29-07-2004.

250 (. (.

Notre Dame University

Faculty of Natural and Applied Sciences
Department of Sciences

PHS 212: Electricity and Magnetism

Test#1 Summer 2004, Duration: <u>60 minutes</u> Instructor: M. El Tahchi, PhD

Student Name	Date
ID#	OPEN BOOK

Problem I (35 pts)

A thick, nonconducting, spherical shell, of centre O, of inner radius a and outer radius b, carries the charge density ρ given by: $\rho = \frac{k}{r}$, where k is a constant and r in the distance from O.

A charge Q is placed at the centre Q of the shell. What should be the value of the constant k that gives a uniform electric field (of constant modulus) in the region a < r < b.

Problem II (30pts)

A thick spherical shell of inner radius R_2 and outer radius R'_2 surrounds (concentric) a conducting sphere S_1 of radius R_1 . The sphere S_1 is under a given potential V_1 . Find the charge q of S_1 function of V_1 , R_1 , R_2 and R'_2 .

Problem III (35pts)

Consider a "parallel-plate capacitor" having two square plates of side a separated by a distance d. These plates are not perfectly parallel; they have a very small angle θ between them (see Figure 1). Show that the capacitance of the system is given by:

$$C = \frac{\varepsilon_0 a^2}{d} \left(1 - \frac{a\theta}{2d} \right)$$

given that: $\lim_{x\to 0} (1+x) = x - \frac{1}{2}x^2 + ...$

