Name:

Notre Dame University MAT 339 (Numerical Analysis) Exam #1 Fall 2011 50 minutes

- 1)(25%) a) Prove that the equation e^x = 3x has a unique simple root r in the interval [0,1].
 b) Apply the bisection method to find r₀, r₁, and r₂; the first three approximations of r. Give your answers to the nearest 10⁻³.
 - c) Let $e_n = |r_n r|$ denote the error at the n^{th} step. Find an upper bound for e_n .
 - d) How many iterations are needed to ensure accuracy to within 10^{-6} of the n^{th} approximation r_n .

2)(25%) On many supercomputers the ratio $\frac{a}{b}$ is computed as $a \cdot \frac{1}{b}$ and $\frac{1}{b}$ is computed by application of Newton's method to the function $f(x) = b - \frac{1}{x}$.

- b) Let $e_n = r_n r$, where *r* is the root of f(x) = 0. Prove, in two different ways, that $\lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^2} \right| = |b|.$
- c) Find $\frac{1}{7}$ to three decimals by computing the first three iterates starting with $r_0 = 0.1$.

3)(25%) a) State the Fixed Point Theorem

(b) Verify the four conditions in the Fixed Point Theorem applied to the function $g(x) = \frac{e^{\frac{x}{2}}}{2}$, $0 \le x \le 1$, to conclude that the iteration $r_{n+1} = \frac{e^{\frac{r_n}{2}}}{2}$ converges to the unique root *r* of the equation $e^{x/2} - 2x = 0$ for any choice of r_0 in the interval [0,1].

4)(25%)(a) Write down the Lagrange Interpolating formula with error term that uses data (x₀, f(x₀)), (x₁, f(x₁)), ..., (x_N, f(x_N)) to approximate f(x) for an arbitrary x in [a, b]. (b) For N≥1, prove that ∑_{j=0}^N Lj(x) = 1 and ∑_{j=0}^N x_jL_j(x) = x.

(c) What can be said if f(x) is itself a polynomial of degree $\leq N$?