American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2008-2009
quiz \# 2 solution

1. Find the domain and the range of the function $f(x, y)=\sqrt{x y}$. Determine the boundary of the domain, is the domain open or closed, also determine if the domain is bounded or unbounded. Find the equation of the level curve passing through $(1,1)$. Determine all the level curves of f.
$D_{f}=\{(x, y) ; x \geq 0$ and $y \geq 0$ or $x \leq 0$ and $y \leq 0\} ;$ Range $=[0, \infty[$ boundary: $\{x=0\}$ and $\{y=0\}$; domain is closed (it contains its boundary); and unbounded.

Level curve passing through $(1,1): f(1,1)=1$ hence the level curve passing through $(1,1)$ is defined by $\sqrt{x y}=1$, which gives $y=1 / x$
Level curves: $f(x, y)=c$ where c is in the range of f, hence $\sqrt{x y}=c$, and then $y=c^{2} / x$ are all the level curves of f
2. a. Give the first four terms of the Maclaurin series of $f(x)=\sqrt{1-x^{2}}$, then deduce $f^{(4)}(0)$. $\left(1-x^{2}\right)^{1 / 2}=1-x^{2} / 2-x^{4} / 8-x^{6} / 16+.$. (by using the binomial series), and hence $f^{(4)}(0)=-4!/ 8$
b. $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x^{3}}-\frac{1}{x^{2}}+a\right)=\lim _{x \rightarrow 0}\left(\frac{x-x^{3} / 6+o\left(x^{5}\right)}{x^{3}}-\frac{1}{x^{2}}+a\right)$
$=\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-1 / 6+o\left(x^{2}\right)-\frac{1}{x^{2}}+a\right)$ $=\lim _{x \rightarrow 0}\left((a-1 / 6)+o\left(x^{2}\right)\right)=a-1 / 6$
hence the limit is equal to 0 if and only if $a=1 / 6$.
3. a. Let $w=x^{2} e^{2 y} \cos (3 z)$. Use the chain rule to find the value of $d w / d t$ at the point $(1, \ln 2,0)$ on the curve $x=\cos t, y=\ln (t+2), z=t$.

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial w}{\partial y} \cdot \frac{d y}{d t}+\frac{\partial w}{\partial z} \cdot \frac{d z}{d t} \\
& =2 x e^{2 y} \cos (3 z)(-\sin t)+2 x^{2} e^{2 y} \cos (3 z) \cdot \frac{1}{t+2}-3 x^{2} e^{2 y} \sin (3 z)
\end{aligned}
$$

at $(1, \ln 2,0), t=0$, and hence, $\frac{d w}{d t}(1, \ln 2,0)=4$.
b. Find the equation of the tangent plane to the surface $z=y-x^{2}$ at $(1,2,1)$.

Let $w=y-x^{2}-z, \nabla w=(-2 x, 1,-1)$, then $\nabla w(1,2,1)=(-2,1,-1)$, and $(T):-2(x-1)+(y-2)-(z-1)=0$ is the tangent plane.
4. Find the absolute minimum and maximum of the function $f(x, y)=x^{2}-x y+y^{2}+1$ on the closed triangular plate in the first quadrant bounded by the lines $x=0, y=4, y=x$. critical point: $\partial f / \partial x=2 x-y$ and $\partial f / \partial y=-x+2 y$, then the only critical point is $(0,0)$ on the path $\mathrm{x}=0: g(y)=f(0, y)=y^{2}+1, g^{\prime}(y)=2 y, g^{\prime}(y)=0 \rightarrow y=0$
on the path $\mathrm{y}=4$: $h(x)=f(x, 4)=x^{2}-4 x+17, h^{\prime}(x)=2 x-4, h^{\prime}(x)=0 \rightarrow x=2$
on the path $\mathrm{y}=\mathrm{x}: ~ k(x)=f(x, x)=x^{2}+1, k^{\prime}(x)=2 x, k^{\prime}(x)=0 \rightarrow x=0$

point	value
$(0,0)$	1
$(2,4)$	13
$(0,4)$	17
$(4,4)$	17

The minimum is then equals to 1 at $(0,0)$; the maximum is equals to 17 at $(0,4)$ and $(4,4)$
5. a. Find the direction of maximum increase of $f(x, y)=x^{2}-3 x y+4 y^{2}$ at $P(1,2)$. Is there is a direction \mathbf{u} in which the rate of change of f at $P(1,2)$ equals 14 ? Justify your answer. $\nabla f=(2 x-3 y,-3 x+8 y)$, then $\nabla f(1,2)=(-4,13)$, and $|\nabla f(1,2)|=\sqrt{16+169}=\sqrt{185}$ The direction of maximum increase of f is the direction of $\nabla f(1,2)$, hence $(-4 / \sqrt{185}, 13 / \sqrt{185})$

The rate of change in the direction of maximum increase is $\sqrt{185}<14$, then there is no direction \mathbf{u} in which the rate of change of f at $P(1,2)$ equals 14 .
b. Find the points on the surface $(y+z)^{2}+(z-x)^{2}=16$ where the normal line is parallel to the $y z$-plane.
Let $f(x, y, z)=(y+z)^{2}+(z-x)^{2}$
$\nabla f=(-2(z-x), 2(y+z), 2(y+z)+2(z-x))$
If the normal line is parallel to the $y z$-plane, then x is constant, and $\partial f / \partial x=0$, hence $-2(z-x)=0$, and then $x=z$; as the point $P(x, y, z)$ belongs to the surface, then $(y+z)^{2}=16$ or $y+z= \pm 4$
Let $x=t \Rightarrow z=t \Rightarrow y=-t \pm 4$. Therefore the points are $(t,-t \pm 4, t)$ where t is a real number.
6. a. Show that the limit of $f(x, y)=\frac{3 x^{2} y}{x^{2}+4 y^{2}}$ exists at $(0,0)$.
$|f(x, y)| \leq\left|\frac{3 x^{2} y}{x^{2}}\right|=|3 y| \longrightarrow 0$ as $(x, y) \rightarrow(0,0)$, hence by sandwich theorem, $f(x, y) \longrightarrow 0$
b. Show that $f(x, y)=\frac{\sin (x-y)}{|x|+|y|}$ has no limit at $(0,0)$.
consider the path $y=0$, note that this path passes through $(0,0)$
$f(x, 0)=\frac{\sin (x)}{|x|} \longrightarrow \pm 1$ as $x \rightarrow 0 ;$
the limit does not exist, then by the two path test, $f(x, y)$ has no limit as $(0,0)$.

