
Notre Dame University
CSC 414 Applied Operating Systems

Exam 1
Spring 2009

Duration: 1 Hour
Name:
ID:

Instructions

1. Write your answers in the space provided on the question sheet.

2. Use the back pages for rough work.

3. There are a total of 9 pages containing 9 questions. Two pages are
blank (pages 4 and 8).

4. The last page contains some information about the Linux scheduler.

5. There is NO correlation between the space provided for each

problem and the space needed. If you need more space write

on the back and clearly indicate that you did so.

1



1. (5pts) Draw the state transition diagram containing ”running”, ”ready”
and ”waiting” states only. List the events that cause each transition.

Ready

Wait

Running

schedule

interrupt

event completion
event wait

2. (5pts) What is a context switch and how it is handled by the OS?
Where is the context of a process saved?
A context switch is the act of saving the context of the current

process and loading the context of the next process to run.

The context of process is saved in the PCB of the process in

the memory address space of the OS

3. (5pts) Describe how the system goes from user to system privilege.
The system switches automatically to system privilege when

an interrupt occurs.

2



4. (5pts) What are the modes of operations of a CPU? how many are
usually needed by an OS?
these are the privilege levels. Usually the OS needs two: a

user and OS mode

5. (5pts) Explain how a user application can perform (directly or indi-
rectly) a privileged operations?
Via system calls which are implemented by interrupts which

means the CPU switches automatically to system mode

6. (20 pts) grep is a program that filters an input stream according to
a pattern passed on the command line. For example if the pattern is
”xyz”, only the lines in the input containing ”xyz” will be printed on
the output. Use fork(), execlp (or equivalent), dup2, pipe() and open
to execute the shell command ”sort -r <input |grep xyz > output”
where ”input” and ”output” are the names of files. Note that your
code should execute this specific command only (no parsing).

Solution

int main(){

int p[2],fd;

pid_t pid;

pipe(p);

pid=fork();

if(pid==0){

fd=open("input",O_RDONLY,0);

dup2(fd,0);

dup2(p[1],1);

close(fd);close(p[0]);close(p[1])

execlp("sort","sort","-r",0);

}

else{

fd=open("output",O_WRONLY,0);

dup2(fd,1);

dup2(p[0],0);

close(fd);close(p[0]);close(p[1]);

execlp("grep","grep","xyz",0);

}

}

3



7. (20pts) Four Processes p1,p2,p3 and p4 arrive in the ready queue at
times 0,3,8,11 and their running time are 15,16,18 and 14 clock ticks
respectively. Draw the Gantt chart for the system and compute the
average waiting and response time for each of the following algorithms.
Ignore process switching time

(a) Round Robin (quantum=10).

(b) Shortest remaining time first (i.e. preemptive SJF).

Round Robin

p1

0

p2

10

p3

20

p1

30

p4

35

p2

45

p3

51

p4

59 63

SRF

p1

0

p4

15

p2

29

p3

45 63

1

4



8. (15pts)A system uses round robin scheduling with a quantum of Q
seconds. Assume that we have n processes and each runs T seconds
and that process switching takes S seconds. Since process switching is
an overhead compute the average efficiency(ratio of useful time divided
by total time) of the CPU for the following cases

(a) T = 2Q

(b) Q = 2T

(c) Q = S < T

Solution

When the quantum Q > T then on average a process can finish before
its quantum expires and there will be one context switch. In this case
the efficiency is T

T+S
. When Q < T a process needs T/Q context

switches to finish and therefore the overhead is ST/Q and the efficiency
is T

T+ST/Q

(a) Q
Q+S

(b) T
T+S

(c) 1

2

5



9 (20pts) Three processes q1 with nice value 0, q2 with nice value 0 and
q3 with nice value -20, are scheduled on a Linux system. q1 starts at
t=0 and later on forks q2 and q2 forks q3 as shown below. q1 writes to
a buffer shared with q3. q3 issues a blocking read on the shared buffer.
Assume that for all processes the initial counter value is 3. (Note that
fork(), write() and read() are system calls).

(a) Draw the Gantt chart for the system.

(b) What is the total number of context switches.

q1 q2 q3
inst ticks
fork() 1
do work 2
write() 1

inst ticks
fork() 1
do work 3

inst ticks
read() 1
do work 3

6



q1

0 1

Ready

q1(2, 22, 3) q2(3, 23, 4)

q1

0

q2

1 2

Ready

q1(2, 22, 3) q2(2, 22, 3) q3(3, 43, 4)

q1

0

q2

1

q3

2 3

WaitReady

q1(2, 22, 3)q2(2, 22, 3) q3(2, 42, 3)

q1

0

q2

1

q3

2

q1

3 5

Ready Wait

q1(0, 0, 1)q2(2, 22, 3) q3(2, 42, 3)

q1

0

q2

1

q3

2

q1

3

q2

5 7

Ready Wait

q1(0, 0, 1)q2(0, 0, 1) q3(2, 42, 3)

recalc

q1(6, 26, 1)q2(6, 26, 1) q3(12, 52, 3)

q1

0

q2

1

q3

2

q1

3

q2

5

q1

7 8

Ready

q2(6, 26, 1)q3(12, 52, 3)

q1

0

q2

1

q3

2

q1

3

q2

5

q1

7

q3

8

q2

11 12

1

7


