Notre Dame University MAT 339 (Numerical Analysis) Exam \#1 Fall 201150 minutes

1)($\mathbf{2 5 \%}$) a) Prove that the equation $e^{x}=3 x$ has a unique simple root r in the interval $[0,1]$.
b) Apply the bisection method to find r_{0}, r_{1}, and r_{2}; the first three approximations of r. Give your answers to the nearest 10^{-3}.
c) Let $e_{n}=\left|r_{n}-r\right|$ denote the error at the $n^{\text {th }}$ step. Find an upper bound for e_{n}.
d) How many iterations are needed to ensure accuracy to within 10^{-6} of the $n^{\text {th }}$ approximation r_{n}.
$\mathbf{2) (2 5 \%)}$) On many supercomputers the ratio $\frac{a}{b}$ is computed as $a \cdot \frac{1}{b}$ and $\frac{1}{b}$ is computed by application of Newton's method to the function $f(x)=b-\frac{1}{x}$.
a) Verify that Newton's formula yields $r_{n+1}=r_{n}\left(2-b r_{n}\right) \ldots \ldots \ldots . .(*)$ when applied to f. Note that no division is involved in (*).
b) Let $e_{n}=r_{n}-r$, where r is the root of $f(x)=0$. Prove, in two different ways, that $\lim _{n \rightarrow \infty}\left|\frac{e_{n+1}}{e_{n}^{2}}\right|=|b|$.
c) Find $\frac{1}{7}$ to three decimals by computing the first three iterates starting with $r_{0}=0.1$.
3)(25\%) a) State the Fixed Point Theorem
(b) Verify the four conditions in the Fixed Point Theorem applied to the function $g(x)=\frac{e^{x / 2}}{2}, 0 \leq x \leq 1$, to conclude that the iteration $r_{n+1}=\frac{e^{n / 2}}{2}$ converges to the unique root r of the equation $e^{x / 2}-2 x=0$ for any choice of r_{0} in the interval $[0,1]$.
4)(25\%)(a) Write down the Lagrange Interpolating formula with error term that uses data $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{N}, f\left(x_{N}\right)\right)$ to approximate $f(x)$ for an arbitrary x in $[a, b]$.
(b) For $N \geq 1$, prove that $\sum_{j=0}^{N} L j(x)=1$ and $\sum_{j=0}^{N} x_{j} L_{j}(x)=x$.
(c) What can be said if $f(x)$ is itself a polynomial of degree $\leq N$?

