Math 201 - Exam 2 (Fall 10)

T. Tlas

- Please answer question 4 on the same sheet of paper on which it is written. Questions 2 and 3 have an extra sheet and question 1 has two extra sheets for you to write your answer on them. Any part of your answer written on the wrong page will not be graded.
- When finished leave your work on your desk for it to be collected by the proctors.
- There are 4 problems in total. Some questions have several parts to them. Make sure that you attempt them all.
- This is a closed book exam and no calculators are allowed.

Name :

ID \# :

Section :

$Q 1$	
$Q 2$	
$Q 3$	
$Q 4$	
TOTAL	

Problem 1 Consider the function of two independent variables

$$
f(x, y)=\left(x^{2}+y^{2}\right)^{2}-2 x y
$$

i- (10 points) What is the domain of the function? Is it bounded? Open? Closed? Give brief justifications to your answers.
ii- (10 points) Sketch the level curve of this function that passes through $(0,0)$.
iii- (10 points) Find all the critical points of this function.
iv- (10 points) Find the plane tangent to the graph of this function for $(x, y)=(1,1)$.

Hint: You might find polar coordinates useful in part (ii).

ADDITIONAL SHEET FOR PROBLEM 1 ANSWER

ADDITIONAL SHEET FOR PROBLEM 1 ANSWER

Problem 2 (10 points each) Investigate which of the functions below possesses a limit as $(x, y) \rightarrow(0,0)$. If the function has a limit find it, if not prove that it doesn't exist.
i-

$$
f(x, y)=\frac{(x y)^{2}+(x y)^{4}}{x^{2}+y^{2}}+1
$$

ii-

$$
g(x, y)=\frac{x y}{y-x^{2}-x^{3}}
$$

iii-

$$
h(x, y)=\frac{x y}{y-x-x^{3}}
$$

ADDITIONAL SHEET FOR PROBLEM 2 ANSWER

Problem 3

(20 points) Which point(s) on the graph of the function $f(x, y)=x y+2$ is nearest to the origin? In other words find the point(s) on the graph of this function whose distance to the origin is minimum.

Hint: Distance is minimized if and only if the square of the distance is minimized.

ADDITIONAL SHEET FOR PROBLEM 3 ANSWER

Problem 4

(10 points) Assume $f(x, y)$ is a function whose range is $[0, \infty]$, and that for every c, the level curve corresponding to c is a square centered at $(0,0)$ whose sides are parallel to the axes and have length equal to c. Find all the points where this function takes its maximum and minimum values on the circle $x^{2}+y^{2}=1$, as well as the actual values of the maximum and the minimum on this circle.

