EEN220 Exam#2

Question 1. (10 points)

Encircle your answers of the following questions: (1 point each)

N.O.A = None Of the Above

1- To build a 64:1 Multiplexer from 4:1 multiplexers, you would need

a) 17 4:1 Multiplexers

2 20 de Monnigeras

c) 16 4:1 Multiplexers

d) 20 4:1 Multiplexers

e) N.O.A

e) N.O.A

2- A static 1-Hazard causes an output that should stay at 0 to go high for a short time.

b) T

3- A ROM can be viewed as a programmable AND/OR array in which the AND plane is programmed as a full decoder.

a) F

4- The PAL circuit is used as a

Me de la Company de la company

b) fixed AND, programmable OR

c) programmable AND, programmable OR d) fixed AND, fixed OR

5- 2-level AND-OR circuits, can be implemented using 2-level XOR-XOR circuits:

b) T

6- Referring to the figure 1, when the display is '1' and C='0', what are A and B

a) A=B='X' b) A=B='0'

7- Referring to the figure 1, IF A='Z', B='0' and C='0', the output display is

a)'X'

c) '1'

d) 'Z'

e) N.O.A

8- If the result F = A AND B is equal 1010 and B = 1011, so A is equal to

a) 1100

c) 1011

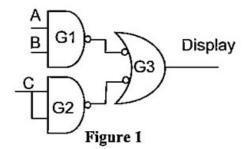
d) 0101

e) N.O.A

9- Referring to the figure 1, the display is '0' and A=C='1', B='0'. If the output of G1 is 1 and output of G2 is 0, which gate do you suspect is out of order?

- a) GI
- b) G2
- 100

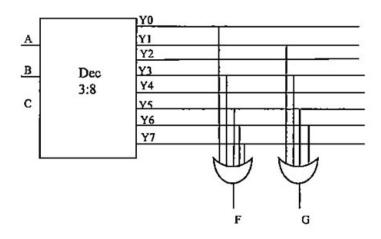
d) No enough data


10- An active HIGH S-R latch is implemented using only 2

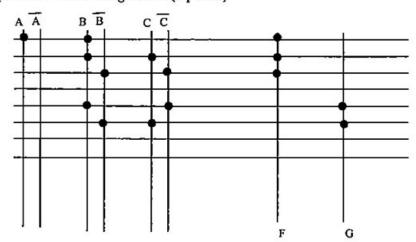
a) NAND gates

C) AND gates

b) OR gates

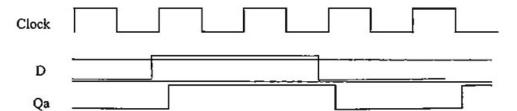

Question 2. (10 points)

Consider the following functions

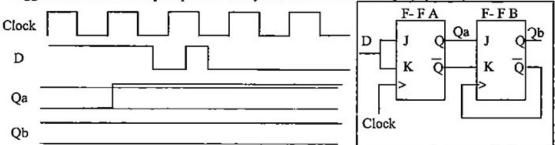

$$F(A,B,C) = AB + BC + B^{*}C^{*} = \sum m (0,3,4,6,7)$$

$$G(A,B,C) = BC' + B'C = \sum m (1,2.5,6)$$

1) Implement F and G using a ROM. (5 points)



2) Implement F and G using a PLA. (5 points)



Question 3. (20 points)

a) Draw the D input for a D flip-flop with Qa and Clock as shown: (Assume positive edge triggering and Q initially LOW) (5 points)

b) Referring to following figure, draw Qa and Qb. Assume that J-K flip-flops are edgetriggered and that both flip-flops are initially cleared and have a delay. (5 points)

c) Convert the following circuit to NAND gates: (2.5 points)

d) Complete the timing diagram of the following function: $Y = (A^2 + B) (A + C)$ (5 points) Assume that B=C=0, the inverter delay is 3 ms and Or delay is 5 ns. Propose ONE solution to remove any existing hazard (glitch) of Y. (2.5 points)

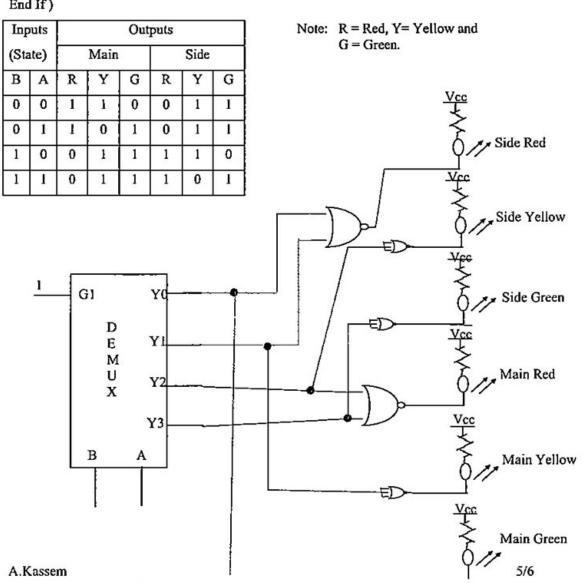
	L	-

Sie lateranen

EEN220 Exam#2

Question 4 (10 points)

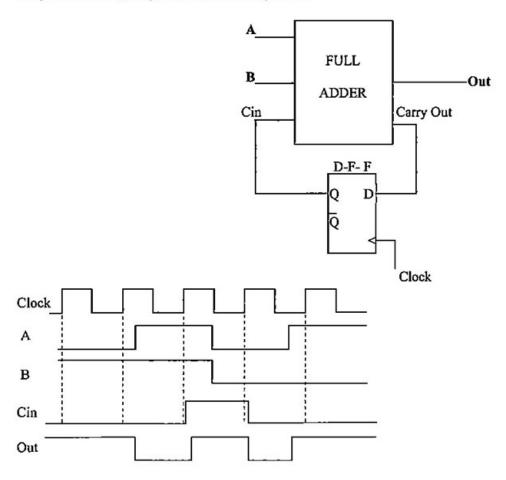
Design a circuit for a traffic light decoder, there are only four possible input states, represented by the binary numbers 00 through 11. These states control a traffic light on a main and side street. Each light has three outputs: Red, Yellow and Green.


If the input state is A= B= 0, the desired output is for the green light to be ON for the main street and the red light to be ON for the side street. (A logic 0 causes a light to be ON). The remaining outputs for each state are listed in the truth table.

Complete the design for the circuit implementation of the truth table; you can add NORs gate and Inverters.

(Note: we use a Demultiplexer for this design. The DEMUX algorithm is:

Y0 = G1; Y1 = Y2 = Y3 = '0';If B=A='0' then Y1 = G1; Y0 = Y2 = Y3 = '0';Else If B='0' and A='1' then Y2 = G1; Y0 = Y1 = Y3 = '0';Else If B='1' and A='0' then Y3 = G1; Y0 = Y1 = Y2 = '0'; Else If B= A='1' then


End If)

EEN220 Exam#2

Question 5. (Bonus: 5 points)

Complete the timing diagram of the following circuit:

A.Kassem 6/6