Temperature Drop of a Bullet

A 9 mm bullet is fired out and it is traveling through air with an average velocity of $350 \mathrm{~m} / \mathrm{s}$. The initial temperature of the bullet is $300^{\circ} \mathrm{C}$ and it is cooled as it travels through air which is at $25^{\circ} \mathrm{C}$ with a heat transfer coefficient $h=1000 \mathrm{~W} / \mathrm{m}^{2}$. K. The bullet can be modeled by a combination of a semi-sphere and a cylinder as shown in the figure below. It is assumed that the bullet will travel around 1 km before it falls.

The properties of the bullet are $\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, k=350 \mathrm{~W} / \mathrm{m} . \mathrm{K}$ and $c_{p}=0.3 \mathrm{~kJ} / \mathrm{kg}$. K.
Neglect radiation heat losses and compressibility effects.

a) Is the lumped capacitance method applicable? Support your answer using appropriate calculation. (Yes - $\mathrm{Bi}<0.1$)
b) Calculate the temperature of the bullet at the moment it falls. ($\mathrm{T}=201.23 \mathrm{deg} \mathrm{C}$)
c) Calculate the rate of heat loss from the bullet during this process. $(\mathrm{q}=231.84 \mathrm{~W})$

Convection and Numerical Method in Transient Conduction

The plate shown below consists of 3 elements (A to C) made of the ceramic. The leading and trailing edges of the plate are adiabatic as shown in the figure. Initially the plate is assumed to have a uniform temperature everywhere equal to $50^{\circ} \mathrm{C}$. Suddenly the upper surface of the plate is subjected to an airflow with a velocity of $2 \mathrm{~m} / \mathrm{s}$ and a temperature of $10^{\circ} \mathrm{C}$. The temperature of nodes 1 to 3 will decrease due to heat loss by convection while temperature of nodes 4 and 5 is assumed to stay constant at $50^{\circ} \mathrm{C}$. The local heat transfer coefficient between the upper surface and the flowing air is obtained from experiments and it is given in the following equation:

$$
h_{x}=-100 x^{0.2}+2000
$$

where x is in m and h in $\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$.
The plate is 1 m width into the plane of the paper and it has the following dimensions:

$$
L=5 \mathrm{~cm} \text { and } d=1 \mathrm{~cm} .
$$

For the ceramic $\rho=1600 \mathrm{~kg} / \mathrm{m}^{3}, c=0.8 \mathrm{~kJ} / \mathrm{kg}$. K and $k=3 \mathrm{~W} / \mathrm{m}$. K.
For air $k=0.026 \mathrm{~W} / \mathrm{m} . \mathrm{K}$.

a) Calculate the average heat transfer coefficient for each element A, B and C.

b) Calculate the average Nusselt number.

c) Write the nodal equations for nodes 1,2 and 3 for unsteady state conduction.

d) Calculate the temperature of nodes 1,2 and 3 after 4 seconds.
18.35
18.46 11.49
e) Calculate the total amount of heat lost from the plate in $\mathbf{4}$ seconds.

f) Calculate the average rate of heat loss for the $\mathbf{4}$ seconds time interval.

