MAT 215 – Linear Algebra I Spring 2001 – Final Exam Duration: 2 hours

1) Let
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & a \\ 1 & a & 0 \end{pmatrix}$$
, and $b = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

Give conditions on a so that Ax = b has:

- a) A unique solution
- b) More than one solution
- c) No solution

(15 points)

2) Let
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 2 \\ 1 & 3 & -1 \end{pmatrix}$$
.

- a) Compute A^2 , A^3 and show that $A^3 = 9A 8I$.
- b) Deduce that A is invertible and express A^{-1} in terms of A^2 and I.
- c) Find A^{-1} .

(15 points)

3) Let
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 & +1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

- a) Prove that A is row equivalent to B
- b) Find elementary matrices E_1 , E_2 , E_3 so that $B = E_3 E_2 E_1 A$.

 (10 points)
- 4) Use Gaussian elimination to compute the determinant of

$$A = \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 1 & 0 & 2 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 0 \\ -1 & -1 & 1 & -1 & 0 \end{pmatrix}$$

(10 points)

5) Let
$$W = \{(x, y) \in \mathbb{R}^2 / x.y \ge 0\}$$
 be a subset of \mathbb{R}^2 .

- a) Prove that W is closed under scalar multiplication
- b) Find a specific example to show that W is not a sub sepace of V. (10 points)

6) Let
$$A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 2 & 1 & -1 & 3 \\ 4 & 2 & -2 & 1 \\ 3 & -3 & 3 & 2 \end{pmatrix}$$
.

- a) Find the rank of A and deduce that the subset $S = \{v_1 = (1, -1, 1, 1), v_2 = (2, 1, -1, 3), v_3 = (4, 2, -2, 1), v_4 = (3, -3, 3, 2)\}$ is linearly dependant.
- b) Find a basis B for Iin(S) such that B is a subset of S.

(10 points)

7) Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
.

- a) Find the eigenvalues and eigenvectors of A.
- b) Is A diagonalizable? Why?
- c) Find an invertible matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.
- d) Calculate $det(A^{10})$ and $tr(A^{10})$.

(20 points)

8) Let A be an invertible $n \times n$ matrix and λ be an eigenvalue of A. show that λ^{-1} is an eigenvalue of A^{-1} .

(10 points)