Notre Dame University Department of Mathematics and Statistics MAT 339 (Numerical Analysis) Exam 2 Fall 2011 Duration: 50 minutes

1)(25%) The following table for f(x) is given:

Use all data values to approximate the value of c for which f(c) = 1.75.

2)(25%) The backward-Euler formula is known to be a O(h) approximation for f'(x), and we have

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2} f''(x) - \frac{h^2}{6} f'''(x) + \frac{h^3}{24} f^{(4)}(x) - \dots$$

Use Richardson's Extrapolation to derive a $O(h^3)$ approximation formula for f'(x).

3)(25%) The well-know Simpson's rule with error term is

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x_{0}) + 4f(x_{1}) + f(x_{2})] - \frac{h^{5}}{90} f^{(4)}(\mu) \dots (*)$$

where $x_0 = a$, $x_1 = a + h$, $x_2 = b$, and $a < \mu < b$.

- a) Use (*) to derive the composite Simpson's rule with error term.
- **b**) Use (a) to evaluate $J = \int_0^1 \frac{dx}{1+x^2}$ for N = 4, and compare it with the exact value of J.

(25%) Recall that the degree of precision of a quadrature formula is the largest positive integer

n such that the formula is exact for x^k , for each k = 0, 1, 2, ..., n.

a) Derive a quadrature formula of the form

$$\int_{-2}^{2} |x| f(x) dx \approx Af(-1) + Bf(0) + Cf(1)....(**)$$

that is exact for polynomials of degree ≤ 2 .

b) What is the degree of precision of (*)?