Notre Dame University
 Department of Mathematics and Statistics MAT 339 (Numerical Analysis) Exam 2 Fall 2011
 Duration: $\mathbf{5 0}$ minutes

1)($\mathbf{2 5 \%}$) The following table for $f(x)$ is given:

x	1	1.1	1.2	1.3	1.4
$f(x)$	1.548	1.67	1.81	1.97	2.15

Use all data values to approximate the value of c for which $f(c)=1.75$.
$\mathbf{2)} \mathbf{(2 5 \%}$) The backward-Euler formula is known to be a $O(h)$ approximation for $f^{\prime}(x)$, and we have

$$
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h}+\frac{h}{2} f^{\prime \prime}(x)-\frac{h^{2}}{6} f^{\prime \prime \prime}(x)+\frac{h^{3}}{24} f^{(4)}(x)-\ldots
$$

Use Richardson's Extrapolation to derive a $O\left(h^{3}\right)$ approximation formula for $f^{\prime}(x)$.
$\mathbf{3})(\mathbf{2 5 \%})$ The well-know Simpson's rule with error term is

$$
\int_{a}^{b} f(x) d x=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{5}}{90} f^{(4)}(\mu) \ldots \ldots(*)
$$

where $x_{0}=a, x_{1}=a+h, x_{2}=b$, and $a<\mu<b$.
a) Use $(*)$ to derive the composite Simpson's rule with error term.
b) Use (a) to evaluate $J=\int_{0}^{1} \frac{d x}{1+x^{2}}$ for $N=4$, and compare it with the exact value of J.
4)($\mathbf{2 5} \boldsymbol{2} \boldsymbol{)}$) Recall that the degree of precision of a quadrature formula is the largest positive integer
n such that the formula is exact for x^{k}, for each $k=0,1,2, \ldots, n$.
a) Derive a quadrature formula of the form

$$
\begin{equation*}
\int_{-2}^{2}|x| f(x) d x \approx A f(-1)+B f(0)+C f(1) . \tag{**}
\end{equation*}
$$

\qquad
that is exact for polynomials of degree ≤ 2.
b) What is the degree of precision of $\left({ }^{*}\right)$?

