Question 1. (7 points)

	T= True;	F = F	alse		& N.	O.A = None Of the Above
	37 - 27 - 32 - 32 - 32 - 32					
1- A	register is mainl	ly used for shir	fting an	d storing d	ata	
	a) F	b) T				
	ROM can be vie		rammat	ole AND/C	R array in which	the AND plane is
	a) F	b) T				
3- As S=0		ctive LOW SR	flip-flo	op is used;	the output Q is ea	qual to 0 when R=1 and
	a) F	b) T				
4- Ho	ow many flip-flo	ops are require	d to cou	int up to 10	0010	
	a) 7	b) 10	c) 5	d) 20	e) N.O.A	
	e output in Mea curred.	ly Machine is	change	d only whe	en the clock edge-	triggering has
	a) F	b) T				
	a 50 MHz frequi			input CLO	CK of a JK flip-f	lop with J=K=1, what
	a) 50 MHz	b) 25MHz	c) 12	.5 MHz	d) 100 MH	Iz e) N.O.A
7- Se	quential circuits	contain memo	ory and	combinati	onal circuits do n	ot.
	a) F	b) T				
8- W	nen a I-K flin-flo	on is construct	ed from	SR flin-fl	on which one of	the following is true?
	a) S= J.Q and		04 110111		and R= K + Q'	alle following to tree.
	c) S= J.Q and	and the second			Q' and R= K.Q	e) N O A
		,	•		e und it ind	0,1110.11
y- An	asynchronous		need a	CLOCK		
	a) F	b) T				
10- A	J-K flip-flop is	implemented	using o	nly		
	a) AND gates	b) OF	₹ gates	C) NAND gates	d) NOR gates

Final

Question 2. (7 points)

Design a combinational circuit that can realize the following algorithm, using only (two or three) 2:1 Multiplexers, two Full Adders, and two inverters; VCC (5 V) and GND (0V) can be used in this design.

```
Begin (algo.)

IF Sel = I then

Out = A+B

Else

Out = A-B

End (Algo.)
```

Note: A, B and Out are 2 bits each.

3/8

Question 3. (7 points)

A certain country is ruled by family of four members, A, B, C and D. A has 25 votes, B has 40 votes C has 15 votes and D has 10 votes. Any decision taken by the family is based on its receiving at least 60% of the total number of votes. Design a combinational circuit that will produce on output of 1 if a certain motion is approved by the family.

	In	Output		
A	В	C	D	Decision
			.,	- (1 <u>2</u> 4
_				

4/8 A.Kassem

Question 4. (7 points)

Show how to modify the internal circuit of the shift register (seen in class and home work), to load, or rotate left/right according to the following table.

Hint: This shift register is composed of 4 MUXs and 4 D Flip-Flops.

Input			Next	State	Action	
Α	В	Q3+	Q2+	QI+	Q0+	8
0	0	Q3	Q2	Q1	Q0	No change
0	1	Q0	Q3	Q2	Q1	Rotate Right
1	0	Q2	Q1	Q0	Q3	Rotate left
1	1	D3	D2	D1	D0	Load

Question 5. (7 points)

Referring to following state diagram, construct the state table and design the circuit using D flip-flops. Is it a Moore or Mealy machine? What does this design detect?

Hint: find the next state expression for each input.

į

Question 6 (7 points)

Draw the sequence(s) of the following circuit (counter). Assume that T flip-flops are rising edge-triggered and that all flip-flops are initially cleared and have delays. Show all calculations to receive full credits.

Use k-map if needed

	0	1
00		
01		(4)40
11		
10		

1	0	1
00		
10		
H		
10		

1	0	1
00		
01		
11		
10		

\	0	1
00		
01		
11		
10		

Bonus. (4 points)

Find, when the inputs enable (EN) is ON of Tri-State Buffer and Latch? What does the following system do?

Hint: 3:8 Decoder is enable when E1=E2=0 and E3=1.

>

3:8 Decoder is an active low, example O1=0 when A2=A1=A0=0; and O3=O2=O1=1

IOW: Input/Output Write IOW: Input/Output Read

