PART I

1. The period of a pendulum is 5 s at a point where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. If the pendulum were on the moon, where the acceleration due to gravity is onesixth that on earth, its period is:
a. 12.2 s
b. 30 s
c. $5 / 6 \mathrm{~s}$
d. 5 s
(e.) None of the above, my answer is

150 s
2. A level platform vibrates horizontally with simple harmonic motion with a period of 0.8 s . A box on the platform starts to slide when the amplitude of vibration reaches 10 cm . The coefficient of static friction between the body

$$
\begin{aligned}
& \omega=\frac{2 \pi}{T}=7.85 \text { rad. } k . \\
& 2 x_{m}=6.162 .
\end{aligned} \quad=\frac{0^{24-}}{9.8}
$$

$T=\sqrt{\frac{l_{0}}{g_{g}}} T=$
$T^{2}=\frac{l}{g} \times \frac{1}{6}$
$\sqrt{\frac{21}{39}}$
and the platform is:
a. 0.52
$a=\omega^{2} x_{m}=6.162$
b, 0.63

a

c. 0.78
d. 0.45
e. None of the above, my answer is

$\underset{\pi N}{\longrightarrow} \rightarrow \operatorname{Hr}^{\infty} \lg =\pi a$
3. A taut string for which $\mu=5.00 \times 10^{-2} \mathrm{~kg} / \mathrm{m}$ is under a tension of 80.0 N . How much power must be supplied to generate sinusoidal waves at a frequency of ? $D=1$ 60.0 Hz and an amplitude of 6.00 cm ? $\quad P=\frac{1}{2} \mu 2 \omega^{2} y^{2} m^{2}$

$$
a=\omega^{2} \times m
$$

a. 512 W
b. 256 W
c. 5210 W

d. 1024 W

$$
\psi=\frac{2 \pi}{\omega}
$$

$\omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.8}$

40
4. Two identical waves travel in opposite directions along a string with a speed of $20 \mathrm{~cm} / \mathrm{s}$. If the time interval between instants when the string is flat is 0.25 s , the wavelength of the waves is:
$25=\frac{1}{2} \quad \begin{aligned} & \text { a. } 5.0 \mathrm{~cm} \\ & \text { b. } 10.0 \mathrm{~m} \\ & \text { c. } 20.0 \mathrm{~cm} \\ & \text { d. } 10.0 \mathrm{~cm}\end{aligned}$

e. None of the above, my answer is \qquad
5. The amplitudes of two sinusoidal string waves are 3.0 cm and 4.0 cm , and they have the phase constants of 0 and $\pi / 2 \mathrm{rad}$, respectively. They have the same frequency and they are traveling in the same direction and medium. When they are combined, the amplitude of the resultant wave is:
a. 1.0 cm
b. 3.5 cm
($) ~ y^{\prime}=\sqrt{(3)^{2}+(4)^{2}}=5 \mathrm{~cm}$
c. 7.0 cm
(d. 5.0 cm
e. None of the above, my answer is \qquad
6. A particle has a displacement $x=0.4 \cos (3 t+\pi / 4)$, where x is in meters and t is in seconds. At what time after $t=0$ does the maximum velocity first occur?
a. $1.31 \mathrm{~s} \quad m a x v \Rightarrow \cos 3 t+\frac{\pi}{4}$
b. $\quad 3.1 \mathrm{~s}$
c. $\quad 13.1 \mathrm{~s}$
d. $\quad 0.26 \mathrm{~s}$
e. None of above, my answer is $\begin{aligned} 3 t+\frac{\pi}{4} & =1 \\ \Rightarrow t & =0.072 \mathrm{~s}\end{aligned}$
\qquad

$$
\Rightarrow^{4} t=0.072 \mathrm{~s}
$$

A mass spring system oscillates with an amplitude of 3.5 cm . If the spring constant is $250 \mathrm{~N} / \mathrm{m}$, the mechanical energy of the system is:
8. Two sinusoidal waves combining in a medium are described by the wave functions $y_{1}=(3 \mathrm{~cm}) \sin (\pi x+0.6 \mathrm{t})$ and $\mathrm{y}_{2}=(3 \mathrm{~cm}) \sin (\pi \mathrm{x}-0.6 \mathrm{t})$, where x is in cm

seconds. Antinode could occur at:

$$
\begin{aligned}
& \text { Rx }=\left(n+\frac{1}{2}\right)^{\pi} \\
& \frac{2 \pi x}{x} x=\left(n+\frac{1}{2}\right) \not x \\
& \Rightarrow
\end{aligned}
$$

b. $\quad 1.0 \mathrm{~cm}$
c. $\quad 2.0 \mathrm{~cm}$
d. $\quad 3.0 \mathrm{~cm}$
e. None of the above.

$$
\begin{gathered}
\Rightarrow \\
\pi x=n \pi / 2
\end{gathered}
$$

9. The position of a particle is given by $x=2.5 \cos \pi t$, where x is in meters and t is in seconds. The acceleration of the particle when $x=1.5 \mathrm{~m}$ is
a. $\quad 14.8 \mathrm{~m} / \mathrm{s}^{2}$
(b.) $-14.8 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 6.28 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad-6.28 \mathrm{~m} / \mathrm{s}^{2-}$
e. None of the above.

$$
a=-w^{2} X_{m}=(3.14)^{2}(1,5)
$$

10. Two identical waves, moving in the same direction along a stretched string, interfere with each other. The combined wave has an amplitude 1.5 times that of the common amplitude of the two combining waves. The phase difference between the two waves is:
a. $\quad 0.732 \mathrm{rad}$
(b.) $\pm 0.732 \mathrm{rad}$
c. $\pm 41.4^{\circ}$
d. $\pm 0.23 \lambda$
e. None of above, my answer is

$$
\begin{array}{r}
y_{m}=2 y_{m} \cos \frac{\phi}{2}=1.5 y \sim \\
y^{\prime}(x, t)=2 y_{m} \cos \frac{\phi}{2} \sin \left(k_{x}-\omega t\right) \\
1.5 y \sim \Rightarrow \frac{\cos \frac{\phi}{2}}{}=\frac{1.5}{2}=0.75 \\
\Rightarrow \frac{\theta}{2}
\end{array} \begin{array}{r}
\pm \cos ^{-1} 0.75 \\
\end{array} \quad \theta= \pm 1.45 \mathrm{mod} .
$$

PART II
Problem 1

A massless spring hangs from the ceiling. A small object is attached to its lower end. The object is initially held at rest in a position where the spring is unstretched and then released. It oscillates up and down, with its lowest position being 10 cm below the initial position.
a) What is the frequency of the oscillation?
b) What is the speed of the object when it is 8 cm below the initial position?
a). $x_{m}=\frac{10 \mathrm{~cm}}{2}=\frac{0.1 \mathrm{~m}}{2}$.
b) $v=\omega x_{m}$.

$$
\begin{aligned}
& w=2 \pi f . \\
& x_{m}=0.08 \mathrm{~cm}
\end{aligned}
$$

$$
\text { a) } a_{x x}=m a
$$

$$
f=\frac{u}{2 \pi}=9.9284
$$

$$
\begin{aligned}
& \text { b) } 0 \rightarrow \rightarrow 8 \mathrm{~cm} \\
& x=-3 \text { in } x(t)=5 \operatorname{con} \cos (1+1)=y=0.1585 \\
& \text { in ne }(7)=-16(0.05) \sin 48 \times 0.158) \\
& v=-0.56 \mathrm{~m} 5
\end{aligned}
$$

Problem 2

$$
v=36-1 s \quad f=601+t \quad \lambda=\frac{v}{f}=\frac{36}{60}
$$

A string with both ends held fixed is vibrating in its second-harmonic mode. The $k=\frac{2 \pi}{x}$
waves have a speed of $36 \mathrm{~m} / \mathrm{s}$ and a frequency of 60 Hz . The amplitude of the standing wave at an antinode is 0.6 cm .
a) Calculate the amplitude of the motion of points on the string a distance of
i) 30 cm ;
ii) 15 cm ; and
iii) 7.5 cm

$$
0.68
$$

from the left-hand end of the string.
b) At each of the points in part a), how much time does it take the string to go from its largest upward displacement to its largest downward displacement?
a) $v=36 \mathrm{~m} / \mathrm{s} \quad f=60 \mathrm{~Hz}$.

$$
\begin{aligned}
& \sigma^{\circ} y^{\prime}=y_{0}^{\prime}=y_{1}+y_{2}=2\left(y_{n}\right)^{\sin k} k \omega^{\omega} t+ \\
& =2 y \omega \sin k x
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } f=\frac{n v}{2 L}=\frac{2(36)}{2(0.3)}=1 \\
& \text { ii) } f=\frac{2(36)}{2(0.15)}=240 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=y_{m} \sin (k x-w t) \\
& y_{2}=y_{m} \sin (k x+w t)
\end{aligned}
$$

\qquad

