Notre Dame University
Mechanical Engineering Department

MEN 330

 MECHANICAL VIBRATIONS
HW\#2 - Solution

Pb 2.5

$$
\mathrm{m}=\frac{9000}{9.8}
$$

Let $\omega_{\mathrm{n}}=7.5 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{~m}}} \\
& \mathrm{k}_{\mathrm{eq}}=\mathrm{m} \omega_{\mathrm{n}}^{2}=\left\lfloor\frac{9000}{9.8}\right\rfloor(7.5)^{2}=51658.2 \mathrm{~N} / \mathrm{m}=4 \mathrm{k}
\end{aligned}
$$

where k is the stiffness of the air spring.
Thus $\mathrm{k}=\frac{51658.2}{4}=12914.5 \mathrm{~N} / \mathrm{m}$
Pb 2.13
Let $x_{1}, x_{2}=$ displacement of pulleys 1 and 2
$x=2 x_{1}+2 x_{2}$

Let $P=$ tension in the rope.
For equilibrium of pulley 1: $2 P=k_{1} x_{1}$
For equilibrium of pulley 2: $2 P=k_{2} x_{2}$
Where
$\frac{1}{k_{1}}=\frac{1}{4 k}+\frac{1}{4 k}=\frac{1}{2 k}, \quad k_{1}=2 k$
And $k_{2}=k+k=2 k$
Combining Eqs (1) to (3)
$x=2 x_{1}+2 x_{2}=2\left(\frac{2 P}{k_{1}}\right)+2\left(\frac{2 P}{k_{2}}\right)=4 P\left(\frac{1}{2 k}+\frac{1}{2 k}\right)=\frac{4 P}{k}$
Let $k_{\text {eq }}=$ equivalent spring constant of the system:
Equation of motion of mass m: $m \ddot{x}+k_{e q} x=0$
$\therefore \omega_{n}=\sqrt{\frac{k_{e q}}{m}}=\sqrt{\frac{k}{4 m}}$

$$
b=2 l \sin \theta
$$

Neglect masses of links.
(a) $k_{e q}=k\left(\frac{4 l^{2}-b^{2}}{b^{2}}\right)=k\left(\frac{4 l^{2}-4 l^{2} \sin ^{2} \theta}{4 l^{2} \sin ^{2} \theta}\right)$

$$
\begin{aligned}
& =k\left(\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\right) \\
\omega_{n} & =\sqrt{\frac{k_{e q}}{m}}=\sqrt{\frac{k g \operatorname{cosec}^{2} \theta}{W}}
\end{aligned}
$$

(b) $\omega_{n}=\sqrt{\frac{k g}{\omega}}$ since $k_{e q}=k$.

Pb 2.33

Assume same area of cross section for all segments of the cable. Speed of blades $=\mathbf{3 0 0}$ $\mathrm{rpm}=5 \mathrm{~Hz}=31.416 \mathrm{rad} / \mathrm{sec}$.

$$
\begin{gather*}
\omega_{\mathrm{n}}^{2}=\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{~m}}=(2(31.416))^{2}=(62.832)^{2} \\
\mathrm{k}_{\mathrm{eq}}=\mathrm{m} \omega_{\mathrm{n}}^{2}=250(62.832)^{2}=98.6965\left(10^{4}\right) \mathrm{N} / \mathrm{m} \tag{1}\\
\mathrm{AD}=\sqrt{0.5^{2}+0.5^{2}}=0.7071 \mathrm{~m}, \mathrm{OD}=\sqrt{2^{2}+0.7071^{2}}=2.1213 \mathrm{~m}
\end{gather*}
$$

Stiffness of cable segments:

$$
\begin{gathered}
\mathrm{k}_{\mathrm{PO}}=\frac{\mathrm{AE}}{\ell_{\mathrm{PO}}}=\frac{\mathrm{A}(207)\left(10^{9}\right)}{1}=207\left(10^{9}\right) \mathrm{A} \mathrm{~N} / \mathrm{m} \\
\mathrm{~K}_{\mathrm{OD}}=\frac{\mathrm{AE}}{\ell_{\mathrm{OD}}}=\frac{\mathrm{A}(207)\left(10^{9}\right)}{2.1213}=97.5817\left(10^{9}\right) \mathrm{A} \mathrm{~N} / \mathrm{m}
\end{gathered}
$$

The total sttiffiness of the four inclined cables ($k_{i c}$) is given by:
$k_{i c}=4 k_{O D} \cos ^{2} \theta$
$=4(97.5817)\left(10^{9}\right) \mathrm{A} \cos ^{2} 19.4710^{\circ}=346.9581\left(10^{9}\right) \mathrm{A} \mathrm{N} / \mathrm{m}$

Equivalent stiffness of vertical and inclined cables is given by:

$\frac{1}{k_{\text {eq }}}=\frac{1}{k_{\text {PO }}}+\frac{1}{k_{\text {ic }}}$
i.e., $\quad k_{\text {eq }}=\frac{k_{\text {PO }} k_{\text {ic }}}{k_{\text {PO }}+k_{\text {ic }}}$
$=\frac{\left(207\left(10^{9}\right) \mathrm{A}\right)\left(346.9581\left(10^{9}\right) \mathrm{A}\right)}{\left(207\left(10^{9}\right) \mathrm{A}\right)+\left(346.9581\left(10^{9}\right) \mathrm{A}\right)}=129.6494\left(10^{9}\right) \mathrm{A} \mathrm{N} / \mathrm{m}$
Equating $\mathrm{k}_{\text {eq }}$ given by Eqs. (1) and (2), we obtain the area of cross section of cables as:

$$
A=\frac{98.6965\left(10^{4}\right)}{129.6494\left(10^{9}\right)}=7.6126\left(10^{-6}\right) \mathrm{m}^{2}
$$

Pb 2.46

Consider the springs connected to the pulleys (by rope) to be in series. Then:
$\frac{l}{k_{\text {eq }}}=\frac{1}{k}+\frac{1}{5 k}$
$\therefore k_{\text {eq }}=\frac{5}{6} k$
Let the displacement of mass m be x.
Then the extension of the rope (Spring Connected to the pulleys) $=2 x$.
From the free body diagram, the equation of motion m becomes:

$$
\begin{aligned}
& m \ddot{x}+2 k x+k_{\mathrm{eq}}=0 \\
& \therefore m \ddot{x}+\frac{11}{3} k x=0
\end{aligned}
$$

Pb 2.48
$\mathrm{T}=$ Kinetic energy $=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} J_{0} \dot{\theta}^{2}$
$\mathrm{U}=$ potential energy $=\frac{1}{2} k_{s}^{2}$
Where $\theta=\frac{x}{r}, x_{s}=$ extension of spring $=4 r \theta=4 x$
Hence,
$T=\frac{1}{2}\left(m+\frac{J_{0}}{r^{2}}\right) \dot{X}^{2} \quad ; \quad U=\frac{1}{2}(16 k) x^{2}$
Using the relation $\frac{d}{d t}(T+U)=0$, we obtain the equation of motion of the system as:
$\left(m+\frac{J_{0}}{r^{2}}\right) \ddot{x}+16 k x=0$

Pb 2.93

Assume that the bicycle and the boy fall as a rigid body by 5 cm at point A . Thus the mass ($\mathrm{m}_{\text {eq }}$) will be subjected to an initial downward displacement of 5 cm ($\mathrm{t}=$ 0 assumed at point A):

$$
\begin{gathered}
x_{0}=0.05 \mathrm{~m}, \dot{x}_{0}=0 \\
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{k}_{\mathrm{eq}}}{\mathrm{~m}_{\mathrm{eq}}}}=\sqrt{\frac{(50000)(9.81)}{800}}=24.7614 \mathrm{rad} / \mathrm{sec} \\
c_{\mathrm{e}}=2 \mathrm{~m} \omega_{\mathrm{n}}=2\left(\frac{800}{9.81}\right)(24.7614)=4038.5566 \mathrm{~N}-\mathrm{s} / \mathrm{m} \\
\zeta=\frac{c}{c_{c}}=\frac{1000.0}{4038.5566}=0.2476 \text { (underdamping) } \\
\omega_{\mathrm{d}}=\omega_{\mathrm{n}} \sqrt{1-\varsigma^{2}}=24.7614 \sqrt{1-0.2476^{2}}=23.9905 \mathrm{rad} / \mathrm{sec}
\end{gathered}
$$

Response of the system:

$$
x(t)=X e^{-s \omega_{\mathrm{a}} t} \sin \left(\omega_{d} t+\phi\right)
$$

where $X=\left\{x_{0}^{2}+\left(\frac{\dot{x}_{0}+\rho \omega_{n} x_{0}}{\omega_{d}}\right)^{2}\right\}^{\frac{1}{2}}$

$$
=\left\{(0.05)^{2}+\left(\frac{(0.2476)(24.7614)(0.05)}{23.9905}\right)^{2}\right\}^{\frac{1}{2}}=0.051607 \mathrm{~m}
$$

and $\phi=\tan ^{-1}\left(\frac{\dot{x}_{0} \omega_{\mathrm{d}}}{\dot{x}_{0}+\varsigma \omega_{\mathrm{n}} \mathrm{x}_{0}}\right)=\tan ^{-1}\left(\frac{0.05(23.9805)}{0.2476(24.7614)(0.05)}\right)=75.6645^{\circ}$
Thus the displacement of the boy (positive downward) in vertical direction is given by

$$
x(t)=0.051607 e^{-0.1309 t} \sin \left(23.9905 t+75.6845^{\circ}\right) m
$$

