NDU

MAT 235

Ordinary Differential Equations

Final Exam

Duration: 120 Minutes.

Name: \qquad
Section:

Instructor:

Grade: \qquad

1- (9 points) Solve each of the differential equations:
a) $\left(\sin y+x^{2}+2 x\right) d x+\cos y d y=0$
b) $3 \frac{d y}{d x}+\frac{2}{x+1} y=\frac{x^{3}}{y^{2}}$

2- (5 points) Given $f(t)=\int_{0}^{t}(t-u)^{5} \sin u d u$, find Laplace transform of $f(x)$

3- (7 points) Given $F(s)=\frac{s+2}{(s+2)^{2}+9} e^{\frac{-\pi s}{2}}$, find Laplace inverse of $F(s)$

4- (10 points) Find the general solution of the differential equation $y^{\prime \prime}+4 y^{\prime}+4 y=x^{-4} e^{-2 x}$ for $x>0$

5- (8 points) Find the general solution of the system
$x^{\prime}=-4 x-y$
$y^{\prime}=x-2 y$

6- (7 points) Find the general solution of $(x+1)^{2} y^{\prime \prime}-2(x+1) y^{\prime}+2 y=0$. For $x+1>0$ (Hint: you can use the substitution $u=x+1$).

7- (12 points) Use Laplace transforms to solve the following initial-value problem

$$
y^{\prime \prime}+y=h(t) \text { where } h(t)=\left\{\begin{array}{ll}
t & 0<\mathrm{t}<\pi \\
0 & \mathrm{t} \geq \pi
\end{array}\right\} \text { with } y(0)=2, y^{\prime}(0)=0
$$

8- (6 points) Find a family of oblique trajectories that interest the family of hyperbolas $x y=c$ at angle 45°

9- (16 points) Use the Laplace transform to find the solution of the given linear system that satisfies the given initial conditions

$$
\begin{aligned}
& x^{\prime}+x+y^{\prime}+2 y=0 \\
& 7 x^{\prime}-5 x+8 y^{\prime}-4 y=0 \\
& \text { with } \quad x(0)=1 \quad \text { and } \quad y(0)=-1
\end{aligned}
$$

(20 points) Given the differential equation $x^{2} y^{\prime \prime}+\left(x^{2}-3 x\right) y^{\prime}+(4-2 x) y=0$.
Show that $x_{0}=0$ is a regular singular point, then use the method of Frobenius to find solutions of the given equation in some interval $0<x<R$.

