Notre Dame University Mechanical Engineering Department

 MEN 330

 MEN 330 MECHANICAL VIBRATIONS
 HW\#4 - Solution

Pb 5.4

Equations of motion in terms of x and θ

$$
\begin{gathered}
m \ddot{x}+k_{1}\left(x-l_{1} \theta\right)+k_{2}\left(x+l_{2} \theta\right)=0 \\
J_{0} \ddot{\theta}-k_{1} l_{1}\left(x-l_{1} \theta\right)+k_{2} l_{2}\left(x+l_{2} \theta\right)=0
\end{gathered}
$$

For free vibrations, assume a solution

$$
\begin{aligned}
& x(t)=X \cos (\omega t+\emptyset) \\
& \theta(t)=\Theta \cos (\omega t+\phi)
\end{aligned}
$$

In matrix form,

$$
\left[\begin{array}{cc}
-m \omega^{2}+k_{1}+k_{2} & -\left(k_{1} l_{1}-k_{2} l_{2}\right) \\
-\left(k_{1} l_{1}-k_{2} k_{2}\right) & -J_{o} \omega^{2}+k_{1} l_{1}^{2}+k_{2} l_{2}^{2}
\end{array}\right]\left\{\begin{array}{l}
x \\
\theta
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Frequency equation is:

$$
\left|\begin{array}{cc}
-\omega^{2}+5000 & 100 \\
100 & -0.3 \omega^{2}+2030
\end{array}\right|=0
$$

$\Rightarrow 0.3 \omega^{4}-3530 \omega^{2}+10.14 \times 10^{6}=0$
$\omega^{2}=6785.3373, \quad 4981.3293$
$\Rightarrow \omega_{1}=70.5785 \mathrm{rad} / \mathrm{sec}$

$$
\omega_{2}=82.3732 \mathrm{rad} / \mathrm{sec}
$$

Mode shapes:

$$
\left(-1000 \omega_{1}^{2}+5 \times 10^{6}\right) X+0.1 \times 10^{6} \Theta=0
$$

Or

$$
\left.\frac{X}{\Theta}\right|_{\omega_{1}}=\frac{-0.1 \times 10^{6}}{-1000 \omega_{1}^{2}+5 \times 10^{6}}=-5.3476
$$

And

$$
\left.\frac{X}{\Theta}\right|_{\omega_{2}}=\frac{-0.1 \times 10^{6}}{-1000 \omega_{2}^{2}+5 \times 10^{6}}=0.05601
$$

Pb 5.7

Frequency Equation:

$$
\begin{aligned}
& \left|-\omega^{2}[m]+[k]\right|=0 \\
& \left|\begin{array}{cc}
k_{11}-\omega^{2} m_{1} & k_{12} \\
k_{21} & k_{22}-\omega^{2} m_{2}
\end{array}\right|=0
\end{aligned}
$$

Then,

$$
\left(m_{1} m_{2}\right) \omega^{4}-\left(m_{1} k_{22}+m_{2} k_{11}\right) \omega^{2}+\left(k_{11} k_{22}-k_{12}^{2}\right)=0
$$

Roots:

$$
\omega_{1,2}^{2}=\frac{m_{1} k_{22}+m_{2} k_{11} \mp \sqrt{\left(m_{11} k_{22}-m_{2} k_{11}\right)^{2}+4 m_{1} m_{2} k_{12}^{2}}}{2 m_{1} m_{2}}
$$

Substituting known expressions for $\mathrm{k}_{11}, \mathrm{k}_{12}$ and k_{22} yields:

$$
\omega_{1,2}^{2}=\frac{48}{7} \frac{E I}{m_{1} m_{2}}\left[\left(m_{1}+8 m_{2}\right) \mp \sqrt{\left(m_{1}-8 m_{2}\right)^{2}+25 m_{1} m_{2}}\right]
$$

Pb 5.8

Equations of motion:
$m_{1} \ddot{x}_{1}+k_{1} x_{1}-k_{1} x_{2}=0$
Let: $\quad x_{i}(t)=X_{i} \cos (\omega t+\emptyset)$; $\left.m_{2} \ddot{x}_{2}\right\} \begin{gathered}\left(\mathrm{E}_{1}\right) \\ \left(k_{1}+k_{2}\right) x_{2}-k_{1} x_{1}=0\end{gathered}$

$$
\mathrm{i}=1,2
$$

(E_{2})
Eq. (E_{1}) becomes:

$$
\left[\begin{array}{cc}
-m_{1} \omega^{2}+k_{1} & -k_{1} \\
-k_{1} & -m_{2} \omega^{2}+k_{1}+k_{2}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Frequency equation is:

$$
\left|\begin{array}{cc}
-m_{1} \omega^{2}+k_{1} & -k_{1} \\
-k_{1} & -m_{2} \omega^{2}+k_{1}+k_{2}
\end{array}\right|=0
$$

i.e.,

$$
m_{1} m_{2} \omega^{4}-\left(m_{1} k_{1}+m_{1} k_{2}\right) \omega^{2}-k_{1} m_{2} \omega^{2}+k_{1} k_{2}=0
$$

i.e.,
ω^{2}
$=\left[\left(m_{1} k_{1}+m_{1} k_{2}+k_{1} m_{2}\right) \mp\left(m_{1}^{2} k_{1}^{2}+m_{1}^{2} k_{2}^{2}+m_{2}^{2} k_{1}^{2}+2 m_{1}^{2} k_{1} k_{2}-2 m_{1} m_{2} k_{1} k_{2}+2 m_{1} m_{2} k_{1}^{2}\right)^{\frac{1}{2}}\right] / 2 m_{1}$
(E_{3})
Since $m_{1}=1000 \mathrm{Kg}, \quad \mathrm{m}_{2}=300 \mathrm{Kg}, \quad \mathrm{k}_{1}=4 \times 10^{5} \mathrm{~N} / \mathrm{m} \quad$ and $\quad \mathrm{k}_{2}=5 \times 10^{5} \mathrm{~N} / \mathrm{m}$, Eq. (E_{3}) gives

$$
\begin{aligned}
& \omega_{1}=14.4539 \mathrm{rad} / \mathrm{sec}, \quad \omega_{2}=56.4897 \mathrm{rad} / \mathrm{sec} \\
& f_{1}=\frac{14.4539}{2 \pi} \mathrm{~Hz}=\frac{s_{1}(1000)}{3600}\left(\frac{1}{l}\right)=\frac{s_{1}}{21.6}
\end{aligned}
$$

Where $l=6 \mathrm{~m}$ and s_{1} is in $\mathrm{km} / \mathrm{hr}$
$\Rightarrow \mathrm{s}_{1}=$ critical velocity $\# 1=\frac{14.4539}{2 \pi}(21.6)=49.6887 \mathrm{~km} / \mathrm{hr}$

$$
f_{2}=\frac{56.4897}{2 \pi} H z=\frac{s_{2}(1000)}{3600}\left(\frac{1}{l}\right)=\frac{s_{2}}{21.6}
$$

$\Rightarrow \mathrm{s}_{1}=$ critical velocity $\# 2=\frac{56.4897}{2 \pi}(21.6)=194.1968 \mathrm{~km} / \mathrm{hr}$

Pb 5.35

Equations of motion:

$$
\begin{gathered}
m(\ddot{x}-e \ddot{\theta})=-k x \\
J_{C G} \ddot{\theta}=-k_{t} \theta-k x e \\
\Rightarrow m \ddot{x}+k x-m e \ddot{\theta}=0 \\
\left(J_{0}-m e^{2}\right) \ddot{\theta}+k_{t} \theta+k e x=0
\end{gathered}
$$

Assuming a harmonic solution, we get the frequency equation as:
$\left|\begin{array}{cc}-m \omega^{2}+k & m e \omega^{2} \\ k e^{2} & -\left(J_{0}-m e^{2}\right) \omega^{2}+k_{t}\end{array}\right|=0$
Or $\quad\left(J_{0}-m e^{2}\right) m \omega^{4}-\left(J_{0} k+m k_{t}\right) \omega^{2}+k k_{t}=0$
Roots of this equation give the natural frequency of the system.

Pb 5.49

$$
k_{1}=k_{\text {beam }}=\frac{192 E\left(\frac{1}{12} a t^{3}\right)}{l^{3}}=\frac{16 E a t^{3}}{l^{3}}
$$

Equations of motion:
$m_{1} \ddot{x}_{1}+k_{1} x_{1}+k_{2}\left(x_{1}-x_{2}\right)=F_{1}(t)=F_{0} \cos \omega t$
$m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right)=0$
$\} \quad \cdots \cdots \cdots\left(\mathrm{E}_{1}\right)$

Assuming harmonic response
$x_{j}(t)=X_{j} \cos \omega t \quad ; \quad \mathrm{j}=1,2$

Equations $\left(E_{1}\right)$ yield

$$
\begin{aligned}
& X_{1}=\frac{\left(k_{2}-m_{2} \omega^{2}\right) F_{0}}{\left(k_{1}+k_{2}-m_{1} \omega^{2}\right)\left(k_{2}-m_{2} \omega^{2}\right)-k_{2}^{2}} \\
& X_{2}=\frac{\left(k_{2}\right) F_{0}}{\left(k_{1}+k_{2}-m_{1} \omega^{2}\right)\left(k_{2}-m_{2} \omega^{2}\right)-k_{2}^{2}}
\end{aligned}
$$

For no steady state vibration of the beam, $\mathrm{X}_{1}=0$ and hence the condition to be satisfied is:

$$
\frac{k_{2}}{m_{2}}=\omega^{2}
$$

