American University of Beirut
 MATH 201
 Calculus and Analytic Geometry III
 Fall 2009-2010

quiz \# 2

1. (14 points) for each of the following functions, find the domain and the range
a) $f(x, y, z)=\sqrt{9-x^{2}-y^{2}-z^{2}}$
b) $g(x, y)=\frac{x}{x^{2}-y}$
determine the boundary of the domain, is the domain open or closed, also determine if the domain is bounded or unbounded
2. (12 points) use power series to find

$$
\lim _{t \rightarrow 0}\left(\frac{1}{2-2 \cos t}-\frac{1}{t^{2}}\right)
$$

3. (16 points) give the Taylor series expansion of $f(x)=\frac{2+x}{(1-x)(1+2 x)}$ at $x=-1$, then find $f^{(n)}(-1)$
4. (20 points) find the area inside the circle $r=-2 \cos \theta$ and outside the circle $r=1$
5. a. (10 points) find the limit of $f(x, y)=\frac{x^{2} y}{2 x^{2}+y^{2}}$ at $(0,0)$
b. (10 points) use the two path test to show that $f(x, y)=\frac{x y-y}{x^{2}-2 x+4 y^{2}+1}$ has no limit at $(1,0)$
6. the Fourier series expansion of the function $f(x)=\left\{\begin{array}{cc}x & 0 \leq x \leq \pi \\ 1 & \pi<x \leq 2 \pi\end{array} \quad\right.$ is

$$
a_{0}+\sum_{n=1}^{+\infty} \frac{1}{\pi} \frac{(-1)^{n}-1}{n^{2}} \cos (n x)+\sum_{n=1}^{+\infty} b_{n} \sin (n x)
$$

a. (8 points) find ONLY the coefficient a_{0}
b. (10 points) use the series in part a) to show that $\sum_{k=0}^{+\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}$

