MAT 215 (Linear Algebra I), Final Exam, Fall98-99, Duration: 2 hours

1. (15%) For which values of a will the following system have no solutions? Exactly one solution? Infinitely many solutions?

$$x+2y-3z=4$$

$$3x-y+5z=2$$

$$4x+y+(a^2-14)z=a+2$$

- 2. (15%) Let A and B be $n \times n$ matrices, and m be any positive integer. Use determinants to answer the following questions:
 - (a) If AB is invertible, then A and B are both invertible.
- (b) If A''' is invertible, then A is invertible.

 (c) If A''' = 0, then A cannot be invertible.

 (d) If n is odd and AB + BA = 0, then A or B is not invertible.

 (e) Give an example of a 2×2 nonzero metrix C whose square $C^2 = 0$.
 - 3. (15%) (a) Determine whether or not the three vectors u = (2, -1, 0)(3)w = (0, 2, 3) form a basis for the vector space $R^{(3)}$
 - (3)(b) Prove that the set $S_1 = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$ is not a spanning set for the vector space M_1 . $\begin{bmatrix} 2 & 3 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 2 \end{bmatrix}$, and $\begin{bmatrix} 2 & 3 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 2 \end{bmatrix}$ (6)(c) Extend \hat{S}_1 to a spanning set S_2 of M_1 . Concluded \hat{S}_2 to a spanning set S_3 of M_3 .

 - (3)(d) Is S_2 a basis for M_{22} ? Why or why not?
 - 4. (20%) Consider the matrix $A = \begin{bmatrix} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$
 - (a) Find the eigenvalues and eigenvectors of A.
 - $\binom{1}{2}$ (b) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
 - f(c) Use (a) and (b) to evaluate f(c).