NDU

MAT 235

Ordinary Differential Equations

Final Exam

$$
\text { Wednesday February 4, } 2004
$$

Duration: 2 hours

Name: \qquad

Section:

Instructor:

Grade:

Please note that you have 10 questions and 12 pages

1) (10 points) Solve the following:
a) $x y d x+\left(x^{2}+y^{2}+2\right) d y=0 \quad$ with $y(0)=1$
b) $\frac{d y}{d x}=(2 x+y+3)^{2}+(2 x+y+3)-2$
2) (10 points) Find the orthogonal trajectories of the family of circles $(x-c)^{2}+y^{2}=c^{2}$.
3) (4 points) Find the Laplace inverse of the following function $F(s)=\ln \frac{s}{s-3}$
4) (8 points) Solve $(1+x) y^{\prime \prime}+y^{\prime}=1 \quad$ for $x>-1$
5) (10 points) Solve $y^{\prime \prime}+9 y=\sec 3 x$
6) (8 points) Use Laplace transform to solve
$y^{\prime \prime}+6 y^{\prime}-7 y=\left\{\begin{array}{cc}2 & 0 \leq t<1 \\ 0 & t \geq 1\end{array}\right.$
with $y(0)=y^{\prime}(0)=0$
7) (10 points) Solve the following initial-value problem by using Laplace transform.

$$
\begin{array}{r}
y_{1}^{\prime}+y_{1}+2 y_{2}=0 \\
3 y_{1}+2 y_{2}+y_{2}^{\prime}=0
\end{array}
$$

$$
\text { with } y_{1}(0)=1 \text { and } y_{2}(0)=2
$$

8) (8 points) Use the eigenvalue-eigenvector method to solve

$$
\begin{aligned}
& y_{1}^{\prime}=2 y_{1}+2 y_{2} \\
& y_{2}^{\prime}=7 y_{1}-3 y_{2}
\end{aligned}
$$

9) (12 points) Given that $x_{0}=0$ is an ordinary point of the differential equation $\left(x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$. Find the general power series solution in powers of x.
10) (20 points) Given $4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0 \quad$ for $x>0$.
a) Show that $x_{0}=0$ is a regular singular point.
b) Find the indicial roots.
c) Find the generalized power series solution in powers of x.
