NDU

Notre Dame University

MAT 235

Ordinary Differential Equations

Final Exam

Duration: 2 hours

Name:		
Section:		
Instructor:		
Grade:		

^{1) (10} points) Find the family of orthogonal trajectories of the family of curves $y = c \ln x$, for x > 0.

2) (20 points) Solve the following differential equations.

a)
$$(x-y)dx - (x+y)dy = 0$$

b)
$$y' + \frac{y}{x} = x^2 y^3$$

3) (20 points) Solve the following differential equations.

a)
$$x^2y'' - xy' = -2x^4$$
, $x > 0$

b)
$$y''' - y' = 2e^x$$

4) (8 points) Consider the initial-value problem $y'' + x^2y = 0$, y(0) = 1, y'(0) = 0

$$y'' + x^2 y = 0$$
, $y(0) = 1$, $y'(0) = 0$

Find its power series solution near the ordinary point $x_0 = 0$.

5) (18 points) Consider the differential equation
$$x^2y'' + (-x + x^2)y' - 3(x+1)y = 0$$

a)	Show	that	r. =	0	is a	regular	singul	ar no	oint.
a,	, bilow	mai .	ι_0 —	v	15 a	regular	omgui	aιρι	π.

b) Find the indicial equation.

c) Find two linearly independent solutions.

						ntial equatio		
6)	(14 poi	ints) Solve	the followi	ing initial-	value prob	lem using L	Laplace tran	isform.

$$y'' + y' = \begin{cases} e^t & 0 \le t < 1 \\ 0 & 1 \le t \end{cases}, \ y(0) = y'(0) = 0$$

7) (10 points) Solve the following linear system.

$$y'_1 = 2y_1 + y_2$$

 $y'_2 = y_1 + 2y_2$