American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2008-2009

Final Exam

Exercise 1 a. (5 points) If $f(u, v, w)$ is a differentiable function and if $u=x-y, v=y-z$, and $w=z-x$, show that $\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=0$
b. (10 points) Use the method of Lagrange multipliers to find the maximum and minimum values of $f(x, y)=3 x-y+6$ on the circle $x^{2}+y^{2}=4$

Exercise 2 (10 points) Convert to polar coordinates, then evaluate the following integral

$$
\int_{0}^{2} \int_{-\sqrt{1-(y-1)^{2}}}^{0} x y^{2} d x d y
$$

Exercise 3 (12 points) Here is the region of integration of the integral

$$
\int_{0}^{1} \int_{-1}^{0} \int_{0}^{y^{2}} d z d y d x
$$

Rewrite the integral as an equivalent iterated integral in the other 5 orders, then evaluate one of them

Exercise 4 Let V be the volume of the region D that is bounded by the paraboloid $z=x^{2}+y^{2}$, and the plane $z=2 y$.
a) (8 points) Express V as an iterated triple integral in cartesian coordinates in the order $d z d x d y$ (do not evaluate the integral).
b) (10 points) Express V as an iterated triple integral in cylindrical coordinates, then evaluate the resulting integral.
(you may use the result: $\int \sin ^{4} x d x=-\frac{\sin ^{3} x \cos x}{4}-\frac{3 \cos x \sin x}{8}+\frac{3 x}{8}$)
Exercise 5 Let V be the volume of the region D that is bounded below by the $x y$-plane, above by the sphere $x^{2}+y^{2}+z^{2}=4$, and on the sides by the cylinder $x^{2}+y^{2}=1$.
a) (7 points) Express V as an iterated triple integral in spherical coordinates in the order $d \rho d \phi d \theta$ (do not evaluate the integral).
b) (8 points) Express V as an iterated triple integral in spherical coordinates in the order $d \phi d \rho d \theta$ (do not evaluate the integral).

Exercise 6 a. (6 points) Find the work done by the force $F=x \mathbf{i}+y^{2} \mathbf{j}+(y-z) \mathbf{k}$ along the straight line from $(0,0,0)$ to $(1,1,1)$.
b. (8 points) Evaluate

$$
\int_{(0,0,1)}^{(1, \pi / 2, e)}\left(\ln z+e^{x} \sin y\right) d x+e^{x} \cos y d y+(x / z-z) d z
$$

c. Find the outward flux of the field $F=(y-2 x) \mathbf{i}+(x+y) \mathbf{j}$ across the curve C in the first quadrant, bounded by the lines $y=0, y=x$ and $x+y=1$.
i. (10 points) by direct calculation
ii. (6 points) by Green's theorem
good luck

