
Inheritance
1

Circle::Circle(double r, int a, int b) : Point(a,b) {
 ...
 ...
};

Using Constructors and Destructors in Derived Classes
• Knowing that a derived-class inherits its base-class’

members… When an object of a derived class is
instantiated, the base-class’ constructor must be
called…

• A base-class initializer can be provided in the derived
class constructor to call the base-class constructor
explicitly…

Otherwise base class’s default constructor called
implicitly…

• Base-class constructor and base-class assignment
operators are not inherited by derived-class…
however derived-class can call base-class constructor
and assignment operator…

Inheritance
2

 class ABase {
 public:
 ABase(int a) { x = a; }
 void setX(int a) { x = a; }

 void operator =(int a) { x = a; }

 void operator -=(int i) {x -= i;}
 void operator +=(int i) {x += i;}
 private:
 int x;
};

class ADerived : public ABase {
 public:
 ADerived(int a, int b) : ABase(b){y = a;}

 void operator +=(int i) {y += i;}

 void operator =(ABase &aB) {
 aB = y; // Called not inherited…[JAN1]
 }
 private:
 int y;
};

void main() {
 ABase basObj(10);
 ADerived drvObj(20,30);

 basObj = 50;
 drvObj = basObj;

 basObj +=10;
 basObj -=2;
 drvObj +=10;

 drvObj -=2;
 drvObj.setX(10);
 drvObj = 100;
}

Syntax Error… base-class
assignment operators are not
inherited by derived-class

Inheritance
3

Implicit Derived-Class Object to Base-Class Object Conversion
• Even though a derived-class object iiss__aa base-class

object, the derived-class type and the base-class type
are different…

• Derived-class object can be treated as a base-class
object…
! Derived class has members corresponding to all of

the base class’s members… Thus, base-class can
be assigned a derived-class…

! Needless to say, that derived-class may have more
members than the base-class object…

• Base-class object cannot be treated as a derived-class

object…
! Would leave additional derived class members

undefined…Thus derived-class cannot be assigned
a base-class…

! Obviously, assignment operator can be overloaded
to allow such an assignment…

Inheritance
4

 z

#include <iostream.h>

class ABase {
 public:
 ABase(int a) { x = a; }
 int getX() const {return x;}

 protected:
 int x;
};

class ADerived : public ABase {
 public:
 ADerived(int a, int b) : ABase(b){
 y = a;
 }

 void operator =(ABase &aB) {
 y = aB.getX();
 }

private:
 int y;
};

void main() {
 ABase basObj(10);
 ADerived drvObj(20,30);

 drvObj = basObj;

 basObj = drvObj;
}

Syntax Error, without
the assignment
operator overloaded…

Inheritance
5

• Mixing base and derived class pointers and objects
! Referring to a base-class object with a base-class

pointer ## allowed…

! Referring to a derived-class object with a derived-
class pointer ## allowed…
! Referring to a derived-class object with a base-

class pointer
allowed for base-class members… The
derived-class object is an object of its base-class as
well…
Syntax error for derived class members…

! Referring to a base-class object with a derived-
class pointer ## Syntax error…The derived-class
pointer must first be cast to a base-class pointer…

Inheritance
6

 #include <iostream.h>

class ABase {
public:
 ABase(int a) { x = a; }
 void printX() const {cout << x <<endl;}

protected:
 int x;
};

class ADerived : public ABase {
public:
 ADerived(int a, int b):ABase(b){y = a;}
 void printY() const {cout << y <<endl;}

private:
 int y;
};

void main() {
 ABase *basPtr, basObj(10);
 ADerived *drvPtr, drvObj(20,30);

 basPtr = &basObj;
 basPtr ->printX();

 drvPtr = &drvObj;
 drvPtr->printY();
 drvPtr->printX();

 basPtr = &drvObj;
 basPtr->printX();
 basPtr->printY();

 drvPtr = &basObj;
 drvPtr = static_cast<ADerived *>(&basObj);
 drvPtr->printX();
 drvPtr->printY();
}

Syntax Error…

Inheritance
7

class A {
 public :
 void f1(){
 x=x;
 }
 protected:
 int x;
};

class B:public A {
 protected:
 int y;
 public :
 void f1(){
 y=y;
 }
};

class C:public A {
 protected:
 int z;
 public :
 void f1(){
 z=z;
 }
};

class ABC:public B, public C {
 protected:
 int xyz;
};

void main () {
 ABC abc;

 abc.f1();
}

 Problems with Multiple Inheritance

 ??

