EEN 231 DIGITAL. LOGIC

SPRING 2001 TEST 3 60 Minutes

NDU EE & CCEE Dept. S.C. El Murr

NOTE 1:OPEN BOOK, OPEN NOTES, CLOSED NEIGHBOURS. NOTE 2: SHOW ALL WORK IN ORDER TO RECEIVE FULL CREDIT. NOTES: START EACH PROBLEM ON A NEW PAGE.

25 pts.

A sequential network has one input (X) and two outputs (Z1 and Z2). An output Z1-1 occurs every time the input sequence 101 is completed provided that the sequences 011 has never occurred. An output Z2= 1 occurs every time the input 011 is completed. Note that once a $Z_2 = 1$ output has occurred $Z_1 = 1$ can never occur, but not vice versa. Find a Mealy state graph and state table (minimum number of states is 8).

A sequential circuit has one input and one output. The Mealy state diagram is shown in Fig. P2. Using the state assignment shown below, design the circuit with j-k. Flip-Flops and draw the circuit diagram using 2-input NAND Gates.

A 000 B 001 0 010 D 011 E 100 F 101 G 110

b) Does your circuit count out of the don't care states? Justify your answer.

, 3. 25 pts. Reduce the following state table to a minimum number of states.

	Present State	Next State X=0 1		Prese X = 0	ent Output	
	a b c	h/t c h	c/o d b	1 0	0 1 0	
	c d e f	h f c	ti £	0 0 0	0	
	g h	c f g	g c	0 1 1	0 0 0	
	A		1			
AV						
				1		
			1			
		1	11	1		
,	1					
	1 1					