Notre Dame University Faculty of Natural & applied Sciences Department of Sciences

22-31

Principles of Chemistry: CHM 211
Final Exam – Spring 2009
Duration: 120 minutes

23->(32)

Student	Name:	
---------	-------	--

I.D.#: _

Please Encircle your section:

7 0 000	
Time	Instructor
	Dr. M. HAROUN
	Dr. M. HAROUN
	Dr. M. BOULOS
11:00-12:30	Dr. C. TRATRAT
	Dr. F. MOHASSEB
	Dr. F. MOHASSEB
	Time 5 9:00-10:00 5 1:00-2:00 8:00-9:30 11:00-12:30 3:00-4:30 8:00-9:30

Please provide all your answers on the answer sheet only

Exam regulations:

- Talking, improper seating, borrowing stationary items are not permitted.
- No questions will be allowed during the exam.
- In case of cheating the exam copies will be confiscated immediately and the student will have to leave the exam hall.
- Every proctor in the exam hall will exercise the right to keep

and apply the regulations mentioned above.

Good Luck

1-1-2-14

R= Universal gas constant = 0.08206 L.atm/mol.K and 8.31 J/mol.K

1 atm = 760 mmHg = 760 torr

 $Ln(P_1/P_2) = \Delta H/R (1/T_2-1/T_1)$

Osmotic Pressure=MRT

Psolution=Xsolvent P°solvent

1] The freezing point of t-butanol is 25.50 °C and k_f is 9.1 °C.kg/mol. Usually t-butanol absorb water on exposure to air. If the freezing point of a 10.0-g sample of t-butanol is 24.59 °C, how many grams of water are present in the sample?

a) 0.018

b) 0.010

c) 0.023

d) 0.160

e) 0.250

25,5-24,55 = 10x10-3.9,11.

DT= mK

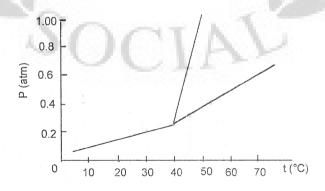
Epere - To sold

2] What is the equilibrium constant, at 25°C, for the equilibrium shown? $\Delta H^{\circ}f(SO_2) = -294 \text{ kJ/mol}, \Delta H^{\circ}f(SO_3) = -396 \text{ kJ/mol}, \Delta H^{\circ}f(O_2) = 0 \text{ kJ/mol},$ $S^{\circ}(SO_2) = 248 \text{ J/K.mol}, S^{\circ}(SO_3) = 257 \text{ J/K.mol}, S^{\circ}(O_2) = 205 \text{ J/K.mol},$

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

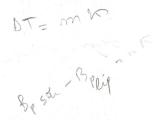
a) 2.5×10^{31}

b) 1.9×10^{29}

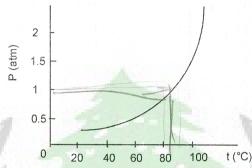

c) 3.8×10^{-14}

d) 1×10^{26}

e) 2.5×10^{20}


LEBANESE BY NATURI

3] At what temperature and pressure are only solid and vapor in equilibrium?



- a) 10°C, 0.45 atm
- b) 30°C, 0.20 atm
- c) 45°C, 0.30 atm
- d) 52°C, 0.40 atm
- e) 44C°, 0.60 atm

- 4] Which one of the following has the highest boiling point?
 - a) pure water
 - b) sugar: $C_6H_{12}O_6$ (0.01 M) in water
 - c) NaCl (0.01 M) in water
 - d) CaCl₂ (0.01 M) in water

5] What is the normal boiling point of the liquid that has the vapor pressure curve shown in the figure?

- a) 18°C
- b) 40°C
- c) 54°C
- d) 88°C
- e) 105°C

MY (4.00) 189.694 Pe

6] How much Fe can be produced if 100 g Fe₂O₃ and 100 g CO are mixed and react?

$$Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3 CO_2(g)$$

- a) 97 g 0. 526, 00 1.878 md

- c) 14 g d) 35 g
- e) 56 g

- 7] How many liters of N₂ (measured at STP) are produced by the reaction of 1.22 kg lead azide, Pb(N₃)₂?

$$Pb(N_3)_2 \ (s) \ \longrightarrow \ Pb \ (s) + 3 \ N_2 \ (g)$$

- a) 93.8 L 29/2
- 2012 84
- b) 325 L 122x103
- c) 282 L.
- d) 31.3 L
- e) 129 L

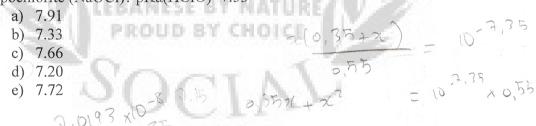
= 1, 25 x10 -5 male

1 ms = 22,1/1

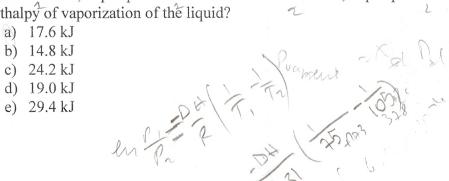
2

8] Given the reaction enthalpies

2 P (s) + 3 Cl₂ (g)
$$\longrightarrow$$
 2 PCl₃ (g) $\Delta H = -574 \text{ kJ}$
2 P (s) + 5 Cl₂ (g) \longrightarrow 2 PCl₅ (l) $\Delta H = -887 \text{ kJ}$


What is the reaction enthalpy for the following reaction

9] What is the solubility of CuI in 0.3 M NaI? $Ksp(CuI)=1x10^{-6}$


a)
$$3.3 \times 10^{-6}$$

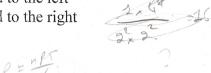
b) 2.4×10^{-7}
c) 2.0×10^{-3}
d) 1.0×10^{-6}
e) 8.7×10^{-5}
 0.3×10^{-5}

10] Hypochlorous acid ionizes by the following equation:

What is the pH of a solution that is 0.55 M in hypochlorous acid (HOCl) and 0.35 M in potassium hypochlorite (NaOCl)? pKa(HClO)=7.53

11] The vapor pressure of the liquid is measured at two different temperatures with the following results: T=75°C, vapor pressure=65.2 Torr and T=105°C, vapor pressur=105 Torr. What is the enthalpy of vaporization of the liquid?

12125.2


3

of the compound?				
a)	СНО	CHO CO2 - C+2 9 2,104 9 9 2, 6, 6 478 mel 36 9 70 6 5,8 ease the temperature of 2	1	94 10
b)	C_2H_2O	(140	4,0-	201
c)	CHO_2	CV2 - C+2	0,43069.	
d)	C_3HO_3	2,1049	12	2. 0,04789
(e)	$^{\circ}$ C ₄ H ₄ O	94 22	11. 020	
	6	1, 6,0478 mete	110,020)	NOC 5,845/3
	0,523	69 70% C 5,8	75 4	22
13] How much h	eat is required to incr	ease the temperature of 2	moles of benzene	(C_6H_6)
110111 10 C to 23	c: The specific fleat ca	pacity of benzene is 1.05 J	1/g.°C. 176 g	1,425
	8.15 kJ		2110	1975
	2.45 kJ	A F	Cu 440.	
	1.23 kJ	Co = DT xm		
	4.91 kJ	D/ X		
e)	3.68 KJ	F 156		
	.// 400	102 > 12 x (1)	1-02007	
141 The addition	of a manyalatila aglyta	to a liquid regulta in .	bely !	
14] The addition	of a nonvolatile solute	to a fiquid results in.		FRA
a) the boiling	point is increased the	freezing point is increased	4 N L	
,	4	freezing point is decrease		
,	7	freezing point is increased		
,	_	freezing point is decreased		
(d) the solling	point is increased, the	recording point is decreased		
18	11			
	Will be seen to be seen			
temperature, pure substance if the o a) b)	e water has a vapor pr bserved vapor pressure 32.4 g/mole 101.5 g/mole	g of a substance to 125 gessure of 23.76 Torr. What of the solution is 22.67 Torr. What coff the solution is 22.67 Torr. What $\frac{6.944}{6.944} = 0.954$ g of $\frac{4.944}{6.944} = 0.954$ g	at is the molar mass orr?	of the
	o chalmed.	6,949 = 0.964		
9	9,24)	6.964+ an = 0338		
16] A gas mixtur	e contains 7 g of N_2 , 3	g of H_2 , 16 g of O_2 and 16	g of CH ₄ in a 1 L v	essel at
		₂ (in atm).		
· · · · · · · · · · · · · · · · · · ·	11.2	N Ho		
b)	33.6 5.6	N2 #2 79 39	0	3 75,0087
		+9	PEZ NRT =) XXXXX
· · · · · · · · · · · · · · · · · · ·	22.4		1 E V	S
e)	9.5	. PE		128
			2	
	.0	the ro		
Pist	CITY 2	15 Tiby	4	
1.1	41 mg & 16x2 3		4	
PN	Tal x 12 ME	0.4		
	10x	9 /		
	1000 76	75 5,59 9×		

12] A 0.8135 g sample of a compound containing only carbon, hydrogen and oxygen produces 2.104 g CO_2 and 0.4306 g H_2O in a combustion analysis. What is empirical formula

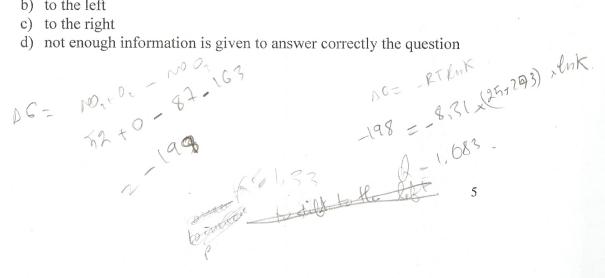
17] For the reaction : 2 Cl₂ (g) + 2 H₂O (g) \longrightarrow 4 HCl (g) + O₂ (g) at 600°C, Kp=1. A system contains 2 atm Cl₂, 2 atm H₂O, 4 atm HCl and 1 atm O₂ at 600°C. Which of the following statements is correct?

- a) the system is already at equilibrium, no shift occurs
- b) to reach equilibrium, the system will be shifted to the left
- c) to reach equilibrium, the system will be shifted to the right
- d) Kp=Kc
- e) None of these

18] The osmotic pressure of blood at 37°C is 7.7 atm. A solution that is given intravenously must have the same osmotic pressure as blood. What should be the molarity of a glucose solution to give a standard pressure of 7.7 atm at 37°C?

- $0.10 \, M$ a)
- b) 0.90 M
- 0.45 M
- $0.30 \, M$
- 1.5 M

19] What is the pH of a 0.29 M solution of ammonium nitrate NH₄NO₃; Kb(NH₃)=1.8x10⁻⁵


a) 4.90 b) 8.21 c) 9.42 d) 4.63 e) 2.37

20] Consider the following equilibrium: NO (g) + O_3 (g) \longleftrightarrow NO₂ (g) + O_2 (g). Predict the direction in which the system will shift to reach equilibrium for the following mixture of reactants and products taken at 25°C:

NO=3 atm; $O_3=0.5$ atm; $NO_2=2$ atm; $O_2=1$ atm

Given data: ΔG° (NO) = 87 kJ/mol, $\Delta G^{\circ}(O_3) = 163$ kJ/mol, ΔG° (NO₂) = 52 kJ/mol, $\Delta G^{\circ}(O_2) = 0 \text{ kJ/mol}$

- a) no shift occurs
- b) to the left
- c) to the right
- d) not enough information is given to answer correctly the question

21] In an experiment, 42.6 g of zinc at 112 °C is placed in 100 g of water, initially at 25 °C in a calorimeter. The final temperature of the water and zinc is 31.4 °C. What is the specific E = 26752 heat capacity of zinc in J/g.°C? The specific heat capacity of water is 4.18 J/g.°C. (a) 0.78 b) 0.39 c) 0.19 CS: BEYM d) 0.58 e) 0.97 22] At 25°C, Kc=400 for C (s) + O_2 (g) \longleftrightarrow CO₂ (g), what is the equilibrium partial pressure of O₂ (in atm) if CO₂, initially at 0.5 atm, is allowed to come to equilibrium? a) 4.5×10^{-2} b) 6.2x10⁻⁴ c) 8.3×10^{-5} d) 2.5×10^{-6} (e) 1.2×10^{-3} 23] Which of the following reaction has a positive entropy change? a) CaO (g) + H₂O (g) \longrightarrow Ca(OH)₂ (s) b) $2 \text{ NO}_2(g) \longrightarrow \text{N}_2\text{O}_4(g)$ c) $CuSO_4(s) + 5 H_2O(1) \longrightarrow CuSO_4.5H_2O(s)$ d) $PCl_5(s) \longrightarrow PCl_3(l) + Cl_2(g)$ e) $H_2O(g) \longrightarrow H_2O(l)$ 24] The reaction shown is exothermic $H_2(g) + O_2(g) \longrightarrow H_2O_2(l)_{ASH} \Delta H = 452 \text{ KJ}$ Which statement is correct: a) the reaction is a spontaneous process b) the reaction is a non spontaneous process c) it is impossible to judge on the basis of ΔH alone OUD SY CHOICI 25] For which Kc value for the hypothetical equilibrium shown below does the equilibrium most strongly tend toward products? A(g) + B(g) =a) 0.015 b) 8.1x10⁻³ c) /1.0 d) 290 e) 3.2×10^3 Bonus: A 1 L sample of an ideal gas, originally at 710 Torr, is compressed to 0.83 L at the same P. 710 to ... (2 - 2 V2 1- 10 to ... (2 - 2 V2 Pr 2 Pr 2 temperature. What is the new pressure of the gas? a) 1268 Torr b) 655 Torr c) 780 Torr d) 855 Torr e) 973 Torr

Notre Dame University Faculty of Natural & applied Sciences Department of Sciences Principles of Chemistry: CHM 211 Final Exam – Spring 2009 Duration: 120 minutes

Student Name:		
I.D.#:		

Mu	ltile o	choice	e Qu	estio	ns. C
	a	b	С	d	e
1	X				
2				\rightarrow	-
3					>
4				>	
5			11	\geq	
6		\times			
7			\rightarrow		
8			17.4		\times
9	>	N.E.			
10				\times	
11	\times				
12					×
13		×			
14				>	
15		-		\times	
16			>		134
17	>				PR
18				><	
19	>				1
20				X	4
21	><			100	
22					\times
23				\times	
24			\times		
25					\geq
26				\times	1