
EEN 344
Communication Systems I

Class Notes

Chapter 2

Fourier Representation 
of Signals and Systems

Dr. Jad Atallah

Spring Semester - 2010

Notre Dame University-Louaize   - EEN-344 Communication Systems I   - Spring 2010 2

The Fourier Transform

• A signal is a function of time, but from a communications 
system perspective, it is important that we know also the 
frequency content of the signal.

• The Fourier transform relates the frequency-domain 
description of a signal to its time-domain description.

• Mainly two versions:

– Continuous Fourier transform (FT), for continuous functions in 
both time and frequency domains

– Discrete Fourier transform (DFT), for discrete data in both time 
and frequency domains.

• In this chapter, we will concentrate on FT to determine the 
frequency content of a continuous-time signal.

• Evaluates what happens to this frequency content when the 
signal is passed through a linear time-invariant LTI system.
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Definition of the FT

dtetgfG tfj2)()(

• Advantages of using frequency-domain analysis

– Provides the frequency content of a signal.

– Resolution into eternal sinusoids presents the behavior as the 
superposition of steady-state effects.

– If the time-domain analysis involves solving differential 
equations, the frequency domain involves simple algebraic 
equations.

Time-domain
description 

g(t)

Frequency-domain 
description

G(f)

dfefGtg tfj2)()(

Analysis equation:

)2sin()2cos(2 tfjtfe tfjNote:

Synthesis equation:
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Existence of FT

• For the FT of a signal g(t) to exist, it is sufficient, but not 
necessary, that the function g(t) (Dirichlet’s Conditions):

– is single-valued, with a finite number of maxima and minima in 
any finite time interval.

– has a finite number of discontinuities in any finite time interval.

– is absolutely integrable:

dttg )(
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Existence of FT II

dttg 2)(

• If the signal is physically realizable, then the FT of this 
signal exists. In order for the signal to be physically 
realizable, its energy

dttg 2)(

• In this case, such a signal is called an energy signal.
Therefore, all energy signals are Fourier transformable.

must satisfy
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Continuous Spectrum

• The FT is a complex function of frequency so that
)()()( fjefGfG

where

)( fG is the continuous amplitude spectrum

is the continuous phase spectrum

• If g(t) is a real-valued function of time, the FT has the 
following characteristics

)()( * fGfG

)()( fGfG

)()( ff

)( f

(where the asterisk denotes 
complex conjugation) jyxjyx *)(
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Continuous Spectrum II

• In conclusion

– The amplitude spectrum of a signal is an even function 
of the frequency; the amplitude spectrum is symmetric
with respect to the origin f=0.

– The phase spectrum of a signal is an odd function of the 
frequency; the phase spectrum is odd-symmetric with
respect to the origin f=0
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Properties of the FT

1. Linearity

)()()()( 22112211 fGcfGctgctgc
2. Dilation

a
f

G
a

atg 1)(

3. Conjugation

fGtg ** )(

4. Duality

)()( fGtgIf , then )()( fgtG
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Properties of the FT II

5. Time Shifting

otfj
o efGttg 2)()(

6. Frequency Shifting

)()(2
c

tfj ffGtge c

7. Area under g(t)

)0()( Gdttg

8. Area under G(f)

dffGg )()0(
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Properties of the FT II

11. Modulation Theorem

dfGGtgtg )()()()( 2121

9. Differentiation in the time domain

)()2()( fGfjtg
dt
d n
n

n

10. Integration in the time domain

)(
2
1)( fG
fj

dg
t
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Properties of the FT III

12. Convolution Theorem

)()()()( 2121 fGfGdtgg

13. Correlation Theorem (assuming that g1(t) and g2(t) are 
complex valued)

)()()()( *
21

*
21 fGfGdttgtg

)()()()( 2121 fGfGtgtgShorthand notation:
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Properties of the FT IV

14. Rayleigh’s Energy Theorem

dffGdttg 22 )()(
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The Inverse Relationship 
Between Time and Frequency

• If the time-domain description of a signal is changed, 
the frequency-domain description of the signal is 
changed in an inverse manner.

• If a signal is strictly limited in frequency, the time-
domain description of the signal will trail on 
indefinitely, even though its amplitude may assume a 
progressively smaller value.

• In an inverse manner, if a signal is strictly limited in 
time, then the spectrum of the signal is infinite in 
extent, even though the amplitude spectrum may 
assume a progressively smaller value.

• Accordingly, a signal cannot be strictly limited in both 
time and frequency.
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Dirac Delta Function

• The theory of the FT is applicable to only time functions 
that satisfy the Dirichlet conditions, but it would be helpful 
to extend the theory in two ways:

– To combine the theory of Fourier series and FT, so that the 
Fourier series may be treated as a special case of the FT.

– To expand applicability of the FT to include power signals 
(periodic signals), signals that satisfy:

T

TT
dttg

T
2)(

2
1lim
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Dirac Delta Function II

• This can be accomplished by the use of the Dirac Delta 
function:

0,0)( tt

1)( dtt

)(t
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Dirac Delta Function III

)()()( oo tgdttttg

1)(t

(sifting property)

Fourier Transform:

)()()( tgdtg

Since       is an even function of t)(t

therefore )()()( tgttg
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Applications
of the Delta Function

• DC signal
)(1 f

• Complex exponential

)(2
c

tfj ffe c

• Sinusoidal functions

)()(
2
1)2cos( ccc fffftf
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FT of Periodic Signals

n
oooT fnffnGftg )()()(

0

m
oT mTtgtg )()(

0

where dtetgfnG tfnj
o

)2( 0)()(

T0

t

g(t)

gT0(t)
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Transmission of Signals 
Through Linear Systems

• The impulse response of a system is defined as the 
response of the system (with zero initial conditions) to a 
unit impulse (or delta function     ) applied to the input of 
the system. 

)(t

Impulse
response
h(t)

Input
x(t)

Output
y(t)

dthxty )()()(

This relation is called the convolution integral.
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Causality and Stability

• Causality

0,0)( tth

• Bounded Input-Bounded Output (BIBO) stability 
criterion

dtth )(
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Frequency Response

Impulse
response
H(f)

Input
X(f)

Output
Y(f)

)()()( fXfHfY

• Define the transfer function or frequency 
response of the system as the Fourier transform 
of its impulse response

dtethfH tfj2)()(
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Frequency Response II

)()( fHfH

)()()( fjefHfH

)()( ff

where

properties:

gain in decibels (dB):

)(log20)( 10 fHf
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System bandwidth of 

(a) Low-pass system

(b) Band-pass system

System
Bandwidth
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Correlation and Spectral Density:
Energy Signals

• Autocorrelation function of energy signal x(t)

dttxtxRx )()()( *

• The energy of the signal x(t) is

dttxRx
2)()0(

• The energy spectral density or energy density 
spectrum of an energy signal x(t) is

2)()( fXfx
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Correlation and Spectral Density:
Energy Signals II

• Wiener-Khintchine Relations for energy signals

– The autocorrelation function Rx( ) and energy spectral density 
x(f) for a Fourier-transform pair.

deRf fj
xx

2)()(

dfefR fj
xx

2)()(

Note that the Fourier transformation is performed with respect 
to the adjustable lag .

Notre Dame University-Louaize   - EEN-344 Communication Systems I   - Spring 2010 26

Correlation and Spectral Density:
Energy Signals III

• Some relations

)0()( xx dR

)0()( xx Rdff
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Effect of Filtering on Energy 
Spectral Density

)()()( fXfHfY

)()()( 2 ffHf xy

2)()( fYfy

where
2)()( fXfx

Impulse
response
H(f)

Input
X(f)

Output
Y(f)
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Cross-correlation
of Energy Signals

• The autocorrelation function provides a measure 
of the similarity between a signal and its own 
time-delayed version.

• The cross-correlation function provides a 
measure of the similarity between one signal and 
the time-delayed version of a second signal.

• The cross-correlation between x(t) and y(t) is:

dttytxRxy )()()( *
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• The two signals x(t) and y(t) are somewhat 
similar if their cross-correlation function Rxy( ) is
finite over some range of .

• They are said to be orthogonal over the entire 
time interval if 

Cross-correlation
of Energy Signals II

0)0(xyR

that is if

0)()( * dttytx
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Cross-correlation
of Energy Signals III

)()( *
yxxy RR

deRf fj
xyxy

)2()()(

or

• An important property

• Cross-spectral density is defined as

)()()( * fYfXfxy
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Power Spectral Density 
(PSD)

• The average power of a signal x(t) is defined by

dttx
T

P
T

TT

2)(
2
1lim

• The signal x(t) is said to be a power signal if the condition

P

• Define

otherwise
TtTtx

T
trecttxtxT

,0
),(

2
)()(

holds.
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Power Spectral Density 
(PSD) II

• The average power in terms of xT(t) is

dffX
T

dttx
T

P TTTT

22 )(
2
1lim)(

2
1lim

• The power spectral density or power spectrum of the 
power signal x(t) is

2)(
2
1lim)( fX
T

fS TTx

where
2)(

2
1 fX
T T

is called the periodogram of the signal.
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Power Spectral Density 
(PSD) III

• The average power is

dffSP x )(

• Therefore, the total area under the curve of the power 
spectral density of a power signal is equal to the average 
power of that signal.


