NDU

MAT 235

Ordinary Differential Equations

Final Exam

Duration: 2 hours

Name:	
Name:	

Section: _____

Instructor:

Grade: _____

MAT 235 – Final Exam; Friday June 18, 2004

Name:

Instructor:

<u>Please note that you have 10 questions and 11 pages</u> (your mobile must be turned off and unseen)

1) (8 points) Solve the differential equation $xy' + y = x^3y^4$, for x > 0.

2) (6 points) Solve the initial-value problem $x \frac{dy}{dx} = -y + \sqrt{xy+1}$; with y(1) = 3. <u>*Hint:*</u> Let xy+1 = y **3)** (8 points) Solve $(x^4 + y^2 + \cos x)dx + (xy + y)dy = 0$.

4) (6 points) Solve the differential equation $x^3y'' + 2x^2y'' - xy' + y = 0$, for x > 0

5) (10 points) Solve the differential equation $y'' - 2y' + y = \frac{e^x}{(1-x)^2}$; for x > 1.

6) (8 points) Find the function x(t) such that $x(t) = t^2 + \int_0^t \sin(t-u)x(u) du$.

7) (12 points) Use Laplace transform to solve $\begin{cases} y_1' = 4y_1 - 2y_2 \\ y_2' = 5y_1 + 2y_2 \end{cases}; y_1(0) = 2; y_2(0) = -2. \end{cases}$

8) (12 points) Use Laplace transform to solve $\frac{d^2 y}{dt^2} + 25y = \begin{cases} 25; & 0 \le t < 4\\ 0; & t \ge 4 \end{cases}$; y(0) = y'(0) = 0.

9) (10 points) Use the eigenvalue-eigenvector method to solve

$$y'_1 = -y_1 + 6y_2$$

 $y'_2 = y_1 - 2y_2$

10) (20 points) Given
$$x^2y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = 0$$
, for $x > 0$.

- a) Show that $x_0 = 0$ is a regular singular point.
- b) Find the indicial roots.
- c) Use the method of Frobenius to find the generalized power series solution in powers of x.