MAT 215 – Linear Algebra I Spring 2001 – Exam # 2 Duration: 1 hour

1) Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

- a) Find the cofactor matrix of A.
- b) Find det(A).
- c) Find the inverse of A..

(30 points)

- 2) Determine the following.
 - a) If $S = \{(x, y)/x^2 + y^2 \le 1\}$, is S closed under addition of \mathbb{R}^2 ? Why?
 - b) If $S = \{(x, y)/y \ge 0\}$, is S closed under scalar multiplication of \mathbb{R}^2 ? Why?
 - c) If $S = {\alpha(1,1,1) + \beta(1,0,0)/\alpha, \beta \in \mathbb{R}}$, is S a subspace of \mathbb{R}^3 ? Why?

(15 points)

- 3) Let $S = \{v_1 = (1, -1, 2), v_2 = (-1, 0, 3), v_3 = (0, -1, 5), v_4 = (3, -2, 2)\}$
 - a) Determine whether R³ is spanned by S.
 - b) Find if possible a subset of S that can serve as a basis for R³.

(20 points)

4) Let
$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 3 & 3 \end{bmatrix}$$
.

- a) Find a spanning set for the solution space of AX = 0.
- b) Find a basis for the Null Space of A.
- c) Find the dimension of the Null Space of A.

(20 points)

5) Let $B = \{u, v, w\}$ denote a basis in a 3-dimensional vector space V. show that the set $B' = \{u + v, v + w, w + u\}$ is a basis for V.

(15 points)