m Virtual Functions land Polymorphism

Virtual Function and Polymorphism allow the design
and implementation of systems that are easily
extensible...

Programs written to generically process objects of all
existing classesin ahierarchy...

This can be achieved by taking the advantage of the
“pointer to derived class’ compatibility with a“pointer
toitsbaseclass’...
<Pointer-to-base-class> = <Pointer-to-derived-class>
<Pointer-to-base-class> = & <Object-of-derived-class>

As seen earlier, apointer to the base-class can point to
any object of its derived classes without the need of
explicit casting. ..

The same rule applies for abase-classreferenceto a
derived object...

m Virtual Functions ?nd Polymorphism

Lets consider the following scenario...

#i ncl ude <iostream h>

class pet {
public:

voi d speak() {cout << "can't speak \n";}
class dog : public pet {
public:

voi d speak() { cout << "woofffffl \n"; }
class cat : public pet {
public:

voi d speak() { cout << "neawwww! \n"; }
class bird : public pet {
public:

voi d speak() { cout << "squeekkk! \n"; }

void main() {
dog spi ke;
cat tom
bird tweety;
pet *cage= & om;

spi ke. speak();
tweety. speak();
tom speak();

cage- >speak() ;
static_cast <bi rd*>(cage) - >speak() ; i

m Virtual Functions gnd Polymorphism

What about this scenario 772...

void main() {
pet *cage[3];

cage[0] = new dog;
cage[1] = new cat;
cage[2] = new bird;

cage[1] - >speak() ; w
static_cast <bi rd*>(cage[1]) - >speak() ; w

m Virtual Functions End Polymorphism

Virtual Functions

#include <iostream h>
class pet {

public:
virtual wes void speak() {cout << "can't speak
\n";}
IH
class dog : public pet {
public:

voi d speak() { cout << "woofffff! \n"; }
class cat : public pet {

public:

voi d speak() { cout << "neawwww! \n"; }
class bird : public pet {

public:

voi d speak() { cout << "squeekkk! \n"; }

I

voi d saylt(pet &Rf, pet *pPr) {
pRf. speak(); /1 Dynamic binding.uwe
pPr->speak(); /1 Dynamic binding.uwa

m Virtual Functions gnd Polymorphism

void main() {
bird tweety;
pet *cage[3], &pRef_1 = tweety;

cage[0] = new dog;

cage[1] = new cat;

cage[2] = new bird;

cage[2] - >speak(); /1 Dynamic binding.qa
cage[0] - >speak();

cage[1] - >speak() ;

pRef _1. speak(); /1 Dynamic binding.sw
tweety. speak(); /1 Static binding.ow
pet &pRef_2 = *cage[1];

pRef _2. speak(); /1 Dynamic binding.mwy

saylt(*cage[0], cage[2]);

¢ By declaring function speak as virtual, and by using:
» abase-class pointer that points to a derived-class
object...
» abase-classreference that references a derived
class object...
the program will chose the correct derived class speak
dynamically at run-time... Dynamic binding...

o When avirtua function is called by the object name
using the “dot-operator”... the function caled isthe one
defined for (or inherited by) the class of that particular
object... Static binding...

m Virtual Functions snd Polymorphism

More realistic scenario...

#include <iostream h>
class Pol ygon {

public:
void setPoly (int a, int b) {
width = a;
hei ght = b;

virtual wws int area() {return 0;}

protected:
int wdth, height;
}
class Rectangle: public Polygon {
public:

int area () {return (width * height);}

class Triangle: public Polygon {
public:
int area() {return (width * height / 2);}

void main () {
Rectangl e rect;
Pol ygon *pol yPtr[2], &polyRef = rect

pol yPtr[0] = new Rectangl e;
pol yPtr[1] = new Triangl e;

pol yPtr[0] - >set Pol y(4,5);

pol yPtr[1] - >set Pol y(2, 50);

pol yRef . set Pol y(1, 30);

cout << pol yPtr[0]->area()wms << endl;
cout << polyPtr[1]->area() << endl;
cout << pol yRef.area()wus << endl;

m Virtual Functions fnd Polymorphism

Abstract and Concr ete Classes
o Abstract classes: - -
> Sole purpose isto TwoDimensional Shape
provide abase class

for other classes...
Too generic to define real objects...

Circle Square Triangle

» No objects of an abstract base class can be
instantiated... Syntax error...
» Can have pointers and references...

o Concrete classes:
» Classesthat can instantiate objects...
» Provide specifics to make real objects...
Square, Circle, etc...

e A classis made abstract by declaring one or more of its
virtual function to be “pure”...
A pure virtual function isone with aninitializer of =0in
its declarations...

class Pol ygon {

public:

void setPoly (int a, int b) {
wdth = a;
hei ght = b;

virtual int area() =0;
virtual void print() const; wus
prot ect ed:
int width, height;
}

m Virtual Functions snd Polymorphism

#incl ude <i ostream h>
class Polygon {

public:
void setPoly (int a, int b) {
width = a;
hei ght = b;

virtual int area() =0;
virtual void print()=0;
protected:
int width, height;
b
class Rectangle: public Polygon {
public:
int area () {return (width * height);}
void print() {
cout << width << endl;
cout << height << endl;
}
b
class Triangle : public Polygonuwu {
public:
int area() {return (width * height / 2);}
void main () {

Rectangl e rect;
Triangle trgl; wum

:Syntax Error...

m Virtual Functions 9and Polymorphism

Polymor phism

o From the Greek:
Poly =2 Many
Morph = Shape

¢ In OOP:

» Ability for objects of different classes (related by

inheritance) to respond differently to the same
function call...

o Polymorphism isimplemented viavirtual functions...
» When arequest is made trough a base class
pointer (or reference) to use avirtual function,
C++ chooses the correct overridden function in the
appropriate derived class associated with the
object...

o Needless to say that non-virtual function behave in the
same manner discussed in the inheritance chapter...

» If non-virtual member function defined in
multiple classes and called from base-class pointer
then the base-class version is used. ..

> If called from derived-class pointer then derived-
classversionisused...

» Non-polymorphic behavior...

m Virtual Functions]gnd Polymorphism

#i ncl ude <iostream h>

class Pol ygon {

public:
void setPoly (int a, int b) {
width = a;
hei ght = b;

virtual int area() { return 0;}
void print() const {
cout << "Wdth:" << width << " - "
<< "Height:" << height << endl;

protected:
int width, height;

class Rectangle: public Polygon {
public:
{return (width * height);}

class Triangle: public Polygon {
public:
{return (width * height / 2);}
void print() const {
cout << "Base:" << width << " - "
<< "Height:" << height << endl;

m Virtual Functions 1a]nd Polymorphism

void main() {
Rectangl e rect;
Triangle trgl;
Pol ygon *pol yPtr,
&pol yRef R = rect,
&pol yRef T = trgl;

rect.set Pol y(10, 2);
trgl.setPol y(30,3);

rect.print();
trgl.print();
cout << rect.EICEI®] << endl;
cout << trgl.EEERN << endl;

polyPtr = &trgl;
pol yPtr->print();
cout << pol yPtr->EIEEP] << endl ;

pol yPtr = ▭
pol yPtr->print();
cout << pol yPt r- >ETICEI@] << endl ;

pol yRef T. print () ;
cout << pol yRef T. EIIEEI®] << endl ;

pol yRef R print();
cout << pol yRef R EIICEI®] << endl ;

P

m Virtual Functions]f;nd Polymorphism

Case Study: A Payroll system using Polymor phism
* Perform different payroll calculations for different
types of employees (base class Employee):
> Boss - fixed weekly salary
» CommissionWorker - flat base salary + commission
» PieceWorker - paid according to items produced
» HourlyWorker - hourly wage + overtime

Employee
firstName
/\/ lastName
getFirstName() -

Boss getLasiName() PleceWo_rker
WeeklySalary earnings() ggﬁiﬁf Piece
setWeeklySalary() | | Print()
earnings() 7 W setWage()

AT setQuantity()
print() earnings()
print()
CommissionWor ker
salary
commission HourlyWorker
quantity wage
setSalary() hours
setCommission() setWage()
setQuatity() setHours()
earnings() earnings()

print() print()

m Virtual Functions 1aand Polymorphism

Virtual destructor
« Recall

#i ncl ude <i ostream h>

class A {
public:
A(int x =0) {
val A = x;
cout << "Constructor: val A="
<< val A <<endl ;
}

~A() {
cout << "Destructor: val A= "
<< val A << endl ;

private:
int val A
h

void main() {
A *aPtr, aQbj(5);
aPtr = new Al 2];
delete [] aPtr;

} ey

« An object allocated using the new operator must be
explicitly deallocated using the delete operator... It is
at the deletion time that the destructorsis called...

m Virtual Functions]f:nd Polymorphism

#i ncl ude <iostream h>

class basA {
public:
basA (int a) { x = a; }

virtual wes ~basA() {
cout << "Basedestructor..x = " << x << endl;

protected:
int x;
class drvA: public basA {
public:
drvA(int a, int b) : basA(a) {y = b;}
int getA() {return y;}
void setA(int a) { y = a;}

~drvA() {
cout <<"Derived destructor...y = " << y <<endl ;

private:
intvy;

void main() {
basA *basPtr;
drvA *drvPtr;

drvPtr=new dr vA(10, 20);
delete drvPtr;

drvPtr=new dr vA(100, 200);
basPtr = drvPtr;
del ete basPtr; wwe

m Virtual Functions 1asnd Polymorphism

o Problem:

» If abase-class pointer to aderived object is
deleted, the base-class destructor will act on the
object...

o Solution:

» Declare avirtual base-class destructor to ensure

that the appropriate destructor will be called

m Virtual Functions]a;nd Polymorphism

Case Study: Inheriting Interface and Implementation

Shape

virtual EIEES)

virtual elnES)] .

virtual printShapeName() Point

virtua print() X
y
setPoint()
getX()
getY ()
printShapeName()

Circle RUII®)

radi us

setRadius()

getRadius()

area()

printShapeName()

0] Cylinder
hei ght
setheight()
getheight()
ar ea()|

olume()
printShapeName()

print()

m Virtual Functions la7nd Polymorphism

Polymorphism, virtual Functions and Dynamic Binding
“Under the Hood”

The fundamental idea behind polymorphism is that the
compiler does not know which function to call
compile-time...the appropriate function will be
selected run-time....

A common implementation is the following...

o An object containing virtual member functions holds
asitsfirst data member a hidden field, pointing to an
array of pointers containing the addresses of the
virtual member functions ...

point pri nt ShapeName
print()

=

circle

o The hidden data member isusually called the
vpointer...

e The array of virtual member function addressesis
called the vtable...

e Final Note:
» Polymorphism requires some overhead...
» Polymorphismis not used in STL (Standard
Template Library) to optimize performance...

