There are 6 problems total. Answer them all.

- 1) (15%) Find the length of the indicated portion of the curve: $\mathbf{r}(t) = \left(e^{t} \cos t\right)\mathbf{i} + \left(e^{t} \sin t\right)\mathbf{j} + e^{t}\mathbf{k}, \quad -\ln 4 \le t \le 0$
- 2) (30%) Find T, N, B, κ , τ , and write the acceleration **a** in the form $\mathbf{a} = a_{\rm T} \mathbf{T} + a_{\rm N} \mathbf{N}$ for the space curve $\mathbf{r}(t) = \sin t \, \mathbf{i} + \sqrt{2} \cos t \, \mathbf{j} + \sin t \, \mathbf{k}$.
- 3) (20%) A particle traveling in a straight line is located at the point (1, -1, 2) and has a speed 2 at time t = 0. The particle moves toward the point (3, 0, 3) with constant acceleration $2\mathbf{i} + \mathbf{j} + \mathbf{k}$. Find its position vector $\mathbf{r}(t)$ at time t.
- 4) (10%) Sketch the surface (S) whose spherical equation is $\rho = \sqrt{2} \sec \phi$
- 5) (10%) Sketch the surface $z^2 + 4y^2 4x^2 = 4$
- 6) (15%) Find the limit of f as $(x, y) \rightarrow (0,0)$ or show that the limit does not exist:

a)
$$f(x, y) = \frac{x^3 - y^3}{x^3 + y^3}$$

b)
$$f(x, y) = \tan^{-1} \left(\frac{|x| + |y|}{x^2 + y^2} \right)$$