*15.72. The $8-1 \mathrm{~b}$ ball is released from rest 10 fit from the surface of a flat plate P which weighs 6 lb . Determine the maximum compression in the spring if the impact is perfectly elastic.

Danm as lowest point:
$T_{1}+V_{1}=T_{2}+V_{2}$
$0+(8)(10)=\frac{1}{2}\left(\frac{8}{32.2}\right)\left(v_{A}\right)_{i}^{2}+0$
$\left(v_{A}\right)_{1}=25.377 \mathrm{fi} / \mathrm{s}$
$(+b) \quad \Sigma m v_{1}=\Sigma m_{2}$

$$
\frac{8}{32.2}(25.377)+0=\frac{8}{32.2}\left(v_{A}\right)_{2}+\frac{6}{32.2}\left(v_{p}\right)_{2}
$$

$$
e=\frac{\left(v_{p}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{p}\right)_{1}}
$$

$L=\frac{\left(v_{P}\right)_{2}-\left(v_{A}\right)_{2}}{25.377-0}$
Solving,
$\left(v_{A}\right)_{2}=3.625 \mathrm{ft} / \mathrm{s}$
$\left(\mathrm{vP}_{\mathrm{P}}\right)_{2}=29.00 \mathrm{ft} / \mathrm{s}$
Initially the plate is compressed
$f_{s}=k x, \quad 6=(3) x, \quad z=2$ in. $=\frac{1}{6} \mathrm{fi}$

Daium at final plate posizion :
$T_{2}+V_{2}=T_{3}+V_{3}$
$\frac{1}{2}\left(\frac{6}{32.2}\right)(29.00)^{2}+\frac{1}{2}(3)(12)\left(\frac{1}{6}\right)^{2}+6 x=0+\frac{1}{2}(3)(12)\left(x+\frac{1}{6}\right)^{2}$

$$
18 x^{2}-78.367=0
$$

$x=2.087 \mathrm{ft}$
Maximum spring compression is
$x_{\text {mas }}=2.087+\frac{1}{6}=2.25 \mathrm{ft} \quad$ Ans
*15-76. The ball is ejected from the tube with a horizontal velocity of $v_{1}=8 \mathrm{ft} / \mathrm{s}$ as shown. If the coefficient of restitution between the ball and the ground is $e=0.8$, determine (a) the velocity of the ball just after it rebounds from the ground and (b) the maximum height to which the ball rises after the first bounce.

$(+\uparrow) \quad v^{2}=v_{0}^{2}+2 a_{6}\left(s-s_{0}\right)$
$\left(v_{y}\right)_{1}^{2}=0+2(-32.2)(-3-0)$
$\left(v_{y}\right)_{1}=13.90 \mathrm{ft} / \mathrm{s} \downarrow$
In y direction :
$(+\uparrow) \quad e=\frac{\left(v_{B}\right)_{2}-\left(v_{A}\right)_{2}}{\left(v_{A}\right)_{1}-\left(v_{B}\right)_{1}} ; \quad 0.8=\frac{\left(v_{y}\right)_{2}-0}{0-(-13.90)}$

$\left(V_{y}\right)_{2}=11.12 \mathrm{ft} / \mathrm{s} \uparrow$
$\left(v_{x}\right)_{2}=8 \mathrm{ft} / \mathrm{s} \rightarrow$
$\nu_{2}=\sqrt{(8)^{2}+(11.12)^{2}}=13.7 \mathrm{ft} / \mathrm{s}$ Ans
$(+\uparrow) \quad \nu^{2}=\nu_{0}^{2}+2 a_{c}\left(s-s_{0}\right)$
$0=(11.12)^{2}+2(-32.2)(h-0)$
$\theta=\tan ^{-1}\left(\frac{11.12}{8}\right)=54.3^{\circ} \quad$ Ans

16-30. A mill in a textile plant uses the belt-and-pulley arrangement shown to transmit power. When $t=0$ an electric motor is turning pulley A with an angular velocity of $\omega_{A}=5 \mathrm{rad} / \mathrm{s}$. If this pulley is subjected to a constant angular acceleration $2 \mathrm{rad} / \mathrm{s}^{2}$, determine the angular velocity of pulley B after B turns 6 revolutions. The hub at D. is rigidly connected to pulley C and turns with it.

Wheat $\theta_{\mathrm{z}}=6 \mathrm{rev}$;
$\phi(6)=3 \theta_{c}$
$\theta_{c}=8 \mathrm{rev}$
$g(5)=4.5\left(\theta_{1}\right)$

$$
O_{A}=8.889 .900 .
$$

$0_{1}=8.889 \mathrm{rev}$

$$
\begin{aligned}
& \left(\omega_{A}\right)_{2}^{2}=\left(\omega_{A}\right)_{1}^{2}+2 \alpha_{c}\left[\left(\theta_{A}\right)_{2}-\left(\theta_{A}\right)_{1}\right] \\
& \left(\omega_{A}\right)_{2}^{2}=(5)^{2}+2(2)[(8.889)(2 \pi)-0] \\
& \left(\omega_{A}\right)_{2}=15.76 \mathrm{rad} / \mathrm{s} \\
& 15.76(4.5)=5 \omega_{C}
\end{aligned}
$$

$\left(\omega_{3}\right)_{2}=10.6 \mathrm{mad} / \mathrm{s}$
Ans

$$
\begin{aligned}
& \theta_{B} \Omega_{B}=\theta_{C} n_{C} \\
& \sigma_{B}(4)=\theta_{C}(5) \\
& \theta_{C}=8
\end{aligned}
$$

$$
\omega_{c}=14.18 \mathrm{rad} / \mathrm{s}
$$

$$
14.18(3)=\$\left(\infty_{3}\right)_{2}
$$

$$
\begin{aligned}
& \omega_{A}^{2}=\omega_{A_{0}}^{2}+2 \alpha\left(\theta_{1}-\phi_{0}\right) \\
& \omega_{B}^{2}=\frac{(s)^{2}+2(\alpha)}{\left.\omega_{A}=15.76\right)}(55.85) .
\end{aligned}
$$

$$
w_{R} r_{A}=w_{C} r_{C}
$$

we"

$$
\omega_{C} r_{C}=\omega_{B} R_{B}
$$

