

Notre Dame University

ECCE Department

Exam # 2

Spring Semester (2004-2005)

Microprocessor Design Systems EEN324

Name:	A. KAssem	
Student ID:_	Prof	

Question1
Question2
Question3
Question4
Total

10
10
10
20
/50

Question 1. (10 points)

Answer True or False for each of the following statements (1 point each)

1. The following piece of code copies the contents of C into D: PUSH C POP D	Т	F
2. The following instructions perform the same operation XRA A XRI 00H	T	F
3. The instruction 'LDA BC' copies the contents of memory location pointed by BC register pair INTO register A.	Т	F
4. The MVI C, A instruction copy the content of register A into the register C.	Т	F
5. INR M instruction increments by 1 the content of memory pointed by the register pair HL.	T	F
6. LXI H, 3210H and MVI 32H, H MVI 10H, L Perform the same operation.		F
7. INX D instruction increments the register D by 1.	Т	F
8. Programmers can set the S , Z , AC and CY flags directly.	T	F
9. The SP register is decremented only once during the execution of a CALL instruction.	Т	F
10. Both SLA and SRA instructions modify the contents of the AC flag.	Т	F
11. Can we perform the following MOV L, M DCR M	T	F

Question 2. (10 points)

2.1. Execute the following program and show the flags state after each instruction.(5 Points)

			Z	S	CY
HL = FE00	LXI	H,FE00	X	X	X
A = 7F	MOV	A, M	X	X	X
A = 7F + 11 = 90H	ADI	11H	0	1	0
HL = FE01	INX	H	0	1	0
$\mathbf{A} = 90 \cdot \mathbf{0F} = \mathbf{00H}$	ANI	0FH	1	0	0
$\mathbf{B} = \mathbf{F}\mathbf{F}$	MOV	B , M	1	0	0
C = 88	MVI	C, 88H	1	0	0
A = 00 + 88 = 88	ADD	C	0	1	0
Yes it is negative	JM	STP	0	1	0
Go to HLT	LDAX	В	X	X	X
	RAR		X	X	X
STP	HLT				

contents shown below				
000F	00H			
0F00	01H			
FE00	7FH			
FE01	FFH			
FF01	02H			
FF88	81H			
88FF	FFH			
88FE	7FH			

Given the memory

2.2. The starting address of the following program is 0000H. (5 Points)

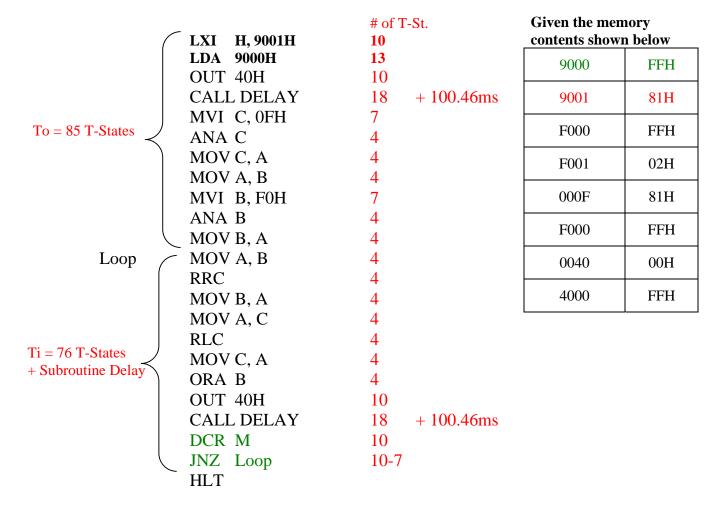
0000H **Start:** MVI A, Byte1 ; 3 bytes 0003H ORA A ; 1 byte **NEXT** 0004H JP ; 3 bytes XRA A 0007H ; 1 byte 0008H **NEXT:** OUT F2H ; **HLT**

a) Specify the address of the label **NEXT:** and explain the type of numbers that can be displayed at the port.

\$0008, It displays only the numbers $\geq 00H$

b) If Byte1 = 92H, what is the output?

00H


c) If **Byte1** = 09H, what is the output?

09H

Question 3. (10 points)

Using a 8085 microprocessor with a frequency of 2MHz, calculate the **MAXIMUM** time, that, it takes to execute the following program:

The time delay for DELAY subroutine is 100.46 ms.

Counter is equal to the memory M content $(81H = 129_{10})$

 $T_{out} = 85 \text{ T-States} + 100.46 \text{ ms} * 2 \text{ MHz} = 201005$

 $T_{in} = (129 * 76) - 3 + 129 * 100.46 \text{ ms} * 2 \text{ MHz.} = 25928481$

 $T_{Total} = T_{out} + T_{in} = 26129486$

 $\underline{\text{Delay}} = 26129486 / 2 \text{ MHz} = 13.064743 \text{ s}$

Question 4. (20 points)

Write a program to load a binary number (<64H) from input port address 01H, and start counting the loaded number until 99 in **BCD**; finally display the result at the output port address FFH, with a delay between each count.

Assume that you have a subroutine called DELAY.

Example: if the input number is $(0000\ 1010)_2$ the 1^{st} output is 10_{10} , the 2^{nd} is 11_{10} , the 3^{rd} is 12_{10} until 99_{10} .

```
START
         IN
               01H
                                        ; Input Port
                                        ; # to be compared if \geq 100
         MVI D. 64H
         MOV C, A
                                        ; save input in C
         CALL PWR10
                                        ; Start convert to BCD
         HLT
PWR10:
         LXI
               H, OUTBUF
         MVI B, 0AH
         CALL BINBCD
         RET
BINBCD:
         MVI M, FFH
NXTBUF:
         INR
               M
                                        ; [M] = BCD2
         SUB
              В
         JNC
               NXTBUF
         ADD B
                                        ; A = BCD1
         RLC
                                        ; Rotates A 4 times
         RLC
         RLC
         RLC
         ORA M
                                        ; Get 2 digits BCD2 & BCD1
         OUT
              Α
                                        ; Output the BCD2 & BCD1
         INR
                                        ; Increments the loaded input by 1
         MOV A, C
         CMP D
                                        ; compares it, if =
         JNZ
               PWR10
                                        ; in not converts the new incremented #
         RET
                                        ; if yes go out
```