NDU

MAT 235

Ordinary Differential Equations

Final Exam

Duration: 55 minutes

Name:

Section:

Instructor:

Grade:

1) (12 points) Solve the following differential equations.
a) $\left(x^{2}-y^{2}\right) d x-(x y) d y=0$
b) $y^{\prime}+\frac{2}{x} y=x y^{4}$
2) (8 points) Find the family of orthogonal trajectories of the family of curves $y=c \ln x$, for $x>0$.
3) (5 points) Given $f(t)=\int_{0}^{t} v e^{v} \sin (t-v) d v$, find the Laplace transform $L\{f(t)\}$.
4) ($\mathbf{9}$ points) Find the general solution of the following system of differential equations. $y_{1}^{\prime}=y_{2}$
$y_{2}^{\prime}=-4 y_{1}+t$
5) (12 points) Solve the following differential equation: $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=4 x^{-1}, x>0$.
6) (6 points) Given the following clairaut's differential equation: $y-x y^{\prime}=y^{\prime}-y^{\prime} \ln \left|y^{\prime}\right|$. a) Find a general solution.
b) Find a singular solution.
7) (6 points) Solve the following differential equation $y^{(4)}+4 y^{\prime \prime}+4 y=0$.
8) (12 points) Use Laplace transform to find the solution of the system

$$
\begin{aligned}
& y_{1}^{\prime}-4 y_{1}+3 y_{2}=1 \\
& y_{2}^{\prime}-2 y_{1}+3 y_{2}=0
\end{aligned} \quad \text { with } \quad y_{1}(0)=y_{2}(0)=0
$$

(Use this Page to continue problem 8)
9) (12 points) Solve the following initial-value problem using Laplace transform.

$$
y^{\prime \prime}-6 y^{\prime}-7 y=\left\{\begin{array}{lll}
0 & t<1 \\
56 & t \geq 1
\end{array} \quad \text { with } \quad \begin{array}{l}
y(0)=0 \\
y^{\prime}(0)=0
\end{array}\right.
$$

(Use this Page to continue problem 9)
10) (18 points) Consider the differential equation $\left(x^{2}-x\right) y^{\prime \prime}+(3 x-1) y^{\prime}+y=0$.
a) Show that $x_{0}=0$ is a regular singular point.
b) Use Frobenius theorem to find two linearly independent solutions $y_{1}(x)$ and $y_{2}(x)$.
c) Find a general solution for the given differential equation.

