## PART 1:

| 1) | A block weighing in 15.0N which can slide without friction on an incline at an angle $\vartheta$ =45.0°, is connected to the top of the incline by a massless spring of unstretched length 0.50 m and spring constant 94.5N/m. If the block is pulled slightly down the incline and released , the period of the resulting oscillations is:  a) 0.67s b) 0.68s c) 0.80s d) 1.00s e) None of the above my answer is |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2) | A simple, harmonic oscillator at the point x =0 generates a wave on a rope. The oscillator operates at a frequency of 40.0Hz and with an amplitude of 3.00cm. The mass of the rope per unit length is 50.0g/m and the tension in the rope is 5.00 N. The maximal transverse acceleration of the point on the rope is:  a) 189m/s² b) -189m/s² c) 1.89m/s² d) 1890m/s² e) None of the above my answer is            |  |  |  |  |
| 3) | A string along which waves can travel is 2.70m long and has a mass of 270g. The tension in the string is 3.60N. The frequency of traveling waves of amplitude 7.00mm is 200Hz. The corresponding average kinetic energy for the latter frequency is:  a) 2352mJ  b) 23.213mJ  c) 11,607mJ  d) 1176mJ  e) None of the above my answer is                                                                            |  |  |  |  |
|    | The amplitude of two sinusoidal string waves are 2.0 cm and 3.0 cm and they have the phase assumed as $\frac{\pi}{\epsilon}$ and $\frac{2\pi}{3}$ rad, respectively. They have the same frequency and they are traveling in the same                                                                                                                                                                               |  |  |  |  |
|    | direction and medium. When they are combined, the amplitude of the resultant wave is:                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|    | (a) 36 cm                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|    | b) 5.0cm                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | c) 13 cm                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | d) 10 cm                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    | e) None of the above my answer is                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

5) A platinum wire has a linear density of  $85 \times 10^4 \text{kg/m}$  and a length L=0.450m.One end of the wire is

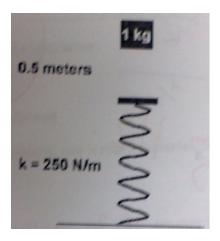
|                | _                                  | while a 420g mass is attached to the other end such that the wire hangs                                                                                                   |
|----------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -              |                                    | n. If a vibrating tuning fork of the right frequency is held next to the wire, the wire II(in resonance). What must be the frequency of the tuning for that to happen?    |
| a)             | 77.32H                             | Z                                                                                                                                                                         |
| b)             | 154.64                             | Hz                                                                                                                                                                        |
| c)             | Answe                              | rs a) and b)                                                                                                                                                              |
| d)             | None o                             | of the above my answer is                                                                                                                                                 |
|                | dulum e                            | w the height of the tower, but darkness obscures the ceiling. He knows however, extends from the ceiling almost to the floor and that the period is 12.0 seconds.         |
| a)             | 35m                                |                                                                                                                                                                           |
| b)             | 37m                                |                                                                                                                                                                           |
| (c)            | 35.8m                              |                                                                                                                                                                           |
| d)             | None c                             | of the above my answer is                                                                                                                                                 |
| a)<br>b)<br>c) | 5.0cm<br>10.0m<br>20.0cm<br>10.0cm |                                                                                                                                                                           |
| each o         | ther the                           | al waves, moving in the same direction along a stretched string interfere with combined wave has an amplitude of the two combining waves the phase ween the two waves is: |
|                | a)                                 | 0.732rad                                                                                                                                                                  |
|                | b)                                 | -0.732 rad                                                                                                                                                                |
|                | <u>c)</u>                          | 41.4°                                                                                                                                                                     |
|                | <b>d</b> )                         | 0.23λ                                                                                                                                                                     |
|                | e)                                 | None of the above, my answer is                                                                                                                                           |
| 8)The b        | alance w                           | wheel of a watch oscillates with an angular amplitude of $\boldsymbol{\pi}$ rad and a period of                                                                           |
| 1.00s.tl       | he angul                           | ar speed at a displacement $\frac{\pi}{6}$ rad is:                                                                                                                        |
|                | a)                                 | 19.463rad/s                                                                                                                                                               |
|                | b)                                 | 3290rad/s                                                                                                                                                                 |

c) 19.463rad/s

d) None of the above my answer is \_\_\_\_\_

| 8) A particle has a displacement $x=0.5$ $\cos\left(3t+\frac{\pi}{4}\right)$ wh | here $x$ is in meters and $t$ is in seconds. At |
|---------------------------------------------------------------------------------|-------------------------------------------------|
| what time does the maximum velocity first occur?                                |                                                 |
| a                                                                               | 1.31s                                           |
| b)                                                                              | Os                                              |
| c)                                                                              | 13.1s                                           |
| d)                                                                              | 0.26s                                           |
| e)                                                                              | None of                                         |
| the above my answer is                                                          |                                                 |
|                                                                                 |                                                 |

### Part 2


#### Problem 1

Adjacent antinodes of a standing wave on a string with fixed ends are 15.0cm apart. A particle on the string (or a segment of the string) at an antinode oscillates in a simple harmonic motion with an amplitude of 0.85cm and period of 0.0750s

- a) Find the wavelength and the period
- b) Find the displacement of an arbitrary point on the string as a function of position and time
- c) Find the positions of the first, second and third antinodes and the position of the first second and third nodes
- d) Find the displacements of segments at point 3.0cm to the right of the first antinode and the right of the second antinode

### Problem 2

Suppose a 1-kg block is dropped from a height of 0.5 meter above an uncompressed spring. The spring has an elastic constant of 250N/m and negligible mass. The block strikes the end of the spring and sticks to it. (Use  $g=10m/sec^2$ )



- a) How far will the spring be compressed when the speed of the block is maximum? Deduce the equilibrium position of the spring as shown in the figure.
- b) Determine the spring's maximum compression x(This will occur when all of the block's energy has been converted into elastic potential energy, or use conservation)
- c) As the spring oscillates in SHM, what is its amplitude?
- d) What is the frequency of this spring/block system?