result in image 
distortions during relatively slow surface scans. 

FIM, field-ionization microscopy, points a tip, with a point radius of about 50 nm, toward a fluorescent screen 
in a chamber containing about 1 mTorr to 1 nTorr of either hydrogen or helium. A positive 2-20 kV potential 
applied to the tip causes the hydrogen or helium gas adsorbate molecules to ionize and accelerate to the 
fluorescent screen. The image portrays the electrical characteristics of the tip surface and surface diffusion 
characteristics of the adsorbate are deduced. See the very interesting historical review of the technique in the 
issue of C&EN 83, no. 48 (November 28, 2005): 13-16. 

LEED, low-energy electron diffraction, uses electrons with energies in the range 10-200 eV, which ensures 
diffraction from atoms only on or near the sample surface. Diffraction intensities depend on the vertical location 
of the atoms. The diffraction pattern is sharp if the surface is well-ordered for long distances compared with the 
wavelength of the incident electrons. Diffuse patterns indicate a poorly ordered surface or the presence of 
impurities. If the LEED pattern does not correspond to the pattern expected by extrapolation of the bulk to the 
surface, then either a reconstruction of the surface has occurred or there is order in the arrangement of an 
adsorbed layer. The interpretation of LEED data can be very complicated. 

SAM, scanning Auger electron microscopy, uses a focused 1-5 keV electron beam to probe and map surface 
composition to a resolution of about 50 nm. The high energy impact causes the ejection of an electron from a 
low-lying orbital, and an upper electron falls into it. The energy this releases may result either in the generation 
of X-ray fluorescence or in the ejection of a second electron, the Auger effect. The emissions are used to 
identify chemical constituents at interfaces and surfaces of conducting and semiconducting materials to a depth 
of 1-5 nm. 

SEM, scanning electron microscopy, uses magnetic fields to focus and scan a beam of electrons across a sample 
surface. Scattered electrons from a small irradiated area are detected and the electrical signal is sent to a video 
screen. Resolution is typically between 1.5 and 3.0 nm. Nonconductive materials require a thin conductive 
coating to prevent electrical charging of the sample. 

STM, scanning tunnelling microscopy, reveals atomic details of surface and adsorbate structure. Surface 
chemical reactions can be viewed as they happen. The tip of the STM, which may end in a single atom, can also 
be used to manipulate adsorbed atoms on a surface, making possible the fabrication of complex and yet very 
tiny structures, such as nanometre-sized electronic devices. The method is based upon the quantum mechanical 
tunneling effect in the presence of a bias voltage between the STM tip and sample surface. A piezoelectric 
scanner is used to position and move the tip in very close proximity to the surface, and the electrical current of 
tunneling generates an image of the surface topography with a resolution in the nanometre range. Images of 
surface electronic states may be generated. A host of very interesting STM images can be viewed at 
http://www.almaden.ibm.com/vis/stm/gallery.html. 

TEM, transmission electron microscopy, passes an electron beam through the sample and collects the image on 
a screen. Electron wavelengths can be as short as 10 pm and typical resolutions are about 2 nm so the method 
cannot resolve individual atoms. Samples must be very thin cross-sections of a dry (therefore, nonliving) 
sample. Electron microscopy is very useful in the study of internal structures of cells. 
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Solutions to exercises 
 
22A.1(b) The collision frequency, ZW, of gas molecules with an ideally smooth surface area is given by eqn 
22A.1. 

 
( )

( ){ } ( )
( ) ( ) ( ) ( ){ } ( ){ }

( ){ }

W A1/2
A

1 2 4 2 2

1/2 1/223 1 1 23 1 1

17 2 1
1/21

 [22A.1; / ]
2π /

kg m  s / Pa 10  m / cm
     

2π 1.381×10  J K 298.15 K kg mol / 6.022 10  mol / kg mol

/ Pa     4.825 10 cm  s     at 25  C
/ kg mol

pZ m M N
MkT N

p

M

p

M

− − −

− − − − −

− −

−

= =

× ×
=

× × × ×

 
 = × °  
 

 

(i) Nitrogen (M = 0.02802 kg mol–1) 
  p = 10.0 Pa, ZW = 3.88 × 1019 cm–2 s–1 

 p = 0.150 μTorr = 2.00 × 10–5 Pa, ZW = 5.76 × 1013 cm–2 s–1 

(ii) Methane (M = 0.01604 kg mol–1) 
 p = 10.0 Pa, ZW = 3.81 × 1019 cm–2 s–1 

 p = 0.150 μTorr = 2.00 × 10–5 Pa, ZW = 7.62 × 1013 cm–2 s–1 

 
22A.2(b) ( )22 6 2π / 4 π 2.0 mm / 4 3.14 10  mA d −= = = ×  
The collision frequency of the nitrogen gas molecules with surface area A is ZWA = 5.00 × 1019 s−1. 
 

( )
( ) ( )
( )

( ) ( ) ( ) ( ){ } ( )

W A1/2
A

1/2
W A

19 1

1/23 1 23 1 23 1 6 2

 [95.1; / ]
2π /

2π / /

  5.0 10  s

     2π 28.02 10  kg mol 1.381×10  J K 525 K / 6.022 10  mol / 3.14 10  m

  733 Pa

pZ A A m M N
MkT N

p Z A MkT N A
−

− − − − − −

= =

= ×

= ×

× × × × × ×

=

 

 
 

Solutions to problems 
 

22A.2  
( )W A1/2

A

 [22A.1; / ]
2π /

pZ m M N
MkT N

= =  

 
( ){ } ( )

( ) ( ) ( ) ( ){ }
( )

1 2 4 2 2

1/223 1 1 23 1

18 2 1
2

kg m  s / Pa 10  m / cm
     

2π 1.381×10  J K 300 K 0.03200 kg mol / 6.022 10  mol

     2.69 10 / Pa  cm  s         for O  at 300 K

p

p

− − −

− − − −

− −

× ×
=

× × × ×

= × ×

 

(a) At 100 kPa, 23 2 1
WZ 2 69 10 cm s− −= . ×              (b) at 1.000 Pa, 18 2 1

WZ 2 69 10 cm s− −= . ×  

The nearest neighbor in titanium is 291 pm, so the number of atoms per cm2 is approximately 151 4 10. ×  (the 
precise value depends on the details of the packing, which is hcp, and the identity of the surface). The number of 
collisions per exposed atom is therefore ( )15 2

W / 1 4 10 cmZ −. × . 

(a) When 8 1
atom100kPa  Z 2 0 10 sp −= , = . ×             (b) When 3 1

atom1 000Pa  Z 2 0 10 sp −= . , = . ×  
 
22A.4 The farther apart the atoms responsible for the pattern, the closer the spots appear in the pattern (see 
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Example 22A.1). Tripling the horizontal separation between atoms of the unreconstructed face, which has 
LEED pattern (a), yields a reconstructed surface that gives LEED pattern (b). 
 

 
 

22B Adsorption and desorption 
 

Answers to discussion questions 
 
22B.2  The characteristic conditions of the Langmuir isotherm are: 
1. Adsorption cannot proceed beyond monolayer coverage. 
2. All sites are equivalent and the surface is uniform. 
3. The ability of a molecule to adsorb at a given site is independent of the occupation of neighboring sites. 

For the BET isotherm condition number 1 above is removed and the isotherm applies to multi-layer coverage. 
In Example 22B.1 it is shown that a gas exhibits the characteristics of a Langmuir adsorption isotherm when 

 1p p
V V Vα∞ ∞

= +  

where V is the volume of the adsorbate and V∞ completes the monolayer coverage. Hence, a plot of p/V against p 
should give a straight line of slope 1/V∞ and intercept 1/αV∞.  
 
In contrast the BET adsorption isotherm is followed when, as shown in Example 22B.3, 

 
( )

( )
mon mon

11
1

c zz
z V cV cV

−
= +

−
 

where z = p/p* and p* is the vapour pressure above a layer of adsorbate that is more than one molecule thick and 
which resembles a pure bulk liquid, Vmon is the volume corresponding to monolayer coverage, and c is a 
constant. Thus, the BET adsorption mechanism is indicated when a plot of z/{(1 − z)V} against z is linear. 
 
 

Solutions to exercises 
 

22B.1(b) 
mon

 [22B.2]
1

V V p
V V p

αθ
α∞

= = =
+

 

This rearranges to [Example 22B.1] 

 
mon mon

1p p
V V Vα
= +  

Hence,  2 1 2 1

2 1 mon mon

p p p p
V V V V

− = −  

Solving for monV : 

 
( ) ( )

32 1
mon 3

2 2 1 1

(108 56.4) kPa 27cm
108 / 2.77 56.4 /1.52  kPa cm/ /

p pV
p V p V −

− −= = =
−−

 

 
22B.2(b) The enthalpy of adsorption is typical of chemisorption  (Table 22A.2) for which τ0 ≈ 10–14 s because 

(a) (b)
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the adsorbate-substrate bond is stiff (see Brief illustration 22B.2). The half-life for remaining on the surface is 

 
314 155 10 (8 3145 500)a,des

1 2 0 d ade  [22B.13] (10 s) (e ) [ ] 200 s
E RT

t E Hτ − × / . ×
/ = ≈ × ≈ −∆ ≈  

 

22B.3(b) 1 1 1 2

2 2 2 1

1
  [22B.2 and / ]

1
m p p V m p
m p p

θ α
θ α

+
= = × ∝

+
 

which solves to 

 

( )
( )

( ) ( )
( )

( ) ( )
( )

1 2 2 1 1 2 2 1

2 1 2 2 1 2 2

1

/ 1 / / 1 1
/ 1 /

0.63 / 0.21 4 / 36.0 1 1 0 083 kPa
1 0.63 / 0.21 4 0 kPa

m p m p m m p p
p m p m m m p

α

−

− × −
= = ×

− −

× −
= × = .

− .

 

Therefore, 

 
1

1 21

(0.083 kPa ) (36.0 kPa) (0.083) (4.0)0.75   [22b.2]     and     0.25
(1) (0.083) (4.0)(1) (0.083 kPa ) (36.0 kPa)

θ θ
−

−

× ×
= = = =

+ ×+ ×
 

 

22B.4(b) a d
1 [22B.1,  / ]  which implies that .

1 1
Kp K k k p

Kp K
θθ α
θ

 = = = , =  + − 
 

(a) ( ) 10.20 / 0.80 / 0.548 kPa 0.46 kPa  p −= =  

(b) ( ) 10.75 / 0.25 / 0.548 kPa 5.5 kPa  p −= =  
 
22B.5(b) 

 
( )

ad
ad des

des [Example 22B.2, 12.2 J /1.
Δ Δ

00 mmoln( / l)   
1 /

]
H Hp p

R
H

T
H

R
θ

∆
 ∂

= = −  ∂ 
= −∆ = −

 

 

Assuming that des H∆  is independent of temperature, integration and evaluation gives 

 
--1

des2
--1 --1

1 2 1

1 1 12.2 kJ mol 1 1ln 0.310
318 K 298 K8.3145 J K  mol

Hp
p R T T

   ∆  = − − = − × − =     
   

 

0.310
2which  implies that (8.86 kPa) (e ) 12.1 kPap = × = . 

 

22B.6(b) 
( )

adΔln [Example 22B.( / )   ]
/

2
1

Hp p
T R

θ

 ∂
=  ∂ 



 

Assuming that ad H∆  is independent of temperature, integration and evaluation gives 

 ad2

1 2 1

1 1ln
Hp

p R T T
 ∆

= − 
 

 

 

( )

1

2
ad

2 1 1

13
--1 --1

1

1 1 ln

1.02 10  kPa 1 18.3145 J K  mol ln
350 kPa 240 K 180 K

       6.40 kJ mol

pH R
T T p

−

−

−

 
∆ = − 

 

 ×  = × × −   
  

= −

 

 
22B.7(b) The desorption time for a given volume is proportional to the half-life of the absorbed species and, 
consequently, the ratio of desorption times at two different temperatures is given by: 
 ( ) ( ) ( ) ( ) ( )a,des 2 a,des 1 a,des 2 11/ 1/ /

1 2 1 22 / 1 2 / 1 e / e  [22B.13] eE RT E RT E T T Rt t t t −
/ /= = =   

Solving for the activation energy for desorption, Ea,des, gives: 
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( ) ( ){ }( )

( )

1
a,des 2 1

1
--1 --1

1

ln 2 / 1 1/ 1/

8.44 s 1 1    8.3145 J K  mol ln
1856 s 1012 K 873 K

    285 kJ mol

E R t t T T −

−

−

= −

   = × × −   
   

=

 

The desorption time, t, for the same volume at temperature T is given by: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

a,des 11/ 1/ / 3 1 --1 --11 11 e 1856 s exp 285 10  J mol / 8.3145 J K  mol
873 K

1 1 1856 s exp 34.3
/1000 K 0.873

E T T Rt t
T

T

− −  = = × × −  
  

  = × −  
  

 

(i)  At 298 K, t =  1.56 × 1036 s 
(ii) At 1500 K, t =  1.37 × 10–4 min 
 
22B.8(b) The average time of molecular residence is proportional to the half-life of the absorbed species and, 
consequently, the ratio of average residence times at two different temperatures is given by: 
 ( ) ( ) ( ) ( ) ( )a,des 2 a,des 1 a,des 2 11/ 1/ /

1 2 1 22 / 1 2 / 1 e / e  [22B.13] eE RT E RT E T T Rt t t t −
/ /= = =   

Solving for the activation energy for desorption, Ea,des, gives: 

 

( ) ( ){ }( ) ( ) ( ){ }( ) { }( )

( ) ( )

1 1 1
a,des 2 1 2 1 2 1

1
--1 --1

1

ln 2 / 1 1/ 1/ ln 0.65 1 / 1 1/ 1/ ln 0.65 1/ 1/

1 1    8.3145 J K  mol ln 0.65
1000 K 600 K

    5.34 kJ mol

E R t t T T R t t T T R T T− − −

−

−

= − = × − = −

 = × × − 
 

=

 

 
22B.9(b) At 298 K: 

-- 1
a,des a,des/ 0.404 /kJ mol

 1/2 0e [22B.13] (0.12 ps) eE RT Et τ= = ×  

  At 800 K: 
-- 1

a,des a,des/ 0.150 /kJ mol
 1/2 0e [22B.13] (0.12 ps) eE RT Et τ= = ×  

(i) --1
a,des 20 kJ molE =  

 ( ) ( )0.404 20 0.150 20
1/ 2 1/ 2298 K (0.12 ps) e 388 ps ,  800 K (0.12 ps) e 2.4 ps .t t× ×= × = = × =  

(ii) --1
a,des 200 kJ molE =  

 ( ) ( )0.404 200 22 0.150 200
1/ 2 1/ 2298 K (0.12 ps) e 1.5 10  s ,  800 K (0.12 ps) e 1.3 st t× ×= × = × = × =  

 
22B.10(b) The Langmuir isotherm would be 

(i) 
1

p
p

αθ
α

=
+

   

(ii) 
1/2

1/2

( )
1 ( )

p
p

αθ
α

=
+

 

(iii) 
1/3

1/3

( )
1 ( )

p
p

αθ
α

=
+

 

A plot of θ  versus p at low pressures (where the denominator is approximately 1) would show progressively 
weaker dependence on p for dissociation into two or three fragments. 
 

Solutions to Problems 
 
22B.2 We follow Example 22B.1 of the text, where it is shown that for a Langmuir isotherm: 

 1   [ ]p p K
V V KV

α
∞ ∞

= + =  

Since this expression predicts that a plot of p/V against p is linear with intercept 1/KV∞ and slope equal to 1/V∞, 
we draw up the following table. 
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p/V is plotted against p in Fig. 22B.1. The plot is observed to be linear so we conclude that the data fits the 
Langmuir isotherm for these low pressures and, therefore, low coverage.  The regression slope equals 1/V∞; the 
regression intercept equals 1/KV∞. Thus, 

 V∞ = 1/slope = 1/(1.77 cm–3) = 0.565 cm3 

and  K = 1/( V∞ × intercept) = 1/(0.565 cm3 × 629 Pa cm–3) = 2.81 × 10–3 Pa–1 

Comment. It is unlikely that low-pressure data can be used to obtain an accurate value of the volume 
corresponding to complete coverage. See Problem 22B.4 for adsorption data at higher pressures 

Figure 22B.1 

 

22B.4 We assume that the data fit the Langmuir isotherm; to confirm this we plot p/V against p and expect a 
straight line [Example 22B.1]. We draw up the following table and a data plot is shown in Fig. 22B.2: 
 

p / atm 0.050 0.100 0.150 0.200 0.250 
V / cm3 1.22 1.33 1.31 1.36 1.40 

2 3 / /(10 atm cm )p V − −  4.10 7.52 11.5 1.47 17.9 

 
 
 
 
 
 
 
 
 
 
 
 
 

y = 1.7667x + 629.13 
R² = 0.9947 

0

1000

2000

3000

4000

0 400 800 1200 1600

p/
V 

/ P
a 

cm
−3

 

p / Pa 

p / Pa 25 129 253 540 1000 1593 
3/  / Pa cmp V −  595 791 1145 1682 2433 3382 
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Figure 22B.2 
 
 
 

 
 
 
The plot fits closely to a straight line with slope 0.720 dm−3. Hence, 
 3 33

mon 1/ slope 1.39 cm 1.39 10 dmV V− −−
∞ = = = × ≈  

The number of 2H  molecules corresponding to this volume is 

 
3 3 23 1

19A
H 3 1 12

(1.00atm) (1.39 10 dm ) (6.02 10 mol ) 3.73 10
(0.0821dm atm K mol ) (273K)

pVNN
RT

− −

− −

× × × ×
= = = ×

×
 

The area occupied is the number of molecules times the area per molecule. The area per molecule can be 
estimated from the density of the liquid. 

 

2 32 3

 
AA

2 3
1

3 23 1

16 2

π

π  

 

3 3π π  volume of molecule 4 4

3 (2.02 g mol )π
4 (0.708 g cm ) (6.022 10 mol

3.41 10 cm

V M MA V NN ρπ ρ
−

− −

−

    
           

 
 
 
 

= = = =

×=
× × ×

= ×

 

Area occupied = 19 16 2 4 2 2
  )(3.73 10 ) (3.41 10 cm ) (1.3 10 cm 1.3 m− =× × × = ×  

Comment. The value for V∞  calculated here may be compared to the value obtained in Problem 22B.2. The 
agreement is not good and illustrates the point that these kinds of calculations provide only rough value surface 
areas. 
 
22B.6 For the Langmuir and BET isotherm (using p* = 200 kPa) tests we draw up the following table using 
eqns 22B.2 and 22B.6 with the methods of Examples 22B.1 and 22B.3. 
 

/kPap  13.3 26.7 40.0 53.3 66.7 80.0 
3/   (kPa cm )  p V −  0.743 0.809 0.851 0.877 0.886 0.876 

310 z  67 134 200 267 334 400 
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3

3

10
(1  )( /cm )

z
z V−

 3.98 4.67 5.32 5.98 6.65 7.30 

 
p/V is plotted against p is in Fig. 22B.3. z/(1 − z)V is plotted against z in Fig. 22B.4.  
 
Figure 22B.3 
 

 
 

Figure 22B.4 
 

 

 
 
We see that the plot of p/V against p is non-linear so we reject the proposition that it is described by a Langmuir 
isotherm. The plot of /(1 ) against z z V z−  appears to be linear so we accept the proposition that it is described 
by the BET isotherm and the linear regression fit is summarized in Fig. 22B.4. 
   
The BET isotherm has an intercept of 3.33 × 10−3 cm−3 and a slope of 9.94 × 10−3 cm−3. Since 1/cVmon equals the 
intercept of a BET isotherm and (c – 1)/cVmon equals the slope, we find that  
 c = 1 + slope/intercept = 1 + 9.94/3.33 = 3.96 
and 
 Vmon = 1/(c × intercept) = 1/(3.96 ×  3.33 × 10−3 cm−3) = 75.8 cm3 
 

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100

p/
V

/ (
kP

a 
cm

−3
)

p / kPa

y = 9.9387x + 3.3294 
R² = 1 

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4

z/
{(

1 
− 

z)
V

} ×
 1

03  c
m

3 

z 
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22B.8‡ Equilibrium constants vary with temperature according to the van’t Hoff equation [22B.5, K = αpʅ] 
which can be written in the form 

 ( )O 1 1
ad 2 1

/ O2
ad

1

e   [Integration of eqn 22B.5 at constant  and .]T TH RK H
K

θ
 − ∆ −  = ∆  

or 

 
13

2
1 1

1

160 10 1 1J molexp 0.0247
773K 673K8 3145J K mol

K
K

−

− −

  ×
= − =  .   

 

As measured by the equilibrium constant of absorption, NO is less strongly absorbed by a factor of 0.0247 at 
500°C than at 400°C. 
 
22B.10 21/

1   [Freundlich isotherm, 22B.10]cc pθ =  
We adapt the Freundlich gas isotherm to a liquid by noting that aw θ∝ and replacing p by [ ] OA / c , the 

concentration of the acid divided by the standard concentration O 31 mol dmc = . Then [ ]( ) 2O 1/

a 1 A /
c

w c c=  

(with c1, c2 modified constants), and hence ( ) ( ) ( )O
a 1

2

1ln / g ln / g ln [A]/w c c
c

= + × . A plot of ( )aln / gw  

against ( )Oln [A]/ c  is predicted to be linear in a Freundlich isotherm with intercept ( )1ln / gc  and slope 1/c2. 
We draw up the following table and prepared the desired plot, shown in Figure 22B.5. 
 

3[A]/(mol dm )−  0.05 0.10 0.50 1.0 1.5 
wa/g 0.04 0.06 0.12 0.16 0.19 

3ln([A]/mol dm )−  –3.00 –2.30 –0.693 –0.00 0.405 

ln( / g)aw  –3.22 –2.81 –2.12 –1.83 –1.66 

 
 
Figure 22B.5 
 
 

  
 
Since the plot is linear, the linear regression fit shown in Figure 22B.5 is appropriate and the Freundlich 
coefficients are 
 1.83

1 e  g e 0.16 ginterceptc −= = =  

 2 1/ 1/ 0.45 2.2c slope= = =  
 

22B.12‡ We must adapt the Langmuir gas adsorption isotherm, 1   [Example 22B.1, ]p p K
V V KV

α
∞ ∞

= + = , so 

that it describes adsorption from solution. This can be done with the transforms: p → concentration, c and V → 
amount adsorbed per gram adsorbent, s. This gives 
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Langmuir isotherm and regression analysis: 

 1   [Langmuir solution isotherm]c c
s s Ks∞ ∞

= +  

This says that a plot of c/s against c should be linear and we find that the linear regression fit of the data gives 

 11 0.163 g mmolslope
s

−

∞

= = , standard deviation = 0.017 g mmol–1 

 3 11 35.6 (mmol dm ) × (g mmol )intercept
Ks

− −

∞

= = , std. dev. = 3 15.9 (mmol dm ) × (g mmol )− −  

 (Langmuir) = 0.973R  

 
1

3 1
-3 1

0.163 g mmol 0.0046 dm  mmol
35.6 (mmol dm ) × (g mmol )

slopeK
intercept

−
−

−= = =  

 
Similarly, the Freundlich solution isotherm [22B.10] and regression analysis of the data is: 

 ( ) ( ) ( ) ( )2

2

1/3 1 1 31
1 1/ mmol dm      or     ln / mmol g ln / mmol g ln / mmol dm

c
cs c c s c c− − − −= = +  

This says that a plot of ( )1ln / mmol gs −  against ( )3ln / mmol dmc −  should be linear and we find that the linear 
regression fit of the data gives 
 3 3 3

1 e  mmol dm 0.139 mmol dm , standard deviation = 0.012 mmol dminterceptc − − −= =  

 
2

1 0.539,    standard deviation = 0.003slope
c

= =  

 (Freundlich) = 0.999 94R  
The Temkin solution isotherm [22B.9] and regression analysis gives: 
 3

1 2 =  ln( / mmol dm )s c c c −  
 3 3

1  = 1.08 mmol dm , standard deviation = 0.14 mmol dmc − −  
 2  = 0.074, standard deviation = 0.023c  

 (Temkin) = 0.9590R  

The correlation coefficients and standard deviations indicate that the Freundlich isotherm  provides the best fit 
of the data. 
 
22B.14‡ We write the isotherms in the following forms where q is milligrams of solvent sorbed per gram of 
ground rubber (gR) and K, KF, KL, and M are empirical constants. 
 

( )
( ) ( ) ( ) ( )

( )

3
eq

1/3 1 1 31
F eq R F R eq

L eq eq
L L eq

Linear isotherm:       / mg dm

Freundlich isotherm: / mg dm  or ln / mg g ln / mg g ln / mg dm

1 1 1 1Langmuir isotherm:  / 1  or 

n
n

q K c

q K c q K c

q K Mc Mc
q K K M c

−

− − − −

= ×

= × = +

 
= + = + × 

 

 

(a) 1
R R unit:  mg g   [g mass (grams)of rubber]K − =  

 1
F R unit: mg gK −  

 1
 L Runit: mg gK −    

 1 3 unit: mg  dmM −  
 
(b) Determination of best description of data. Data analysis with the linear sorption isotherm. Since K = q/ceq, 
we calculate q/ceq and calculate the average and standard deviation. 
 1 1

R R0.126 mg g   [standard deviation = 0.041 mg g ]K − −=  
The standard deviation is a large percentage of K, which may indicate some combination of random and/or 
systematic variation. A test of a relationship is often facilitated by checking the appearance of a plot. To further 
test the linear hypothesis between q and c, we prepare the plot, shown in Figure 22B.6, with the constraint that 
the intercept equal zero. The plot appears to have a systematic non-linear component and only 88% of the 
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variation is explained by the linear regression. However, with the small number of data points random error 
could give this appearance so we tentatively reject the linear hypothesis. 
 
 
 
 
Figure 22B.6 

 
 
 Data analysis with the Freundlich isotherm. To test the Freundlich hypothesis between q and c, we 
prepare the plot of lnq against lnceq, shown in Figure 22B.7. The appearance of the plot appears to be linear with 
considerable random scatter but there is no definitive visual indicator of systematic non-linearity. 94% of the 
variation is explained by the linear regression fit. 
 
Figure 22B.7 

 
Data analysis with the Langmuir isotherm. To test the Langmuir hypothesis between q and c, we prepare the 
plot of 1/q against 1/ceq, shown in Figure 22B.8. The appearance of the plot appears to be linear with 
considerable random scatter but there is no definitive visual indicator of systematic non-linearity. 94% of the 
variation is explained by the linear regression fit. However, the negative, but very small, intercept of the 
regression fit implies either that KL < 0 or that KL is so small that it has been swamped by the random scatter. 
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We further recognize that a Langmuir isotherm must have a positive KL because it is an equilibrium constant. 
The data, such as it is, does not firmly support the Langmuir isotherm hypothesis. 
 
 
 
 
Figure 22B.8 

 
  
Summary: Only the Freundlich isotherm gives an adequate description of the data. The empirical constants for 
this isotherm are calculated with the linear regression fit shown as an insert in the Freundlich plot. 
Freundlich constants:   

 
1 1.81 1 1

F R R Re  mg g e  mg g 0.164 mg g

1/ 1/ 0.878 1.14  

interceptK

n slope

− − − −= = =

= = =
 

(c) The ratio of rubber-to-charcoal Freundlich sorption isotherms is 
0.878
eq 0.72rubber

eq1.6
charcoal eq

0.164
0.164 

cq
c

q c
−= =  

The sorption efficiency of ground rubber is much less than that of activated charcoal and drops significantly 
with increasing concentration. The only advantage of the ground rubber is it’s exceedingly low cost relative to 
activated charcoal, which might convert to a lower cost per gram of contaminant adsorbed. 
 

22C  Heterogeneous catalysis 
 

Answers to discussion questions 
 
22C.2 Heterogeneous catalysis on a solid surface requires the reacting molecules or fragments to encounter each 
other by adsorption on the surface. Therefore, the rate of the catalyzed reaction is determined by the sticking 
probabilities of the species on the surface as described by Fig. 22C.2 of the text. 
 
 

Solutions to exercises 
 
22C.1(b) Let us assume that the carbon monoxide molecules are close-packed, as shown in Fig. 22C.1 as 
spheres, in the monolayer. Then, one molecule occupies the parallelogram area of 22 3 r  where r is the radius 
of the adsorbed molecule, which is expected to be comparable to the radius of an adsorbed nitrogen molecule. 
Furthermore, let us assume that the collision cross-section of Table 1B.1 (σ ~ σdinitrogen = 0.43 nm2 = 4πr2) gives 
a reasonable estimate of r: r = (σ/4π)1/2. With these assumptions the surface area occupied by one molecule is: 
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( )

( )
molecule

2 2

2 3 / 4π 3 / 2π

          3 0.43 nm / 2π 0.12 nm

A σ σ= =

= =
 

In this model the surface area per gram of the catalyst equals AmoleculeN where N is the number of adsorbed 
molecules. N can be calculated with the 0° C data, a temperature that is so high compared to the boiling point of 
nitrogen that all molecules are likely to be desorbed from the surface as perfect gas.  

 
( ) ( )
( ) ( )

5 6 3
19

23 1

1.00 10  Pa 3.75 10  m
9.94 10

1.381 10  J K 273.15 K
pVN
kT

−

− −

× × ×
= = = ×

× ×
 

 ( ) ( )18 2 19 2
molecule 0.12 10  m 9.94 10 12 mA N −= × × × =  

 
Figure 22C.1 
 

 
 
 

Integrated activities 
 
22.2 Electron microscopes can obtain images with much higher resolution than optical microscopes because of 
the short wavelength obtainable from a beam of electrons. For electrons moving at speeds close to c, the speed 
of light, the expression for the de Broglie wavelength (eqn 7A.14, λ = h/p) needs to be corrected for relativistic 
effects: 
 

𝜆 =
ℎ

�2𝑚e𝑒∆𝜙 �1 + 𝑒∆𝜙
2𝑚e𝑐2

��
1/2 

 
where c is the speed of light in vacuum and ∆φ is the potential difference through which the electrons are 
accelerated. (a) Use the expression above to calculate the de Broglie wavelength of electrons accelerated 
through 50 kV. (b) Is the relativistic correction important? 
(a) The shortest de Broglie wavelength as estimated without relativistic correction is calculated as follows: 

 

( ) ( )

( ) ( ) ( ){ }

non-relativistic 1/ 2 1/ 2
e k e

34

1/ 2
31 19 3

2 2

6.626  10  J s                       
2 9.109  10  kg 1.602  10  C 50.0  10  V

                      5.48 pm

h h h
p m E m eV

λ

−

− −

= = =

×
=

× × × × ×

=

 

The relativistic de Broglie wavelength is 
 

r

60o
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( )( )

( )( )

relativistic 1/ 2

e 2
e

non-relativistic
1/ 2 1/ 2

19 3

2
2e 31 8 1

2 1
2

5.48 pm           
1.602 10  C 50.0 10  V1 12

2 9.109 10  kg 3.00 10  m s

           5.35 pm

h

eVm eV
m c

eV
m c

λ

λ
−

− −

=
   +  
   

= =
   × × +  +   × ×  

=

 

(b) For an electron accelerated through 50 kV the non-relativistic de Broglie wavelength is calculated to be high 
by 2.4%.  This error may be insignificant for many applications.  However, should an accuracy of 1% or better 
be required, use the relativistic equation at accelerations through a potential above 20.4 kV as demonstrated in 
the following calculation: 

 

1/2

non-relativistic relativistic non-relativistic
2

relativistic relativistic e

1 1  1
2

                                      1

eV
m c

λ λ λ
λ λ

 −
= − = + − 

 

=
2 3

2 2 2
e e e

1 1 1 3     1
2 2 4 2 4 62 2 2

eV eV eV
m c m c m c

     ⋅
+ − + − −     ⋅ ⋅ ⋅     



nd rd
2

e

.
1                                           because 2  and 3  order terms are very small
2 2

eV
m c

 
 
 



 

The largest value of V for which the non-relativistic equation yields a value that has less than 1% error: 

 ( )
2 2

e non-relativistic relativistic e

relativistic

2 2
2 2 0.01 20.4 kV

m c m c
V

e e
λ λ

λ
    −

× = =    
    

    

 
 
22.4  192.00 eV 3.20 10  JV E −− = = ×  

 ( ){ }
( ) ( ){ } ( )

1/2
e

1/231 19 34

9 1

2 /   [8A.20]

= 2 9.109 10  kg 3.20 10  J / 1.055 10  J s

7.24 10  m

m V Eκ

− − −

−

= −

× × × × ×

= ×


 

Since κL ≫ 1 for the distances of this problem, we use eqn 8A.23B for the transmission probability T. 
 ( ) 2 16 1 e  where /LT E Vκε ε ε−≈ − =  
We regard the tunnelling current to be proportional to the transmission probability, so the ratio of the currents at 
different distances is equal to the ratio of transmission probabilities. 

 ( )

( ) ( )

2
2 1

1

9 1 10

2
22 2

2
1 1

2 7.24 10  m 1.00 10  m

current at ( ) e e
current at ( ) e

e

0.235

L
L L

L

L T L
L T L

κ
κ

κ

− −

−
− −

−

− × × × ×

= = =

=

=

 

We conclude that, at the distance of 0.60 nm between the surface and the needle, the current is about 24% of the 
value measured when the distance is 0.50 nm. 
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Solutions to a) exercises 

 

Foundations 

Topic A 

EA.1(a)  

 

 

 

 

EA.2(a)  (i) Chemical formula and name: MgCl2, magnesium chloride 
 ions: Mg2+ and Cl– 
 oxidation numbers of the elements: magnesium, +2; chlorine, –1 
 
 (ii) Chemical formula and name: FeO, iron(II) oxide 

ions: Fe2+ and O2– 
oxidation numbers of the elements: iron, +2; oxygen, –2 

 
 (iii) Chemical formula and name: Hg2Cl2, mercury(I) chloride 
 ions: Cl– and Hg2

2+ (a polyatomic ion) 
 oxidation numbers of the elements: mercury, +1; chlorine, –1 
 

EA.8(a) (i) CO2 is a linear, nonpolar molecule. (ii) SO2 is a bent, polar molecule. (iii) 
N2O is linear, polar molecule. (iv) SF4 has a seesaw molecule and it is a polar 
molecule. 

EA.9(a)        In the order of increasing dipole moment: CO2, N2O, SF4, SO2
   

EA.10(a)      (i) Mass is an extensive property. (ii) Mass density is an intensive property.             
                     (iii) Temperature is an intensive property. (iv) Number density is an intensive property. 
 
EA.11(a) (i) 0.543 mol  (ii) 233.27 10  molecules×  

EA.12(a) (i) 180. g  (ii) 1.77 N  

EA.13(a) 0.43 bar  

EA.14(a) 0.42 atm  

EA.15(a) 51.47 10  Pa×  

EA.16(a) 310.2 KT =  

 Example Element Ground-state Electronic Configuration 
(i) Group 2 Ca, calcium [Ar]4s2 

(ii) Group 7 Mn, manganese [Ar]3d54s2 

(iii) Group 15 As, arsenic [Ar]3d104s24p3 
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EA.17(a) ( )F F
5 9/ C / F 32      or     / F / C 329 5θ θ θ θ° = × ° − ° = × ° + , F 173 Fθ = °  

EA.18(a) 105 kPa  

EA.19(a) S8 

EA.20(a) 1.8 MPa  

EA.21(a) 54.6 10  Pa× , 56.9 10  Pa×  

 

Topic B 

EB.1(a)  (i) 19.81 m s− , 48 mJ  (ii) 129.4 m s− , 0.43 J  

EB.2(a)  terminal 6π
zes

Rη
=

E  

EB.4(a)  (i) 202.25 10  J−×   (ii) 209.00 10  J−×  

EB.5(a)  (i) 8 11.88 10  m s−× , 100 keV  

EB.6(a)  181.15 10  J−× , 201.48 10  J−×  

EB.7(a)  2.40 V−  

EB.8(a)  24.1 kJ , 28.8 C°  

EB.9(a)  27.2 K or 27.2 C°  

EB.10(a) 128 J  

EB.11(a) 1 12.4194 J K  g− −  

EB.12(a) 1 175.3 J K  mol− −  

EB.13(a) 18.3145 kJ mol−  

EB.14(a) 
2 2H O(g) H O(l)S S>  

EB.15(a) Fe(3000 K) Fe(300 K)S S>  

EB.17(a) (i) 171.6 10−×   (ii) 0.021  

EB.19(a) 64.631 10−×  

EB.21(a) 1.07  

EB.22(a) 1.25  
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EB.23(a) 0.47 kJ  

EB.24(a) (i) 1.38 kJ   (ii) 4.56 kJ  

EB.25(a) 1 112.47 J mol  K− −  

EB.26(a) (i) 1 120.79 J mol  K− −  (ii) 1 124.94 J mol  K− −  

 

Topic C 

EC.1(a)  8 12.26 10  m s−×  

EC.2(a)  4.00 μm , 137.50 10  Hz×  

 

Chapter 1 

Topic 1A 

E1A.1(a) 24 atm, no 

E1A.2(a)  (i) 3.42 bar  (ii) 3.38 atm 

E1A.3(a)  30 lb in-2 

E1A.4(a) 4.20 × 10-2  

E1A.5(a)  0.50 m3 

E1A.6(a)  102 kPa 

E1A.7(a)  8.3147 J K-1 mol-1 

E1A.8(a) S8 

E1A.9(a) 6.2 kg 

E1A.10(a) (i) 0.762, 0.238, 0.752 bar, 0.235 bar (ii) 0.782, 0.208, 0.0099 bar, 0.772 bar, 
0.205 bar 

E1A.11(a) 169 g mol-1
 

E1A.12(a) 273oC 

E1A.13(a) (i) 0.67, 0.33  (ii) 2.0 atm, 1.0 atm (iii) 3.0 atm 

 

Topic 1B 

E1B.1(a) (i) 9.975  
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E1B.2(a) 1.90 × 103 m s-1 = 1.90 km s-1, 458 m s-1 

E1B.3(a) 0.00687 

E1B.4(a) 333 m s-1, 375 m s-1, 596 m s-1 

E1B.5(a) (i) 475 m s-1 (ii) 8.3 × 10-8 m  (iii)  8.1 × 10-9 s-1 

E1B.6(a)  0.195� Pa 

E1B.7(a) 1.4 × 10-6 m  

 

Topic 1C 

E1C.1(a) (i) 1.0 atm (ii) 1.8 × 103 atm 

E1C.2(a) 2 5 2 27.61 10  kg m  s  mol− − −× , 5 3 12.26 10  m  mol− −×  

E1C.3(a)  (i) 0.88  (ii) 1.2 dm3 mol-1, attractive 

E1C.4(a) 140 atm 

E1C.5(a) (i) 50.7 atm (ii) 35.1 atm, 0.692 

E1C.6(a) 1.78 dm6 atm mol–2, 0.0362 dm3 mol–1, 0.122nm 

E1C.7(a) (i) 1.41 × 103 K  (ii) 0.139nm 

E1C.8(a) (i) 3.64 × 103 K, 8.7 atm  (ii) 2.62 × 103 K, 4.5 atm  (iii) 47K, 
0.18 atm 

E1C.9(a) 4 3 1 0.46 10 m mol− −× , 0 66.  

 

Chapter 2 

Topic 2A 

E2A.1(a) (i) 7
2 R , 18.671 kJ mol−  (ii) 3R , 17.436 kJ mol−  (iii) 7R , 117.35 kJ mol−  

E2A.2(a) (i) Pressure, (ii) temperature, and (iv) enthalpy are state functions. 

E2A.3(a) 75J−  

E2A.4(a) (i) 0U H∆ = ∆ = , 2.68kJ− , 2.68kJ+  (ii) 0U H∆ = ∆ = , 1 62kJ− . , 1 62kJ+ .  (iii) 
0U H∆ = ∆ =  0w = , 0  

E2A.5(a) 1.33atm , 1 25kJ+ . , 0w = , 1 25kJ+ .  

E2A.6(a) (i) 88J−  (ii) 167 J−  
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Topic 2B 

E2B.1(a) 30 J K–1 mol–1, 1 122J K mol− −  

E2B.2(a) (i) 41.07 10 J×  = 10.7 kJ+ , 30.624 10 J− ×  = 0.624 kJ− , 10.1kJ+  (ii) 10.7 kJ+ , 
10.1 kJ+ , w = 0 , 10.1 kJ+  

E2B.3(a) 2.2 kJ+ , 2.2 kJ+ , 1 6kJ+ .  

 

Topic 2C 

E2C.1(a)  22.5 kJ , 1.6 kJ− , 20.9 kJ  

E2C.2(a)  -14564 7 kJ mol− .  

E2C.3(a)  153kJ mol−+ , 133kJ mol−−  

E2C.4(a)  1167 kJ/mol−−  

E2C.5(a)  15152kJ mol−− , 11 58kJ K−. , 3.08K+  

E2C.6(a)  (i) 1114 40kJ mol−− . , 1111.92kJ mol−−  (ii) 192 31kJ mol−− . , -1241 82kJ mol− .  

E2C.7(a)  11368kJ mol−−  

E2C.8(a)  (i) 1131 29kJ mol−+ . , 1128 81kJ mol−+ .  (ii) 1134.14kJ mol−+ , 1130.17 kJ mol−+  

E2C.9(a)  1803.07 kJ mol−−  

E2C.10(a)  11892kJ mol−−  

 

Topic 2D 

E2D.1(a) 5.03 mbar  

E2D.2(a) 1+130.1 J mol− , 3 17.52 10 J mol−+ × , 3 17 39 10 J mol−− . ×  

E2D.3(a)              3 11.31 10 K− −×   

E2D.4(a) 32.0 10  atm×  

E2D.5(a) 1 17 2J atm mol− −− . , 6 1kJ+ .   

 
© Oxford University Press, 2014. 



Atkins & de Paula: Atkins’ Physical Chemistry 10e 

Topic 2E 

E2E.1(a) Closer , closer  

E2E.2(a) 131 K  

E2E.3(a) 30.00846 m , 257 K , 30.89 10  J− ×  

E2E.4(a) 194J−  

E2E.5(a) 9.7 kPa  

 

 

Chapter 3 

Topic 3A 

E3A.1(a) Not spontaneous. 

E3A.2(a) Tc = 191.2 K 

E3A.3(a) (i) 1366 J K−   (ii) 1309J K−  

E3A.4(a) I2(g) 

E3A.5(a) 1J K3.1 −  

E3A.6(a) 130.0 kJ/mol−  

E3A.7(a) 1 1152.67 J K mol− −  

E3A.9(a) 0H∆ = , 1+2.7 J K− , tot 0H∆ =  

E3A.10(a) (i) 1+2.9 J K− , 12.9 J K−− , 0 (ii) 1+2.9 J K− , 0, 1+2.9 J K−  (iii) 0, 0, 0 

E3A.11(a) (i) 1 1+87.8J K mol− −  (ii) 1 187.8J K mol− −−  

E3A.12(a) 192.2 J KS −∆ =  

 

Topic 3B 

E3B.1(a)  (i) 9.13 J K–1 mol–1 (ii) 13.4 J K–1 mol–1 (iii) 14.9 J K–1 mol–1 

E3B.2(a) (i) 1 1386.1J K mol− −−  (ii) 1 1+92.6 J K mol− −  (iii) 1 1153 1J K mol− −− .  
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Topic 3C 

E3C.1(a) (i) 1-521.5kJ mol−  (ii) -1+25.8kJ mol  (iii) 1178.7kJ mol−−  

E3C.2(a) 1480.98kJ mol−−  

E3C.3(a) 1817.90kJ mol−  

E3C.4(a) (i) 1522.1kJ mol−−  (ii) 1+25.78kJ mol−  (iii) 1178.6kJ mol−−  

E3C.5(a) 1340 kJ mol−−  

 

Topic 3D 

E3D.1(a) 17 J−  

E3D.2(a) 136.5J K−−  

E3D.3(a) 10kJ+ , 11.6 kJ mol−  

E3D.4(a) 111 kJ mol−+  

 

Chapter 4 

Topic 4A 

E4A.1(a) (a) Single phase  (b) two phases  (c) three phases  (d) two 
phases 

E4A.2(a) 0.71 J 

E4A.3(a) 4 

 

Topic 4B 

E4B.1(a) 41.0 10  K−− ×  

E4B.2(a) 3 15.2 10  J mol−×  = 15.2 kJ mol−  

E4B.3(a) 170 J mol−  

E4B.4(a) 2.71 kPa  

E4B.5(a) 1 145.23J K mol− −+ , 116kJ mol−+  

E4B.6(a) 304 K, 31°C 
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E4B.7(a) 120 80kJ mol−+ .  

E4B.8(a) (i) 134 08kJ mol−+ .  (ii) 350.5 K 

E4B.9(a) 281.8 K or 8.7°C 

E4B.10(a) 125 g s−  

E4B.11(a) (i) 31 7 10 g. ×  (ii) 331 10 g×  (iii) 1 4g.  

E4B.12(a) (i) 4 14.9 10  J mol−+ ×  = 149 kJ mol−+  (ii) 215 C° , 1 1101 J K  mol− −+  

E4B.13(a) 272.80 K 

E4B.14(a) 0.0763  

 

Chapter 5 

Topic 5A 

E5A.1(a) 0, 3 1235.6774 0.91846 0.( ) cm0519  mo75 lx x −− +  

E5A.2(a) 17.5 cm3 mol–1, 3 118.07 cm  mol−  

E5A.3(a) 11.2 J mol−−  

E5A.4(a) 0.35 kJ− , 1+1.2 J K−  

E5A.5(a) 1 14.70 J K  mol− −+  

E5A.6(a) 6.7 kPa 

E5A.7(a) 3886.8 cm  

E5A.8(a) 3 156 cm  mol−  

E5A.9(a) 6.4×103 kPa 

E5A.10(a) 3 33.67 10  mol dm− −×  

E5A.11(a) (i) 3 13.4 10  mol kg− −×  (ii) 2 13.37 10  mol kg− −×  

E5A.12(a) 0.17 mol dm–3 

 

Topic 5B 

E5B.1(a) 1.3×102 kPa 
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E5B.2(a)  185 g mol−  

E5B.3(a)  2 13.8 10  g mol−×  

E5B.4(a)  –0.09°C 

E5B.5(a)  3.10 kJ− , 110.4 J K−+ , 0 

E5B.6(a)  (i) 1
2

  (ii) 0 8600.  

E5B.7(a)  0.135 mol kg-1, 24.0 g anthracene 

E5B.8(a)  -187 kg mol  

E5B.9(a)  32.2 Torr, 6.1 Torr, 38.3 Torr, 0 840. , 0 160.  

E5B.10(a)  0.92, 0.08, 0.97, 0.03 

E5B.11(a)  0.267, 0.733, 58.6 kPa 

E5B.12(a)  (i) solution is ideal (ii) 0.830, 0.1703 

E5B.13(a)  (i) 20.6 kPa  (ii) 0.668, 0.332 

 

Topic 5C 

E5C.1(a)  (i) yM = 0.36 (ii) yM = 0.80 (i.e., yO = 0.20) 

E5C.4(a)  0.25, 193oC 

E5C.6(a)  (i) 76%  (ii) 52% (iii) 1.11, 1.46 

E5C.7(a)  (ii) 620 Torr (iii) 490 Torr (iv) 0.50, 0.72 (v) 0.50, 0.30  

 

Chapter 6 

Topic 6A 

E6A.1(a) 0.9 mol, 1.2 mol 

E6A.2(a) 0.64 kJ−  

E6A.3(a) 55 80 10. ×  

E6A.4(a) 62.85 10−×  

E6A.5(a) (i) 0.141 (ii) 13.5  

E6A.6(a) (i) 168 26 kJ mol−− . , 119 13 10. ×  (ii) 91.32 10× , 169.8 kJ mol−−  
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E6A.7(a) ( )O O/cK K c RT p= ×  

E6A.8(a) (i)  

 A B C D Total 
Initial amounts / mol 1.00 2.00 0 1.00 4.00 
Stated change / mol   +0.90   
Implied change / mol –0.60 –0.30 +0.90 +0.60  
Equilibrium amounts / mol 0.40 1.70 0.90 1.60 4.60 
Mole fractions 0.087 0.370 0.196 0.348 1.001 

   

  (ii) 0 33.   (iii) 0 33.  (iv) 1+2.8 kJ mol−  

E6A.9(a) 112 3 kJ mol−+ .  

E6A.10(a) 114.4 kJ mol−− , toward the ammonia product 

E6A.11(a) 11108 kJ mol−−  

 

Topic 6B 

E6B.1(a) 0 045. , 1500 K  

E6B.2(a) 12.77 kJ mol−+ , 1 116.5 J K  mol− −−  

E6B.3(a) 50%  

E6B.4(a) 0.9039 , 0.0961 

E6B.5(a) (i) 152.89 kJ mol−  (ii) 152.89 kJ mol−−  

E6B.6(a) 1110 K  

E6B.7(a) 170.2 kJ mol− , 1 1110 kJ mol  K− − , 16.3 kJ mol−− , 3.0   

 

Topic 6C 

E6C.2(a) (i) 1.10 V+  (ii) 0.22 V+  (iii) 1.23 V+  

E6C.3(a) (i) Cd2+(aq) + 2Br–(aq) + 2 Ag(s) → Cd(s) + 2 AgBr(s) (iii) 0.62 V−  

 

Topic 6D 

E6D.1(a) (i) 96.5 10×  (ii) 121.4 10×  

E6D.2(a) (i) 8.47×10–17 (ii) 9 3 39.20 10  mol dm  or 2.16 μg dm− − −×  
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Chapter 7 

Topic 7A 

E7A.1(a) (i) 196.6 10  J−× , 2 14.0 10  kJ mol−×   (ii) 206.6 10  J−× , 140 kJ mol−  (iii) 
346.6 10  J−× , 13 14.0 10  kJ mol− −×  

E7A.2(a)  

λ / nm E / aJ Em / (kJ mol–1) 

(i) 600 331 199 

(ii) 550 361 218 

(iii) 400 497 299 

 

E7A.3(a)  

λ / nm Ephoton / aJ v / (km s–1) 

(i) 600 331 19.9 

(ii) 550 361 20.8 

(iii) 400 497 24.4 

 

E7A.4(a) 121 m s−  

E7A.5(a) (i) 182.77 10×  (ii) 202.77 10×  

E7A.6(a) (i) no electron ejection  (ii) 193.19 10  J−× , 1837 km s−  

E7A.7(a) 6.96 keV , 6.96 keV  

E7A.8(a) 6 17.27 10  m s−× , 150 V  

E7A.9(a) 10.024 m s−  

E7A.10(a) 332 pm  

E7A.11(a) (i) 29  6.6 10 m−×   (ii) 36  6.6×10 m−   (iii) 99.7 pm  

 

Topic 7B 
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E7B.3(a)  
1/21

2π
N  =  

 
 

E7B.4(a) ( )1/ 2π dφ  

E7B.5(a) 1
2

 

 

Topic 7C 

E7C.1(a) 21
2 fV̂ k x=  

E7C.5(a) 
2
L  

E7C.7(a) 1281.1×10 ms−− , 271.1×10 m−  

E7C.8(a) 700 pm  

E7C.9(a) (i) 2
1
x

−  (ii) 2x  

 

Chapter 8 

Topic 8A 

E8A.1(a) 205 10  J−×  

E8A.2(a) ie kxA  

E8A.3(a) (i) 191.81 10  J−× , 1.13 eV , 19100 cm− , 1109 kJ mol−   (ii) 196.6 10  J−× , 
4.1 eV , 133 000 cm− , 1400 kJ mol−  

E8A.4(a) (i) 0.04  (ii) 0 

E8A.5(a) 
2

24
h
L

 

E8A.6(a) 2
2

1 1
3 2

L
π

 − 
 

 

E8A.7(a) C
1/2 1/2

e8 8
h
m c

λ
=  

E8A.8(a) 5,  and 
6 2 6
L L L  
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E8A.9(a) 17.4%−  

E8A.10(a) 
2

2

2 1
2

kTmL
h

−  

E8A.11(a) n1=1, n2=4 

E8A.12(a) 3 

E8A.13(a) 0.8 

 

Topic 8B 

E8B.1(a) 214 30 10  J−. ×  

E8B.2(a) 1278 N m−  

E8B.3(a) 2.64 mµ  

E8B.4(a) 288.3673 10  kg−× , 271.6722 10  kg−× , 93.3 THz  

E8B.5(a) (i) 343 3 10  J−. ×   (ii) 333 3 10  J−. ×  

E8B.6(a) 215.61 10  J−×  

E8B.7(a) ±0.525α or ±1.65α 

E8B.8(a) ±α 

E8B.9(a) 0.056, 0.112 

 

Topic 8C 

E8C.1(a) 0, ± 

E8C.2(a) 
1/21

2π
 
 
 

 

E8C.3(a) 223.32 10  J−×  

E8C.4(a) 222.11 10  J−×  

E8C.5(a) 224.22 10  J−×     

E8C.6(a) 21/2
, 1.49×10–34 J s 

E8C.8(a) 7 
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Chapter 9 

Topic 9A 

E9A.1(a) (i) 1g =   (ii) 9g =  (iii) 25g =  

E9A.2(a) 3 2
0

2N
a

=  

E9A.3(a) 04a , 0.r =  

E9A.4(a) 00.35r a=  

E9A.5(a) 101 pm and 376pm  

E9A.6(a) 12 sE , 1sE−  

E9A.7(a) 05.24 a
Ζ

 

E9A.8(a) 02 /r a Z=  

E9A.10(a) 06 /a Z , xy plane, θ = π/2, yz, θ = 0, xz, θ = 0 

 

Topic 9B 

E9B.2(a) (i) 8[Ar]3d  (ii) 1,0S = , 1 0 1SM = − , , + , 0SM =  

 

Topic 9C 

E9C.1(a) 69.118 10  cm−× , 51.216 10  cm−×  

E9C.2(a) 5 -13.292 10  cm× , 63.038 10 cm−× , 15 -19.869 10  s×  

E9C.3(a) 14 0eV.  

E9C.4(a) (i) Forbidden  (ii) allowed  (iii) allowed  

E9C.5(a)  (i) 5 3
2 2,   (ii) 7 5

2 2,  

E9C.6(a) 1l =  

E9C.7(a) 2 0 2L S J= , = , =  

E9C.8(a) (i) 1 0, , 3,1  (ii) 3 1
2 2, , 1

2and , 4, 2, 2  
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E9C.9(a) 3 3 3 1
3 2 1 2D ,  D , D ,  D , 3 D set of terms are the lower in energy  

E9C.10(a) (i) 0J = , 1state  (ii) 3 1
,

2 2
J = , 4, 2 states respectively (iii) 2,1,0J = , 5, 3, 

1 states respectively 

E9C.11(a) (i) 2
1 2S /    (ii) 2 2

3 2 1 2P Pand/ /  

E9C.12(a) (i) Allowed (ii) forbidden (iii) allowed 

 

Chapter 10 

Topic 10A 

E10A.1(a) {s(1)pz(2)+s(2)pz(1)} × {α(1)β(2)–α(2)β(1)} 

E10A.2(a) VB H F H F
a b cψ ψ ψ ψ− + + −= + +  

E10A.6(a) N = 3
–1/2

, ψ = 3
–1/2

(s + 21/2p) 

 

Topic 10B 

E10B.1(a) 
1/2

2

1
1 2

N
Sλ λ

 =  + + 
 

E10B.2(a) N = 1.12, ψ1 = 0.163A + 0.947B, b = 0.412, a = –1.02, ψ2 = –1.02A + 0.412B  

E10B.3(a) 1.9 eV, 130 pm 

E10B.4(a) u, g 

 

Topic 10C 

E10C.1(a) (i) 1σg
2, b=1 (ii) 1σg

21σu
2, b=0 (iii) 1σg

21σu
21πu

4, b=2 

E10C.2(a)  C2 

E10C.3(a) F2
+ 

E10C.4(a) b=1, b=0, b=1, b=2, b=3, b=2, b=1 

E10C.5(a) 1σg, 1σu, 1πu, 1πu, 2σg, 1πg, 1πg, 1σu, 1πu, 1πu, 2σg, 1πg, 1πg, 2σu 

E10C.6(a) 5 14 10  m s−×  

E10C.7(a) (i) 2.1×10–10 m = 0.21 nm (ii) 1.0×10–10 m = 0.10 nm 
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Topic 10D 

E10D.1(a) (i) 1σ22σ21π43σ2 (ii) 1σ22σ23σ21π42π1 (iii) 1σ22σ21π43σ2 

E10D.3(a) NO+ 

E10D.5(a) 7.2, 8.3 

E10D.6(a) 6.6 or 8.9− −  

E10D.7(a) –5.0 or –10.7 eV 

 

Topic 10E 

E10E.2(a) (i) a2u
2e1g

4e2u
1, 7α β+ 7  (ii) a2u

2e1g
3, 5α β+ 7  

E10E.3(a) (i) 7β, 0  (ii) 7β, 2β 

E10E.5(a) (i) 14α + 19.314β (ii) 14α + 19.448β 

 

Chapter 11 

Topic 11A 

E11A.1(a) Identity E, C3 axis, three vertical mirror planes σv 

E11A.2(a) D2h, 3C2 axes, a centre of inversion, 3σh mirror planes 

E11A.3(a) (i) R3  (ii) C2v  (iii) 3hD  (iv) hD∞  

E11A.4(a) (i) C2v  (ii) vC∞   (iii) C3v  (iv) D2h 

E11A.5(a) (i) 2vC   (ii) 2hC  

E11A.6(a) (i) pyridine (ii) nitroethane 

E11A.7(a)   

Isomers and Point Groups of m,n-Dichloronaphthalene  

m,n 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,3 2,6 2,7 

Point Group Cs Cs C2v C2h Cs Cs C2v C2v C2h C2v 
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E11A.8(a) i, hσ  

 

 

 

 

 

Topic 11B  

E11B.1(a) h

1 0 0 0
0 1 0 0

( )
0 0 1 0
0 0 0 1

σ

− 
 − =
 −
 

− 

D  

E11B.2(a) 3

1 0 0 0
0 0 1 0

( )
0 0 0 1
0 1 0 0

S

− 
 −  =
 −
 

− 

D  

 

Topic 11C 

E11C.4(a) no N orbitals, d xy  

E11C.6(a) 2A1 + B1 + E 

E11C.7(a) (i) Either E1u or A2u (ii) 3uB ( -polarized)x , 2uB polarized)( -y , 1uB ( polarized)z −  

E11C.8(a) zero 

 

Chapter 12 

Topic 12A 

E12A.1(a) (i) 30.0469J m s−  (ii) 13 31.33 10 J m s− −×  (iii) 28 34.50 10 J m s− −×  

E12A.2(a) 82.9 %  

E12A.3(a) 3 3 1 15.34 10  dm  mol  cm− −×  

E12A.4(a) 31.09 mmol dm−  
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E12A.5(a) 450 dm3 mol–1 cm–2 

E12A.6(a) 3 1 1159 dm  mol  cm− − , 23 per cent  

E12A.7(a) (i) 0.87 m  (ii) 2.9 m  

E12A.8(a) 8 3 1 21.3 10  dm  mol  cm− −×  

E12A.9(a) (i) 7 3 1 25 10 dm  mol  cm− −×  (ii) 6 3 1 22.5 10  dm  mol  cm− −×  

E12A.10(a) 0.9999 λ×  

E12A.11(a) (i) 27 ps  (ii) 2.7 ps  

E12A.12(a) (i) 1δ 53 cmν −=  (ii) 1δ 0.53 cmν −=  

 

Topic 12B 

E12B.1(a) 46 26.33 10 kg m−× , 10.4421 cm−  

E12B.3(a) (i) Asymmetric  (ii) oblate symmetric  (iii) spherical  (iv) prolate symmetric 

E12B.4(a) 106.5 pm , 115.6 pm  

E12B.5(a) 4 12.073 10  cm− −× , 0.1253  

 

Topic 12C 

E12C.2(a) 113.07 10 Hz×  

E12C.3(a) 127.4 pm  

E12C.4(a) 47 24.442 10 kg m−× , 165.9 pm  

E12C.5(a) (i) 20   (ii) 23  

E12C.6(a) (iii) CH4 is inactive, (i), (ii), and (iv) are active. 

E12C.7(a) 120 475cm−  

E12C.8(a) 198 9pm.  

E12C.9(a) 5
3

 

 

Topic 12D 
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E12D.1(a) 2 11.6 10 N m−×  

E12D.2(a) 1.077 %  

E12D.3(a) 1328.7 N m−  

E12D.4(a) 967.0, 515.6, 411.8, 314.2 

E12D.5(a) (i) 0 067.  (ii) 0.20  

E12D.6(a) 11580.38 cm− , 37 644 10−. ×  

E12D.7(a) 5.13 eV  

 

Topic 12E 

E12E.3(a) 127 

E12E.4(a) ( )1
2 1 2 3v v v+ +    

E12E.6(a) Raman active  

E12E.7(a) 1 2 1 24A A +2B 2B+ +  

E12E.8(a) 1 1 2A ,B  and B  are infrared active, all modes are Raman active 

 

Chapter 13 

Topic 13A 

E13A.1(a) 3, u 

E13A.2(a) (i) Allowed (ii) allowed (iii) forbidden (iv) forbidden (v) allowed 

E13A.3(a) 2
02 /32 2 e

3
ax−  

E13A.4(a) 
21 43

32 π
 + 
 

 

E13A.5(a) ( ) ( )1
2 ' / 'B B B B+ −     

E13A.6(a) ( ) ( )1
2 ' / ' 1B B B B+ − −    , 7 

E13A.7(a) 1 130.4 cm ' 40.5 cmB− −< < , greater 

E13A.8(a) O P v∆ = −  , 14 × 103 cm–1 
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E13A.9(a) 
1/23

1
2

3
8

a
b a

 
 − 

 

E13A.10(a) 1/161
4 e a−  

 

Topic 13B 

13B.1(a) (i) Lower, 11800cmv −≈  (ii) no information 

 

 

Topic 13C 

E13C.1(a) λ = 2.0 cm (v = 15.0 GHz) 

E13C.2(a) 20 ps , 70 MHz  

 

Chapter 14 

Topic 14A 

E14A.1(a) -1 -1s  T  

E14A.2(a) 359.133 10  J s−× , 355.273 10  J s−± × , 0.9553 rad 54.74± = ±   

E14A.3(a) 574 MHz  

E14A.4(a) 261 473 10  J Im−− . × ×  

E14A.5(a) 165MHz  

E14A.6(a) (i) 253 98 10  J−. ×   (ii) 266 11 10 J−. × , (a). 

E14A.7(a) (i) 61 10−×  (ii) 65.1 10−×  (iii) 53.4 10−×  

E14A.8(a) 13  

E14A.9(a) 22 10 T× , 10mT  

 

Topic 14B 

E14B.1(a) (i) Independent  (ii) 13  
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E14B.2(a) (i) 11 Tµ  (ii) 110 Tµ  

E14B.5(a) 753 MHz  

E14B.9(a) 0.39 ms, 3 12.6 10 s−×  

 

Topic 14C 

E14C.1(a) 49.40 10 T−× , 6.25 μs  

E14C.2(a) 0.21 s  

E14C.3(a) 1.234  

 

Topic 14D 

E14D.1(a)  2 0022.  

E14D.2(a) 2.3 mT , 2 0025.  

E14D.3(a) Equal intensity , 330 2mT 332 2mT 332 8mT 334 8mT. , . , . , .  

E14D.5(a)  (i) 332.3 mT  (ii) 1.206T  

E14D.6(a)  3
2I =  

 

Chapter 15 

Topic 15A 

E15A.1(a) 21621600  

E15A.2(a) (i) 40320 (ii) 5.63×103 (iii) 3.99×104 

E15A.3(a) 1 

E15A.4(a) 524 K  

E15A.5(a) 7.43  

E15A.6(a) 354 K  

 

Topic 15B 
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E15B.1(a) (i) 128.23 10  m−× , 8.23 pm , 122.60 10  m−× , 2.60 pm  (ii) 271.79 10× , 285.67 10×   

E15B.2(a) 0.3574  

E15B.3(a) 72 2.  

E15B.4(a) (i) 37.97 10×  (ii) 41.12 10×  

E15B.5(a) 18 K 

E15B.6(a) 37 K 

E15B.7(a) 4.5 K 

E15B.8(a) (i) 1 (ii) 2 (iii) 2 (iv) 12 (v) 3 

E15B.9(a) 660.6  

E15B.10(a) 4500 K 

E15B.11(a) 2.571 

E15B.12(a) 42.3 

E15B.13(a) 4.292 , 0.0353 to 0.0377 to 1 

 

Topic 15C 

E15C.1(a) 228.16 10  J−×  

E15C.2(a) 18.5 K 

E15C.3(a) 25 K 

E15C.4(a) 4.5 K 

E15C.5(a) 4600 K 

E15C.6(a) 10500 K 

E15C.7(a) 6500 K 

E15C.8(a) 214.033 10  J−×  

 

Topic 15D 

E15D.1(a) He gas, CO gas, H2O vapour 
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Topic 15E 

E15E.1(a) (i) 7
2 R  (ii) 3R  (iii) 7R  

E15E.2(a) Closer, closer  

E15E.3(a) (i) 4.158  (ii) 4.489  

E15E.4(a) (i) 14.93 J K–1 mol–1 (ii) 25.65 J K–1 mol–1 

E15E.5(a) (i) 1 1126 J K  mol− −  (ii) 1 1169 J K  mol− −  

E15E.6(a) 32.35 10  K×  

E15E.7(a) 43 1. , 22 36 K. , 1 143.76 J K  mol− −  

E15E.8(a) 1 111.5 J K  mol− −  

E15E.9(a) (i) 34.72 J K–1 mol–1 (ii) 119.06 J K–1 mol–1 

 

Topic 15F 

E15F.1(a) 113.8 kJ mol−− , 10.20 kJ mol−−  

E15F.2(a) (i) 16.42kJ mol−−   (ii) 114.0kJ mol−−  

E15F.3(a) 33.70 10−×  

 

Chapter16 

Topic 16A 

E16A.1(a) CIF3, 3O , H2O2 

E16A.2(a) 1.4 D  

E16A.3(a) 37 D , 11.7°  

E16A.4(a) 1.66 D , 39 1 2 21.01 10  J  C  m− −× , 30 39.06 10  m−×  

E16A.5(a) 4.75  

E16A.6(a) 39 1 2 21.42 10  J  C  m− −×  

E16A.7(a) 1.34  

E16A.8(a) 17.7  
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Topic 16B 

E16B.1(a) 3 11.07 10  kJ mol−×  

E16B.2(a) 
4 2

1
5

0

6
π
l Q

rε
 

E16B.3(a) 10.071 J mol−  

E16B.4(a) 1289 kJ mol−  

 

Topic 16C 

E16C.1(a) 2.6 kPa  

E16C.2(a) 172.8 mN m−  

E16C.3(a) 728 kPa  

 

Chapter 17 

Topic 17A  

E17A.1(a) 27 nm  

E17A.2(a) 3.08 μm , 30.8 nm  

E17A.3(a) 32.4 10×  

E17A.4(a) 0.017 

E17A.5(a) 36.4 10−×  

E17A.6(a) 41.42%+ , 182.8%+  

E17A.7(a) 895 % when 1000N+ = , 49.84 10 % when 1000N+ × =  

E17A.8(a) 21.6 10  pm×  

 

Topic 17B 

E17B.1(a) 1 119 mJ mol  K− −−  

E17B.2(a) 143.7 10  N−×  
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Topic 17C 

E17C.1(a) 3.43 

 

Topic 17D 

E17D.1(a) 170 kg mol  − , 171 kg mol−  

E17D.2(a) (i) 118 kg mol  −  (ii) 120 kg mol−  

E17D.3(a) 100  

E17D.4(a) 164 kg mol−  

E17D.5(a) 10.73 mm s−  

E17D.6(a) 131 kg mol−  

E17D.7(a) 133.4 10  kg mol  −×  

 

Chapter 18 

Topic 18A 

E18A.1(a) 4N = , 34.01 g cm−  

E18A.2(a) (323) and (110)  

E18A.3(a) 229 pm , 397 pm , 115 pm 

E18A.4(a) 220 pm  

E18A.5(a) 70 7 pm.  

E18A.6(a) 10.1 , 14.4 , 17.7  

E18A.7(a) 8.16° , 4.82° ,11.75°  

E18A.8(a) 
Br

36f − =  

E18A.9(a) 
Br

36f − =  

E18A.10(a) f  

E18A.11(a) 3  for  even   and    for  oddf h k f h k+ − +  

E18A.15(a) 1km s6.1 −  

 
© Oxford University Press, 2014. 



Atkins & de Paula: Atkins’ Physical Chemistry 10e 

E18A.16(a) 233 pm  

 

Topic 18B 

E18B.1(a) 0.9069  

E18B.2(a) (i) 0.5236  (ii) 0.6802  (iii) 0.7405  

E18B.3(a) (i) 74.9 pm  (ii) 132 pm  

E18B.4(a) Expansion  

E18B.5(a) 13500. kJ mol−  

 

Topic 18C 

E18C.1(a) 4 39.3 10 cm−×  

E18C.2(a) n-type; the dopant, arsenic, belongs to Group 15 whereas germanium belongs to 
Group 14. 

E18C.3(a) Three unpaired spins 

E18C.4(a) 5 3 16.4 10 cm mol− −− ×  = 11 3 16.4 10  m  mol− −− ×  

E18C.5(a) 4.326 , 5 

E18C.6(a) 8 3 11.6 10  m  mol− −+ ×  

 

Topic 18D 

E18D.1(a) 3.54 eV  

 

Chapter 19 

Topic 19A 

E19A.1(a) 3 1 1 17.6 10  J K  m  s− − − −×  

E19A.2(a) (i) D = 1.5 m2 s−1 , Jz/NA = −61 mol m−2 s−1 (ii) D = 1.5×10−5 m2 s−1, Jz/NA = 
−6.1×10−4 mol m−2 s−1 (iii) D = 1.5×10−7 m2 s−1, Jz/NA = −6.1×10−6 mol m−2 s−1 

 

E19A.3(a) 2 10.078 J m  s− −−  
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E19A.4(a) 20.0795 nm  

E19A.5(a) 103 W  

E19A.6(a) 20.201 nm  

E19A.7(a) (i) η = 178 µP (ii) η = 186 µP (iii) η = 342 µP 

E19A.8(a) 201.9 10×  

E19A.9(a) 104 mg  

E19A.10(a) 32.15 10  Pa×  

E19A.11(a) 142.4 g mol−  

E19A.12(a) 1.3 days  

 

Topic 19B 

E19B.1(a) 116.8 J mol−  

E19B.2(a) 3 2 17.63 10  S m  mol− −×  

E19B.3(a) 1283 μm s−  

E19B.4(a) 2 113.87 mS m  mol−  

E19B.5(a) 8 2 1 14.01 10  m  V  s− − −× , 8 2 1 15.19 10  m  V  s− − −× , 8 2 1 17.62 10  m  V  s− − −×  

E19B.6(a) 420pm  

E19B.7(a) 9 2 11.90 10 m  s− −×  

 

Topic 19C 

E19C.1(a) 36.2 10 s×  

E19C.2(a) (i) 30.00 mol dm−  (ii) 30.0121 mol dm−  

E19C.3(a) 125 kN mol− , ∞  

E19C.4(a) 167.5 kN mol−  

E19C.5(a) 31.3 10  s×  

E19C.6(a) 0.42 nm  
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E19C.7(a) 27.3 ps  

E19C.8(a) 113 μm , 56 μm  

 

 

Chapter 20 

Topic 20A 

E20A.1(a) No change in pressure 

E20A.2(a) 8.1 mol dm–3 s–1, 2.7 mol dm–3 s–1, 2.7 mol dm–3 s–1, 5.4 mol dm–3 s–1 

E20A.3(a) 3 11.35 moldm  s− − , 3 14.05 mol dm  s− − , 2.7 mol dm–3 s–1, 3 11.35 moldm  s− −  

E20A.4(a) dm3 mol–1 s–1,   (i) kr[A][B]  (ii) 3kr[A][B] 

E20A.5(a) r
1 [A][B][C]
2

k , 6 2 1dm mol s− −  

E20A.6(a) (i) [kr] = dm3 mol–1 s–1, [kr] = dm6 mol–2 s–1 (ii) [kr] = kPa–1 s–1, [kr] = kPa–2 s–1 

 

Topic 20B 

E20B.1(a) n = 2 

E20B.2(a) 41.03 10 s× ,   (i) 498Torr   (ii) 461Torr  

E20B.3(a) (i) 30.098moldm−  (ii) 30.050moldm−  

E20B.4(a) 51.11 10 s× , 1.28 days  

 

Topic 20C 

E20C.1(a) 7.1×105 s–1, 4 3 1 11.28 10  dm  mol  s− −×  

 

Topic 20D 

E20D.1(a) 5 11.08 10  J mol−×  = 1108 kJ mol− , 6.50×1015 dm3 mol–1 s–1, 6.50×1015 dm3 mol–1 s–1 

E20D.2(a)  135kJ mol−  
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Topic 20E 

E20E.1(a) (i) 1 2 1 2
2 2[A ] [B]k K / /  (ii) 

2 2
2 1 1 2

2 2
1 2

[B] 16 [A ]
1 1

4 [B]
k k k

k k
 ′

+ −  ′  
, 1/2 1/2

2 2[A ] [B]k K , 1 22 [A ]k  

E20E.2(a) –3 kJ mol–1 

 

Topic 20F 

E20F.1(a) 6 1 11 9 10 Pa s− − −. × , 1.9 MPa–1 s–1 

E20F.2(a) 251 , 0.996  

E20F.3(a) 0.125 

 

Topic 20G 

E20G.1(a) 183 3 10. ×  

E20G.2(a) 30.56 mol dm−  

 

Topic 20H 

E20H.1(a) 
2

b
+

[AH] [B]
[BH ]

k K  

E20H.2(a) 3 11.50 mmol dm  s− −  

E20H.3(a) 5 32.0 10  mol dm− −×  

 

 

Chapter 21 

Topic 21A 

E21A.1(a) 10 11.13 10  s−× , 35 1 31.62 10  s  m− −× , 1.7% 

E21A.2(a) (i) 1.04×10–3, 0.069 (ii) 1.19×10–15, 1.57×10–6 

E21A.3(a) (i) 22%, 3%  (ii) 170%, 16% 

E21A.4(a) 5 3 1 11.03 10 m mol s− − −× , 2 3 1 11.03 10 dm mol s− − −×  
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E21A.5(a) 20.79 nm , 31.16 10−×  

E21A.6(a) 0.73  

E21A.7(a) 75.1 10−×  

 

Topic 21B 

E21B.1(a)  7 3 1 14.5 10 m mol s− −× , 10 3 1 14.5 10 dm mol s− −×  

E21B.2(a) (i) 6 3 1 16.61 10  m  mol  s− −× , 9 3 1 16.61 10  dm  mol  s− −×  (ii) 7 3 1 13.0 10  m  mol  s− −× , 
10 3 1 13.0 10  dm  mol  s− −×  

E21B.3(a) 6 3 1 18.0 10 m  mol s− −× , 9 3 1 18.0 10  dm  mol s− −× , 84.2 10 s−×  

E21B.4(a) 8 3 11.81 10 mol dm s− −×  

 

Topic 21C 

E21C.1(a) +69.7 kJ mol–1, 1 125 J K  mol− −−  

E21C.2(a) +73.4 kJ mol–1, +71.9 kJ mol–1 

E21C.3(a) 1 191 J K  mol− −−  

E21C.4(a) 1 174 J K  mol− −−  

E21C.5(a) (i) 1 146 J K  mol− −−  (ii) +5.0 kJ mol–1  (iii) +18.7 kJ mol–1 

E21C.6(a) 7.1 dm6 mol–2 min–1 

 

Topic 21D 

E21D.1(a) Reactant is high in translational energy and low in vibrational energy, product is high 
in vibrational energy and relatively lower in translational energy 

 

Topic 21E 

E21E.1(a) 4×10–21 J, 2 kJ mol–1 

E21E.2(a) 112.5 nm−  

 

Topic 21F 
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E21F.1(a) 0.138 V  

E21F.2(a) 2.82 mA cm–2 

E21F.3(a) Increases, factor of 50 

E21F.4(a) (i) 1.7×10–4 A cm–2 (ii) 1.7×10–4 A cm–2 

E21F.5(a) (i) 0.31 mA cm–2 (ii) 5.44 mA cm–2 (iii) –2×1042 mA cm–2 

E21F.6(a) 15 2 14.9 10  cm  s− −× , 16 2 11.6 10  cm s− −× , 7 2 13.1 10  cm  s− −× , 3.9 s–1, 12 s–1, 2.4×10–8 s–1 

E21F.7(a) (i) 33 Ω  (ii) 103.3 10  × Ω  

E21F.8(a) One can (barely) deposit zinc 

 

 

Chapter 22 

Topic 22A 

22A.1(a) (i) 1.4 × 1014 cm–2 s–1 (ii) 3.1 × 1013 cm–2 s–1 

22A.2(a) 0.13 bar  

 

Topic 22B 

E22B.1(a) 333.6cm  

E22B.2(a) Chemisorption , 50 s  

E22B.3(a) 0.83 , 0.36   

E22B.4(a) (i) 0.24 kPa  (ii) 25 kPa  

E22B.5(a) 15 kPa  

E22B.6(a) 112.4 kJ mol−−  

E22B.7(a) 1651 kJ mol−  (i) 1.6 × 1097 min (ii) 2.8 × 10–6 min 

E22B.8(a) 1611 kJ mol−  

E22B.9(a) (i) 9.1 ps , 0.60 ps  (ii) 64.1 10  s× , 6.6 sµ  

E22B.10(a) Zeroth-order , first-order  
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Topic 22C 

E22C.1(a) 212 m  
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Solutions to odd-numbered problems 

 

Chapter 1 

Topic 1A 

P1A.1  –233°N 

P1A.3  -272.95oC 

P1A.5  (a) 0.0245 kPa (b) 9.14 kPa (c) 0.0245 kPa 

P1A.7  2.8 x 108 dm3 = 2.8 x 105 m3, 4.1 x 108 dm3 = 4.1 x 105 m3 

P1A.9  (a) 1.7 x 10-5 (b) 0.72 

P1A.13  51 km, 0.0029 atm 

 

Topic 1B  

P1B.3  
1 22RT

M
 
 
 

 

P1B.5  x initial
0.47 v  

P1B.7  22 3(1 )/2e nn − , 5.53 x 10-5, 2.71 x 10-9 

P1B.9  (a) 11.2 km s-1  (b) 5.04 km s-1 

 

Topic 1C 

P1C.1  (a) 3 112.5 dm  mol−  (b) 3 112.3 dm  mol−  

P1C.3 (a) 3 10.941dm mol−  (b) 3 -12.69 dm mol ,  3 12.67 dm  mol−  (c) 3 15 11dm mol−. , 
inversion temperature 

P1C.5  (a) 3 10.1353dm mol−  (b) 0.6957  (c) 0.7158  

P1C.7  3 159 4cm mol−. , 6 25 649dm atm mol−. , 21 atm  

P1C.9  aB b
RT

= − , 2C b= , 34.6 cm3 mol–1, 6 21 26dm atm mol−.  

P1C.11  3C
B

, 
2

3
B
RC , 

3

227
B
C

, 1
3
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P1C.13  10 0866atm−. , 3 12 12dm mol−.   

P1C.17  0.011 

P1C.21  
{ }1/21 ( / )

1 /

b bRT a

bRT a

±

−
   

     

Chapter 2 

Topic 2A 

P2A.1  22

1 2 1

1 1 ln
V nbnRT n a
V nb V V

   −
− − −   −   

 

  (a) 1 7 kJ− .  (b) 1 8kJ− .  (c) 1.5 kJ−  

P2A.3  (a) 1.5kJ−  (b) 1.6kJ−  

P2A.5  21
F f2 k x  

 

Topic 2B 

P2B.1  162.2 kJ mol−  

P2B.3  w = 0, 2.35 kJU∆ = + , 3.03 kJ+   

 

Topic 2C 

P2C.1  11270 kJ mol−−  

P2C.3  67.44− , 0.9253n = , -16625.5 kJ mol− , 2.17 per cent  

P2C.5  1994.30 kJ mol−−  

P2C.7  1802.31 kJ mol−−  

P2C.9  37 K+ , 4.09 kg  

 

Topic 2D 

P2D.1  1 6m. , 0 80m. , 2 8m.  

P2D.3  nR  
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P2D.5  2= ( ) ( )p naT V nb V nb
nR RV

   × − + × −   
   

, 
V

T V nb
p nR

 ∂ −
= ∂ 

 

P2D.7  ( )1 2

s
pc γ

ρ
/

= , -1322 m s  

P2D.11  (a) 123.5 K MPa−  (b) -114.0 K MPa    

 

Topic 2E 

P2E.1  1 141 40J K mol− −.  

 

Chapter 3 

Topic 3A 

P3A.5  1.00 kJ, 8.4 kJ 

P3A.7  1 110 7 J K mol− −.  

P3A.9  Path (a) 2.74kJ− , 0 , 2.74kJ+ , 1+9.13 J K− , 0 , 19.13 J K−−  

  Path (b) 1.66 kJ− , 0 , +1.66kJ , 1+9.13 J K− , 15.53 J K −− , 1+3.60J K−  

P3A.11  f f
m ,m

h c
ln lnp p

T TnC nC
T T, + , 122.6 J K−+  

P3A.13  1 1477 J K  mol− −  

 

Topic 3B 

P3B.1  (a) 1 1200.7 J K  mol− −  (b) 1 1232.0 J K  mol− −  

P3B.3  141.16 kJ mol−+ , 1 142.08 J K  mol− −+ , 140.84 kJ mol−+ , -1 -141.08 J K mol+  

P3B.5  -134.4 kJ mol , 1 1243 J K  mol− −  

 

Topic 3C  

P3C.1 (a) 150.7 J K− , 111.5J K−−  (b) +3.46 kJ , indeterminate (c) 33.46 10 J× , 

indeterminate (d) 139.2 J K−+ , 139.2 J K−−  
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P3C.3 (a) 1 135 J K  mol− −+  (b) 312 W m− , 4 31.5 10  W m−×  (c) mol ATP0.46
mol glutamine

 

 

 

Topic 3D 

P3D.1  1501 kJ mol−−  

P3D.3  121kJ mol−−  

P3D.5  ( )
p S

V T
S p

 ∂ ∂=  ∂ ∂ 
, ( )

T V

pS
V T

∂ ∂ =  ∂ ∂ 
 

P3D.7  d dpC T TV pα− , TV pα− ∆ , 0.50kJ−  

 

Chapter 4 

Topic 4B 

P4B.1  196 0K. , 11 1Torr.  

P4B.3  (a) 3 15 56 10 Pa K−+ . ×  (b) 2.6 per cent 

P4B.5  (a) 3 11.63 cm mol−−  (b) 3 130.1 dm  mol−+  (c) 2 16 10 J mol−+ ×  

P4B.7  22°C 

P4B.9  (a) 227.5°C  (b) +53 kJ mol–1 

P4B.13  9 8Torr.  

P4B.15  363 K 

P4B.17  2 1

2 1

d
d T T

p
T

α α
κ κ, ,

−
=

−
, m2 m1

m 2 1

d
d ( )

p pC Cp
T TV α α

, ,−
=

−
 

 

Chapter 5 

Topic 5A 

P5A.1  3/218.079 0.11482x−  

P5A.3  15 58kPa. , 47 03kPa.  

P5A.5  4.6 cm3 
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Topic 5B 

P5B.3  109.0 cm3 mol–1, 279.3 cm3 mol–1  

P5B.5  165 K, 0.99978, 19.89 g solute (100 g solvent)–1, –∆fusH/R 

P5B.7  (a) (i) 2 (ii) 3 (b) (ii) 0.19, 0.82, 0.24 (c) xPb = 0.19, xCu = 0.18  

P5B.9  fus
2

H
RT

∆ , fus
A

1 1ln
H

x
R T T ∗

−∆  = × − 
 

 

P5B.11  151.26 10 g mol−× , 4 3 1  1.23 10 dm mol−×  

P5B.13  xA = xB = 0.5 

P5B.15  4 3 14.78 10  dm  mol−×  

 

Topic 5C 

P5C.1  (b) 391.0 K (c) 0 532.  

P5C.7  (b) Ca2Si and a Ca-rich liquid (xSi = 0.13), 0.5  (c) 0.53 , 0.67  

P5C.9  
* *

A A B
* *
A B A

/
1 ( / 1)

x p p
p p x+ −

   

 

Topic 5E 

P5E.3  [B]RTΠ φ=  

 

Chapter 6 

Topic 6A 

P6A.1  (a) 1+4.48 kJ mol−  (b) 0 101 atm.   

P6A.3  20 007 mol H. , 20.107 mol I , 0 786 mol HI.  

P6A.5  
1 2

O
11

1 ap p
ξ

/
 

= −  + / 
 

 

Topic 6B 
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P6B.1  (a) 91.24 × 10−  (b) 81.29 10−×  (c) 41.8 10−×  

P6B.3  1300. kJ mol−  

P6B.5  0.740 , 5.71, 1103 kJ mol−−  

P6B.7  (a) 81.2 × 10   (b) 32.7 × 10  

P6B.9  ( ) ( )
O

r

ref

1 1
ref

ref e
Hv
R T T

c c
T

K T K T
T

 ∆∆ × −  
  = × 

 
 

 

Topic 6C 

P6C.1  (a) 1.23V+  (b) 1.09 V+  

P6C.3  1+14.7 kJ mol− , 1+18.8 kJ mol−  

 

Topic 6D 

P6D.1  0.26843 V+  

 

Chapter 7 

Topic 7A 

P7A.1  (a) 33 3 1.6 10 J m− −×  (b) 4 3 2.5 10 J m− −×  

P7A.3  1
5max /T hc kλ ≅  

P7A.5  255 K or 18 C° , 11 μm , 
4

c E  

P7A.7  (a) 8πhc , hc  (b) 4
Wien

4  T
c

σ 
 
 

 

P7A.9  (a) 2231 K , θE = 0 0315.  (b) 343 K , θE = 0 897.  

 

Topic 7B 

P7B.1 (a) 
1/22 = N

L
 
 
 

 (b) 1/2

1
(2L)

N
c

=  (c) 3 1 2

1
(π )

N
a /=   (d) 5 1 2

1
(32π )

N
a /=  

P7B.3  0.0183  
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P7B.5  (a) 69.0 10−×  (b) 61.2 10−×  

P7B.7  xmax = a 

 

 

 

Topic 7C 

P7C.1  (a) 
2 2 2

2
e 0

d  
2 4πd

e E
m xx

ψ ψ
ε

 
− − = 

 

  (b) 
2 2

2

d  
2 d

E
m x

ψ ψ
 

− = 
 

  (c) 
2 2

2

d  
2 d

cx E
m x

ψ ψ
 

− − = 
 

  

P7C.3  (a) Yes  (b) Yes  (c) No  (d) No 

P7C.5  (a) Yes, 2k−  (b) Yes  (c) Yes  (d) No 

  (i) (a) and (b) (ii) (c)  

P7C.7  (a) k+    (b) 0  (c) 0 

P7C.9  1
a

 

P7C.11  (a) (i) ( )
1

23
0πN a

−
=  (ii) ( )

1
25

032πN a
−

=  (c) (i) 01.5a , 2
04.5a  (ii) 05a , 

2
030a  

P7C.15  [ ]ˆ ˆ, ixx p =   

 

Chapter 8 

Topic 8A 

P8A.1  391.24 10  J−× , 92.2 10× , 301.8 10  J−×  

P8A.3  (a) 
2
L , 1 23

L
/

 (b) 
2
L , 

1 2
2

2
1

3 4( )
L

n Lπ

/
 

− / 
 

P8A.5  61.2 10×  

P8A.7  (a) 

2 2
2 * 1 2

3 3 3 2 2 2 2
2

2 2 2 2 2 2 2 2 2
1 2 2 3 2 1 3

4
( )sinh ( )

where ( )( ) and ( )

k kT A A A
a b k L b

a b k k k k b k k k

=| | = × =
+ +

+ = + + = +

  

 

Topic 8B 
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P8B.1  HI < HBr < HCl < NO < CO 

P8B.5  1 1
2 2

v ω + 
 

  

 

Topic 8C 

P8C.1  (a) ±5.275×10–34 J s, 197.89 10  J−×  (b) 145.2 10  Hz×  

P8C.3  (a) +   (b) 2−   (c) 0   (d) cos 2χ  

  (a) 
2

2I
   (b) 

22
I
  (c) 

2

2I
   (d) 

2

2I
  

P8C.5  0, 2.62, 7.86, 15.72 

P8C.7  1 

P8C.9  
i

y z
z y

 ∂ ∂
− ∂ ∂ 

 , 
i

z x
x z

∂ ∂ − ∂ ∂ 

 , 
i

x y
y x

 ∂ ∂
− ∂ ∂ 

 , .
i

zl−


  

 

Chapter 9 

Topic 9A 

P9A.1  106pm±  

P9A.3 (b) node node3 3 and 3 3ρ ρ= + = − , node node0 and 4ρ ρ= = , node 0ρ =  (c) 

0
3s

27
2
a

r〈 〉 =   

P9A.7  (a) 
0

Z
a

  (b) 
04

Z
a

 (c) 
04

Z
a

  (d) 
0

Z
a

 

P9A.11  cm−160957.4 , cm−160954.7 , cm−1329170 , cm−1329155  

 

Topic 9B 

P9B.1  0 420pm.  

 

Topic 9C 

P9C.1  2 6n →  

 
© Oxford University Press, 2014. 



Atkins & de Paula: Atkins’ Physical Chemistry 10e 
 

P9C.3  

1
2Li

987663cmR −
+ = , 1137175cm− , 1185187cm− , 122.5 eV  

P9C.5  2 2
1 2 3 2P and P/ / , 2 2

3 2 5 2D and D/ / , 2
3 2D /  

P9C.7  273.3429 10 kg−× , 1.000272  

P9C.9  (a) 10.9 cm−   (b) small  

P9C.11  (a) 2kT    (b) 123.8 T m−    

   

 

Chapter 10 

Topic 10A   

P10A.1  
3/2 /2

1/2
1/2 3/2 1/2

e 2 sin ( cos 3 sin )
2(24 ) 8

Z
a

ρ ρ ρ θ φ φ
π

− − + × − + 
 

, 120° 

 

Topic 10B 

P10B.1  1.87×106 J mol–1 = 1.87 MJ mol–1 

P10B.3  0
H1s 1

jj kE
S R

+
− +

+
, 0

H1s 1
jj kE

S R
−

− +
−

 

P10B.5 (b) 2.5a0 = 1.3×10–10 m, –0.555j0/a0 = –15.1 eV, –0.565j0/a0 = –15.4 eV, 0.055j0/a0 = 
1.5 eV, 0.065j0/a0 = 1.8 eV 

 

Topic 10C 

P10C.1  2.1a0 

P10C.3  (c) π/4 or 3π/4 

 

Topic 10D 

P10D.1 
1/2

A B A B A B
2 2 2

A B

2 4( )( )
1

2(1 ) 2(1 ) ( )
S S S

S S
α α β α α β α β α

α α
 + − − + +

± + − − − 
, A A B

2 2
A B

( )( )
1 ( )(1 )

S S S
S S

α β β α β α
α α

− + +
+

− − −
, 

B A B
2 2

A B

( )( )
1 ( )(1 )

S S S
S S

α β β α β α
α α

− + +
−

− − −
 

P10D.3  (i) E/eV = –10.7, –8.7, and –6.6  (ii) E/eV = –10.8, –8.9, and –6.9 
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Topic 10E 

P10E.1 E = αO, 
2

O C O C 2
O C

1 12( ) 1
2 ( )

βα α α α
α α

 
 + ± − +
 − 

, 

2 2

O C 2 2
O C O C

12 4( ) 1 1
( ) ( )

β βα α
α α α α

 
 − + − +
 − − 

, 
2

O C

4β
α α−

 

P10E.7  Standard potential increases as the LUMO decreases 

P10E.13 (b) 26780 cm-1 

 

 

Chapter 11 

Topic 11A 

P11A.1  (a) 3dD   (b) 3dD , 2vC  (c) 2hD   (d) 3D   (e) 4dD  

P11A.3  S4 , C2 , S4 

 

Topic 11B 

P11B.1  -CHCl=CHCltrans  

P11B.3  Γ = 3A1 + B1 + 2B2 

P11B.7  +1 or 1− , 1+ , 1−  

P11B.9 (a) 1 2 1 22A A 2B 2B+ + +  (b) A1 + 3E (c) 1 1 2A T T+ +  (d) 

2u 1u 2uA T T+ +  

 

Topic 11C   

P11C.1  1 2A T+ , s and p, (d ,d ,d )xy yz zx    

 

Chapter 12 

Topic 12A 

P12A.1  34.4 10×  
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P12A.3  [ ] ( )/
0

J 1 e LA λε −′= − , A = ε'[J]0 

P12A.7  
1/2

max 1/2
1 π
2 ln 2

vε  ∆ 
 

 , 4 3 1 25.7 10  dm  mol  cm− −×  

P12A.9  (a) receding , 31.128 10  c−× = 5 13.381 10  m s−×   

P12A.11 ( )1/222 /kT mc  

 

 

Topic 12B 

P12B.1  2
effm R  

 

Topic 12C 

P12C.1  596 GHz, 19.9 cm–1, 0.503 mm, 19.941 cm−  

P12C.3  128 393pm. , 128 13pm. , slightly different 

P12C.5  116.28 pm , 155.97 pm  

P12C.7  114.35 m− , 26 , 15  

P12C.9  


1 2 1
22

kT
hcB

  − 
 

, 30 , 


1 2 1
2

kT
hcB

  − 
 

, 6  

 

Topic 12D 

P12D.1  2
f 2 .k Da=  

P12D.3  1142 81cm−. , 3.36 eV , 193 8 N m−.  

P12D.7  
1

e 22D ν/ −  

P12D.9  112.83 pm , 123.52 pm  

P12D.11  0B  = 10.433 cm-1 , 1B  = 10.126 cm-1 

P12D.13 2

f

1 ( ½) .x v
k

ω= +  , rotational constant B decreases, B decreases with increased 

anharmonicity 
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P12D.15 (a) 2143.26 cm–1 (b) 112.8195kJ mol−  (c) 3 11.85563 10 N m−×  (d) 
11.91cm−   (e) 113 pm  

 

Topic 12E 

P12E.1  (a) Cannot undergo simple harmonic motion  

P12E.3 (a) C3v  (b) nine  (c) 13A 3E+  (d) all modes are infrared active  (e) 
 all modes are Raman active  

 

Chapter 13 

Topic 13A 

P13A.1  2 2
g u  is allowed+ +Σ ← Σ  

P13A.3  16808.2 cm  or 0.84411 eV− , 5.08 eV  

 

Topic 13C 

P13C.1  104 10  s  or  0.4 ns−×  

 

Chapter 14 

Topic 14A 

P14A.1  10.3 T , 52.42 10−× , β , ( )1
2Im = −  

 

Topic 14B 

P14B.1  -129 μT m  

P14B.3  Both fit the data equally well.  

P14B.5  cos φ = B/4C 

 

Topic 14C 

P14C.1  6400 10 Hz 8Hz× ± , 0 29s.  
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P14C.5  2 2
0

1
2 1 ( )

aτ
ω ω τ

 
  + − 

 

P14C.7  158 pm  

P14C.9  0.58 mT 

 

Topic 14D 

P14D.1  132.8 10  Hz×  

P14D.3  6.9 mT , 2.1mT  

 

Chapter 15 

Topic 15A 

P15A.1  {2, 2, 0, 1, 0, 0}, {2, 1, 2, 0, 0, 0} 

P15A.7  e Mgh RT− / , 0.363 , 0.57  

 

Topic 15B 

P15B.3  (a) (i) 5.00  (ii) 6 26.   (b) 1 00. , 0.80, 116.58 10−× , 0 122.  

P15B.5  1.209 , 3.004  

P15B.7  (a) 1.049  (b) 1.548 , 0.953 , 0.645 , 0.044 , 0.230 , 0.002 , 0.083  

P15B.9  (a) 660.6  (b) 44.26 10×  

 

Topic 15C 

P15C.3  (a) 104 K  (b) 1 a+  

 

Topic 15E  

P15E.1  0.351, 0.079, 0.029 

P15E.3  1 14.2 J K  mol− −  

P15E.5  28, 1 1258 J mol  K− −   
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P15E.7  (a) nRT
 
 
 

q
q

, 
2

nR
   −  

   

 q q
q q

, e lnnR
N

 + 
 

q q
q

 (b) 1 15.41 J K mol− −  

P15E.11 1 1191 J K  mol− −  

P15E.17 (a) 87.55K , 6330K  (b) and (c) ,m ,m 22 (H) (1 ) (H )V VC Cα α+ − , 
( )

( )
2

3 ( )
H

6O V R
H

e iD RT
i i

i i i

kT

p q q

Λ

Λ

−

, 

1.5R, 
V

V

2
( 2 )V e2.5

1 e

i

i

T

T
i

R R
T

θ

θ

θ − 
+ × 

−  
 

P15E.19 15 19.57 10  J K− −×  

 

Topic 15F 

P15F.3  100 T  

P15F.5  145 76kJ mol−.  

 

Chapter 16 

Topic 16A 

P16A.1  (a) 0  (b) 0.7 D  (c) 0.4 D  

P16A.5  1.00 μD  

P16A.7  23 31.2 10  cm−× , 0.86 D  

P16A.9  24 32.24 10 cm−× , 1.58 D , 3 15.66cm mol−  

P16A.11 3 168.8 cm  mol− , 4.40 , 2.10 , 3 18.14 cm  mol− , 1.76 , 1.33  

P16A.13 Increase in the relative permittivity. 

 

Topic 16B 

P16B.1  1.9 nm  

P16B.3  27 3 11.8 10 J 1 1 10 J mol− − −− × = − . ×  

P16B.5  7

6C
r

−  

P16B.7  (b) re = 1.3598 r0, 1.8531A =  
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Chapter 17 

Topic 17A 

P17A.1  (a) 2
5 a , ( ) ( ){ }1/33 1 1

s0.046460 / cm  g / g molMυ − −× × , 1.96 nm  

  (b) 1
2 a , 1

12 l , 0.35 nm , 46 nm  

P17A.3  2Nl  

P17A.5  (a) 1
2 a , / 2a   (b) 1

2 a , 1
12 l  (c) 2

5 a  

 

Topic 17B 

P17B.1  
1

21
2π

RT
l M

 
 
 

, 6.3 GHz  

 

Topic 17D 

P17D.1  
1/22

π
M γ +  

 
 

P17D.3  (a)  

θ  / ° 20 45 90 

Irod / Icc 0.976 0.876 0.514 

  (b) 90°  

P17D.5  3500 r.p.m.  

P17D.7  169 kg mol− , 3.4 nm  

P17D.9  130.0716 dm  g−  

P17D.11 5 11.6 10  g mol−×  

 

Chapter 18 

Topic 18A 
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P18A.1  153.61 10 g mol−×  

P18A.3  ( ) 23 3 / 2V a c=  

P18A.5  834pm , 606pm , 870pm  

P18A.7  4 

P18A.9  
2 2 2

2

1 h k l
a b cd

     = + +     
     

 

P18A.11 Simple (primitive) cubic lattice, a = 344 pm   

P18A.13 629pm , gave support 

P18A.15 0   

P18A.17 (a) o14.0 , o24.2 , o0.72 , o1.23  (b) RCCl = 176 pm and RClCl = 289 pm 

 

Topic 18B 

P18B.1  0 340.  

P18B.3  37.654 g cm−  

P18B.7  (a) 0.41421  (b) 0.73205  

 

Topic 18C 

P18C.1  µ  , 3 2
3

λ µ+  

P18C.3  
0

lim ( ) 1 when 
T

P E E µ
→

= < , 
0

lim ( ) 0 when 
T

f E E µ
→

= > , ( ) ( )2/3 2
e3 / 8π / 2h mN , 3.1 eV  

P18C.5  0.736 eV 

P18C.7  6 3 10.127 10  m  mol− −× , 6 3 10.254 10 m mol− −× , 6 3 10.423 10  m  mol− −× , 0.254 cm3 mol–1 

P18C.9  0.41 

 

 

Chapter 19 

Topic 19A 
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P19A.1 (a) σ = 0.602 nm2, d = (σ/π)1/2 = 438 pm  (b) σ = 0.421 nm2, d = (σ/π)1/2 = 366 
pm 

P19A.3 17 2 12.37 10  m  s−× , 1 1 12.85 J K  m  s− − −  

P19A.5 (a) 14 11.7 10 s−×   (b) 16 11.1 10 s−×  

 

Topic 19B 

P19B.1 110.2 kJ mol−  

P19B.3 2 112.78 mS m  mol− , 2 1 3/22.57 mS m  (mol dm )− −  

P19B.5 2 112.6 mS m  mol− , 2 1 3/26.66 mS m  (mol dm )− −  (a) 2 112.02 mS m  mol−  (b) 
1120 mS m−  (c) 172 Ω  

P19B.7 0.83 nm  

P19B.9 19 3 kJ mol−.  

 

Topic 19C 

P19C.1 (a) 112 kN mol− , 20 1 2.0 10 N molecule− −×  (b) 116.5 kN mol− , 20 1 2.7 10 N molecule− −×  

 (c) 124.8 kN mol− , 20 1 4.1 10 N molecule− −×  

P19C.7 
1/4 1/24 2 1/4 / 3x x =  

P19C.9 (a) 0  (b) 0.0156  (c) 0.0537  

P19C.11 2
½

/22 e
π

n NP
N

− =  
 

 

 

Chapter 20 

Topic 20A 

P20A.1 Second order  

P20A.3 (a) 1, 2, 3 (b) 2.2 ×109 mol−2 dm6 s−1 

 

Topic 20B 

P20B.3 Second-order, 1 13
r 0 0594 dm mol mink − −= . , 2.94 g  
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P20B.5 7.0×10–5 s–1, 7.3×10–5 dm3 mol–1 s–1 

P20B.7 14 3 16 10 mol dm  s− − −× , 84.4 10  s 14 yr× =  

P20B.9 First-order, 5.84×10–3 s–1, kr = 2.92×10–3 s–1, first-order, 1.98 min  

P20B.11 3.65×10–3 min–1, 190 min , 274 min  

P20B.13 7 3 1 12.37 10  dm  mol s− −× , kr = 1.18×107 dm3 mol–1 s–1, 34.98 10  s−×  

P20B.15 First-order, third-order 

P20B.17 0 0

0 0 0 0

(2 )1 ln
3 2 (3 )

x A B
A B A x B

   −
   − −   

 

P20B.19 
( )

1

14
3

2 1
1

n

n

−

−

−

−
 

 

Topic 20C  

P20C.3 
r r( )

0 0 0r 0 r r

r r

([A] [B] ) ( [A] [B] )e k tkk k k
k k

− + ′′ ′+ + −
′+

, 0 0
r

r r

([A] [B] )
k

k k
′ 

× + ′+ 
, 

0 0
r

r r

([A] [B] )
k

k k
 

× + ′+ 
, r

r

[B]
[A]

k
k

∞

∞

=
′

 

P20C.5 (a) (i) 2
a a tot a8 [A] ( )k k k′ ′+  (c) 7 11.7 10  s−× , 9 3 1 12.7 10  dm  mol  s− −× , 21.6 10×  

 

Topic 20D 

P20D.3 116.7 kJ mol− , 10 3 1 11.14 10  dm  mol  s− −×  

P20D.5 (a) 16 3 12.1 10 mol dm  s− − −×  (b) 114.3 10  kg or 430 Tg×  

 

Topic 20E  

P20E.1 Steady-state approximation 

P20E.3 Steady-state intermediate   

P20E.5 3
r 1 2 3 2[HCl] [CH CH=CH ]k K K  

 

Topic 20F 
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P20F.3 ( )1 22
r 01 2 [A]k t+  

 

Topic 20G 

P20G.1 1.11 

P20G.3 (a) 6.7 ns  (b) 10.105 ns−  

P20G.5 9 3 1 11.98 10 dm mol s− −×  

P20G.7 3.5 nm  

 

 

 

Topic 20H 

P20H.1 

[ ]

max

0

     Rate law based on rapid pre-equilibrium approximation
11
SK

ν
ν =

+
 

P20H.5 2.31 μmol dm−3 s−1, 115 s−1, 115 s−1, 1.11 μmol dm−3, 104 dm3 μmol−1 s−1  

 

Chapter 21 

Topic 21A 

P21A.1 (a) 20 24.35 10 m−×  (b) 0 15.  

P21A.3 11 1 3 11.7 10 mol dm  s− −× , 3.6ns  

P21A.5 14 3 1 13.12 10 dm  mol  s− −× , 1193 kJ mol− , 11 3 1 17.29 10  dm  mol s− −× , 1175 kJ mol−  

 

  

 

Topic 21C 

P21C.1 Ea = 86.0 kJ mol–1, +83.9 kJ mol–1, 1 119.6 J K mol− −+ , +79.0 kJ mol–1 

P21C.5 +60.44 kJ mol–1, +62.9 kJ mol–1, 1 1181 J K  mol− −− , +114.7 kJ mol–1 
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P21C.7 73 10×  

P21C.9 Two univalent ions of the same sign 

P21C.11 (a) 0.06   (b) 0.89 , 0.83  

 

Topic 21D 

P21D.1 0e
LI I σ−= N  

 

Topic 21E 

P21E.1 kr ≈ (kAAkDDK)1/2 

P21E.3 1.15 eV  

 

Topic 21F 

P21F.1 0.78, 0.38 

P21F.3 (a) 0.618 V−   

P21F.5 2.00×10–5 mA m–2, 0.498 , no 

 

Chapter 22 

Topic 22A 

P22A.1 176.9 kJ mol−− , 1348.1 kJ mol−− , corner is the likely settling point  

P22A.3 (a) 15 21.61 × 10  cm−  (b) 15 21.14 × 10  cm−  (c) 15 21.86 × 10  cm−  

 

Topic 22B 

P22B.3 (a) 165, 13.1 cm3 (b) 263, 12.5 cm3 

P22B.5 15.78 mol kg− , 17.02 Pa−  

P22B.7 120.0 kJ mol−− , 163.5 kJ mol−−  

P22B.9 (a)  values in the range 0.975 to 0.991 R  (b) 33.68 10−× , 18.67 kJ mol−− , 
5 12.62 10 ppm− −× , 1

b 15 7 kJ molH −∆ = − .  
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P22B.11 10.138 mg g− , 0.58  

P22B.13 (a) 0.2289k = , 0.6180n = , 0.2289k = , 0.6180n =  (c) 0.5227k = , 0.7273n =  

 

Topic 22C  

P22C.1 3

2

NHr

H

pk
K p

− , 0 0
c

0

ln
p p p pk

t t p
−

= − ,  kc = 2.5×10−3 kPa s−1 
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