חDU
 Notre Dame University

ECCE Department

Exama 2

Spring Semester (2004-2005)

Microprocessor Design Systems
 EEN324

Name: \qquad A. KAssem \qquad
Student ID: \qquad Prof. \qquad
Question1
Question2
Question3
Question4
Total

	10
	10
	10
	20
	$/ 50$

Question 1. (10 points)

Answer True or False for each of the following statements (1 point each)

1. The following piece of code copies the contents of C into D: PUSH C POP D	T	(F)
2. The following instructions perform the same operation $\begin{array}{ll} \text { XRA } & \text { A } \\ \text { XRI } & 00 \mathrm{H} \end{array}$	(T)	F
3. The instruction 'LDA BC' copies the contents of memory location pointed by BC register pair INTO register A.	T	(F)
4. The MVI C, A instruction copy the content of register A into the register C.	T	(F)
5. INR M instruction increments by 1 the content of memory pointed by the register pair HL.	(T)	F
6. LXI H, 3210H and MVI 32H, H MVI 10H, L Perform the same operation.	T	(F)
7. INX D instruction increments the register \mathbf{D} by 1.	T	(F)
8. Programmers can set the $\mathbf{S}, \mathbf{Z}, \mathbf{A C}$ and $\mathbf{C Y}$ flags directly.	(T)	F
9. The SP register is decremented only once during the execution of a CALL instruction.	T	(F)
10. Both SLA and SRA instructions modify the contents of the AC flag.	T	(F)
11. Can we perform the following $\mathbf{M O V} \mathbf{L}, \mathbf{M}$ DCR M	(T)	F

Question 2. (10 points)

2.1. Execute the following program and show the flags state after each instruction.(5 Points)

HL = FE00	LXI H,FE00
$\mathrm{A}=7 \mathrm{~F}$	MOV A, M
$\mathrm{A}=7 \mathrm{~F}+11=90 \mathrm{H}$	ADI 11H
HL = FE01	INX H
$\mathrm{A}=90.0 \mathrm{~F}=00 \mathrm{H}$	ANI 0FH
$\mathrm{B}=\mathrm{FF}$	MOV B, M
$\mathrm{C}=88$	MVI C, 88H
A $=00+88=88$	ADD C
Yes it is negative	JM STP
Go to HLT	LDAX B
	RAR
STP	HLT

Z	S	CY
X	X	X
X	X	X
0	1	0
0	1	0
1	0	0
1	0	0
1	0	0
0	1	0
0	1	0
X	X	X
X	X	X

Given the memory contents shown below

000 F	00 H
0 F 00	01 H
FE00	7 FH
FE01	FFH
FF01	02 H
FF88	81 H
88 FF	FFH
88 FE	7 FH

(5 Points)
2.2. The starting address of the following program is 0000 H .

0000H	Start:	MVI A, Byte1	; 3 bytes	
0003H		ORA A	A	byte
0004H		JP	NEXT	; 3 bytes
0007H		XRA	A	; byte
0008H	NEXT:	OUT	F2H	;

a) Specify the address of the label NEXT: and explain the type of numbers that can be displayed at the port.
$\$ 0008$, It displays only the numbers $\geq 00 \mathrm{H}$
b) If Byte $1=92 \mathrm{H}$, what is the output?

00H
c) If Byte $1=09 H$, what is the output?

09H

Question 3. (10 points)

Using a 8085 microprocessor with a frequency of 2 MHz , calculate the MAXIMUM time, that, it takes to execute the following program:
The time delay for DELAY subroutine is 100.46 ms .

To = 85 T-States	$\left\{\begin{array}{l}\text { LXI H, 9001H } \\ \text { LDA 9000H } \\ \text { OUT 40H } \\ \text { CALL DELAY } \\ \text { MVI C, 0FH } \\ \text { ANA C } \\ \text { MOV C, A } \\ \text { MOV A, B } \\ \text { MVI B, FOH } \\ \text { ANA B } \\ \text { MOV B, A }\end{array}\right.$	$\begin{array}{ll} \text { \# of T-St. } \\ \mathbf{1 0} \\ \mathbf{1 3} & \\ 10 & \\ 18 & +100.46 \mathrm{~ms} \end{array}$		Given the memory contents shown below	
				9000	FFH
				9001	81H
		7		F000	FFH
		4		F001	02H
		4			
		7		000F	81H
				F000	FFH
				F000	FFH
Loop $\mathrm{Ti}=76$ T-States + Subroutine Delay	$\left\{\begin{array}{l}\text { MOV A, B } \\ \mathrm{RRC} \\ \mathrm{MOV} \mathrm{B}, \mathrm{A} \\ \text { MOV A, C } \\ \mathrm{RLC} \\ \mathrm{MOV} \mathrm{C,} \mathrm{~A}\end{array}\right.$	4		0040	00H
		4			
		4		4000	FFH
		4			
		4			
		4			
		4			
	OUT 40H	10			
	CALL DELAY	18	+ 100.46 ms		
	DCR M	10			
	JNZ Loop	10-7			

Counter is equal to the memory M content $\left(81 \mathrm{H}=129_{10}\right)$

$$
\begin{aligned}
& \underline{T}_{\text {out }}=85 \mathrm{~T} \text {-States }+100.46 \mathrm{~ms} * 2 \mathrm{MHz}=201005 \\
& \underline{T}_{\text {in }}=(129 * 76)-3+129 * 100.46 \mathrm{~ms} * 2 \mathrm{MHz}=25928481 \\
& \underline{T}_{\text {Total }}=\mathrm{T}_{\text {out }}+\mathrm{T}_{\text {in }}=26129486 \\
& \underline{\text { Delay }}=26129486 / 2 \mathrm{MHz}=13.064743 \mathrm{~s}
\end{aligned}
$$

Question 4. (20 points)

Write a program to load a binary number $(<64 \mathrm{H})$ from input port address 01 H , and start counting the loaded number until 99 in BCD; finally display the result at the output port address FFH, with a delay between each count.
Assume that you have a subroutine called DELAY.
Example: if the input number is $(\mathbf{0 0 0 0} \mathbf{1 0 1 0})_{2}$ the $\mathbf{1}^{\text {st }}$ output is $\mathbf{1 0}_{\mathbf{1 0}}$, the $\mathbf{2}^{\text {nd }}$ is $\mathbf{1 1}_{\mathbf{1 0}}$, the $\mathbf{3}^{\text {rd }}$ is 12_{10} until 99_{10}.

START	IN	01H	; Input Port
	MVI	D, 64H	; \# to be compared if ≥ 100
	MOV	C, A	; save input in C
	CALL	PWR10	; Start convert to BCD
	HLT		
PWR10:			
	LXI	H, OUTBUF	
	MVI	B, OAH	
	CALL	BINBCD	
	RET		
BINBCD:			
	MVI	M, FFH	
NXTBUF			
	INR	M	; $[\mathrm{M}]=\mathrm{BCD} 2$
	SUB	B	
	JNC	NXTBUF	
	ADD	B	; $\mathrm{A}=\mathrm{BCD} 1$
	RLC		; Rotates A 4 times
	RLC		;
	RLC		;
	RLC		;
	ORA	M	; Get 2 digits BCD2 \& BCD1
	OUT	A	; Output the BCD2 \& BCD1
	INR	C	; Increments the loaded input by 1
	MOV	A, C	
	CMP	D	; compares it, if =
	JNZ	PWR10	; in not converts the new incremented \#
	RET		; if yes go out

