Dr. H. Maalouf

EXAMI	(83

SECTION: MWF. 1-10

anis (bostone) anis (FSX, ASX,

On 3. 3 Synchronous & As yn chronous

1) MULTIPLE CHOICE

(16 POINTS)

Which describes the correct order of the OSI model layers from bottom to top?

- Physical, data link, network, transport, session, presentation, application
- Data link, physical, network, transport, session, presentation, application
- Physical, adata link, network, transport, presentation, session, application
- Application, presentation, session, transport, network, data link, physical

Which layer of the OSI model determines the route from the source computer to the destination computer?

- The transport layer abla
- The session layer
- The network layer \subset
- The physical layer

The data link layer of the OSI is responsible for what tasks?

- · Creating, maintaining, and ending sessions, and encryption
- Reliable delivery of data and error control
- Transferring and routing of packets on the network-
- Addressing and reassembling frames

Which of the following allows for two devices to communicate at the same time?

- Simplex
- Half duplex
- Full duplex
- Complex

What type of communication ensures reliable delivery from a sender to a receiver without any user intervention?

- Communication-oriented
- Connectionless
- () Connection-oriented
 - Physical

What is the order in which information blocks are created when encapsulation with TCP/IP is used? (Select the best answer).

- · Segments, packets or datagrams, frames, data, bits
- ① Data, segments, packets or datagrams, frames, bits
- Bits, frames, segments, packets or datagrams, data
- Packets or datagrams, frames, segments, bits, data

Which of the following best describes the function of a connectionless-oriented protocol? (Select the best choice)

- A connectionless-oriented protocol requires an exchange of messages before data transfer begins.
- A connectionless-oriented protocol is a faster transfer method than a connection-oriented protocol.
- A connectionless-oriented protocol relies upon lower level protocols for data delivery and error handling.

What is the advantage of using a connectionless-oriented protocol such as UDP?

- Packet acknowledgment may reduce overhead traffic
- Loss or duplication of data packets is less likely to occur

 Packets are not acknowledged, which reduces overhead traffic.
 - The application relies on the transport layer for sequencing to data packets

2) Protocol Order

(10 POINTS)

Place the data encapsulation steps in the proper order by placing a number (1 through 5) on the step.

- a. Synchronization of a pattern of 1s & 0s with some clocking function, allows transmission on a medium and recognition of data bits.
- b. O Data is segmented and packaged with information to allow the sending and receiving hosts to communicate reliably.
- c. Alphanumeric user input is formatted for sending over the internet work.
- d. A frame is built to allow communication over an interface to the network =
- e. 3 Data is encapsulated with a network header specifying source and destination logical addresses.

(3) Probability Calculation.

(10 POINTS)

Assume that a frame consists of 1024 characters and that a character has 8 bits. The bit error rate is $BER = 10^{-6}$. What is the probability that the frame gets transmitted without error?

$$= \frac{1-10^{10}}{1-10^{10}} = \frac{1-10^{10}}{1$$

- (- LIP) =

A) Information Theory

(13 POINTS)

Consider a spectral band between 20,001 GHz and 20,021 GHz with a signal to noise ratio (S/N) of 15. What is the theoretical maximum data rate for this channel?

ر-

SN=15 BW = 20.0016-20.0016-2042-W

=> Cmax = AW log2 (1+ 5) = \$ > 20. log2 (16) = 60bp

Assume we want the bit rate to exceed the 100 Mbps, how many bits per signalling element should we use. Ignore the noise.

no noise: (\$2W log₂ (H) =) 2W log₂ (H) ≥ 100×10⁶
=> 2×20×609₂ (H) ≥ 100×10⁶

×10¹
(M) = 2.5×10⁶

| M = 2.5×10⁶

(14 POINTS) 5) Synchronous/ Asynchronous Transmission

A data source produces 7 bit ASCII characters. Derive an expression for the maximum effective (i.e. useful) bit rate if the channel capacity is 1Mbits/s under the following conditions:

Asynchronous connection with 1 start bit, 2 stop bits and 1 parity bit.

=> useful = = x 106 = 583.33 Kbps

Synchronous connection with a frame consisting of 48 control bits and 128 b) information bits. The information field contains 8 bit ASCII characters, including the parity bit.

6) - Error/ Flow Control

(16 POINTS)

You are to select and configure a flow control method for the following system:

Length of link is 2000 Km.

Signal propagation of 2×10⁸ m/s.

Fixed packet length of 250 bytes.

Bit rate of 20 Mbps.

a) What flow control method, stop-and-wait (Idle RQ) or sliding window (continuous RQ), would you choose to achieve at least 90% utilization.

$$U = 0.9 * \text{ for idle:} T_{p} = \frac{2000 \times 10^{3}}{8 \times 10^{3}} = 10 \text{ ms} / T_{k} = \frac{250 \times 8}{20 \times 10^{6}} = \frac{250 \times 8}{1 + 20} = \frac{250 \times 10^{6}}{1 + 20} = \frac{1}{1 + 200} =$$

(a) (a) (b) If the link length is reduced to 200 meters, would your previous answer and give the answer for any changed parameters.

36) Transmission & Propagation Delays

(21 POINTS)

We are sending a 30 Mbits MP3 file from a source host to a destination host. All links in the path between source and destination have a transmission rate of 10 Mbps. Assume that the propagation speed is 2.103 meters/sec, and the distance between source and destination is 10 000 km.

A- There is only one link between source and destination:

Calculate the end-to-end (total) délay.

$$T_{p} = \frac{10,000 \times 10^{3}}{2 \times 10^{3}} = 0.055, \quad T_{R} = \frac{30 \text{ M}}{10 \text{ M}} = 35$$

$$\Rightarrow T_{G} = 0.05 + 3 = 3.$$

How many bits will the source have transmitted when the first bit arrives at the

stination?

$$1e^{C}biranives = Tix = \frac{N}{10 \text{ Hys}}$$
 $Te^{2} = 0.05$
 $Tix = 1 = N = 500 \text{ Kb. } S$

B- Now suppose there are 10 TDM channels in the link between the source and destination. The MP3 file is sent over one of the channels.

Does the end-to-end delay remain the same? If not, calculate its new value.

