MAT 215 — Linear Algebra I
Spring 2001 — Final Exam
"Duration: 2 hours
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Give conditicns on a so that Ax = § has:
a) A unique solution

b) More than one solution

c) No solution

(15 points)
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a) Compute Al A% and show that 4° =94-87.
b) Deduce that 4 is invertible and express 4™ in terms of 42 and [
c) Find 47",

(15 points)
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a) Prove that 4 is row equivalent to B
b) Find elementary mairices £, Ly Egsothat B=EEE 4.

(10 points)

4) Use Gaussian elimination to compute the determinant of
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(10 points)

S)Let I = {(.‘c,}')e R’ /_\:)- > O} be a subset of R?.

a) ‘Prove that /" is closed under scalar multplication
b) Find a specific example to show that ¥ 15 pet & 5;1275%:24'? ‘f V,
(10 ]’Mimf-)
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a) Find the rank of 4 znd deduce that the subset
S={, =(,-1,L1)v, =(2, L=13)vy =(4,2,-2,1) v, =(3,-3,3,2)}
is linearly dependant.

b) Find a basis B for lin{S) such that B isa subset of S.

(10 points)
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T)Let A={2 2 2]
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a) Find the eigenvalues and eigenvectors of 4.
b) Is 4 diagonalizable? Why?

¢) Find an invertible matrix P such that P~ 4P = p where D is
_ matrix.

d) Calculate det(Am) and U'(A‘O).

a diagonal

(20 points)

S) Let 4 be an invertible #x n matrix and 2 bean eigeavalue of 4. |

ww that 277 1s
- =
an eigenvalue of 47",

(10 points)
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