EEN 340 SIGNALS & TRANSFORMS

FALL 2000 TEST 3 60 MINUTES NDU EE & CCE DEPT. S.C. ELMURR

NOTE 1: OPEN BOOK, OPEN NOTES.

NOTE 2: SHOW ALL WORK IN ORDER TO RECEIVE FULL CREDIT.

NOTE 3: START EACH PROBLEM ON A NEW PAGE.

 A causal LTI system S with impulse response h(t) has its input x(t) and output y(t) related through a linear constant-coefficient differential equation of the form

$$\frac{d^3 y(t)}{dt^3} + (1+\alpha) \frac{d^2 y(t)}{dt^2} + \alpha (\alpha+1) \frac{dy(t)}{dt} + \alpha^2 y(t) = x(t)$$

(a) If

$$g(t) = \frac{dh(t) + h(t)}{dt}$$

how many poles does G(s) have?

- (b) For what real values of the parameter α is S guaranteed to be stable?
- 35 Pts. Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{d^2 y(t) - dy(t) - 2y(t) = x(t)}{dt^2}$$

Let X(s) and Y(s) denote Laplace transforms of x(t) and y(t), respectively, and let H(s) denote the Laplace transform of h(t), the system impulse response.

- (a) Determine H(s) as a ratio of two polynomials in s. Sketch the pole-zero pattern of H(s).
- (b) Determine h(t) for each of the following cases:
 - 1. The system is stable.
 - 2. The system is casual
 - 3. The system is neither stable nor causal.

3. 35 Pts. The system function of a causal LTI system is

$$H(s) = \frac{s+1}{s^2 + 2s + 2}$$

 $H(s) = \frac{s+1}{s^2 + 2s + 2}$ Determine and sketch the response y(t) when the input is

$$x(t) = e^{-t}$$
, $-\infty < t < \infty$

