Notre Dame University-Louaize Faculty of Natural & Applied Sciences Department of Sciences

PHS 213 - Modern Physics Exam II - Fall 2006 Duration: 60 minutes (1h)

- 1. Calculate the wavelength at which a blackbody is brightest if its temperature is 5800 K. If you triple the temperature, what happens to the peak wavelength?
- 2. When illuminating Potassium with light of wavelength 400 nm, it is found that the stopping potential is 0.9 V, whereas it is equal to 1.9 V when 300-nm light is shone on the plate.

a) Find the value of Planck's constant and the stopping potential of Potassium ϕ

- b) What is the stopping potential if 500-nm light is used?
- 3. It is found that the energy of a photon scattered off an electron at 60 degrees is 1.6424 keV. Find the wavelength of the incident photon.
- a) Calculate the wavelength of the Balmer α photon (n=3 to n=2) from 26Fe²⁵⁺.

b) What is the wavelength associated with the electron at n=2? ?

5. Consider an electron placed in an infinite potential well of width 1nm.

- a) Calculate the wavelength of the photon emitted when the electron jumps from the 3rd excited state to the 2nd excited state.
- b) If the electron stays in the 1st excited state, what is the probability to find it in the middle 1/3 of the well, i.e. between $\frac{1}{3}nm \le x \le \frac{2}{3}nm$.

Good Luck!!

$$F_{N} = \frac{1}{x} E_{N} = -2^{2} E_{N}$$

$$F_{N} = \lambda$$

$$E_{N} = -2^{2} E_{N} \left(\frac{1}{m^{2}} - \frac{1}{m^{2}} \right)$$

$$F_{N} = \frac{1}{x} E_{N} = -2^{2} E_{N} \left(\frac{1}{m^{2}} - \frac{1}{m^{2}} \right)$$