FINAL EXAM.; MATH 201

January 28, 2004

Name:

Signature:

Student number:

17 (Miss Jaafar)

Section number (Encircle):

18 (Miss Jaafar) 19 (Mrs. Jurdak)

20 (Mr. Lyzzaik)

Instructor: Prof. Abdallah Lyzzaik

- 1 Instructions:
 - Calculators are allowed.
- There are two types of questions: PART I consists of six subjective questions, and PART II consists of seven multiple-choice questions of which each has exactly one correct answer.
- GIVE DETAILED SOLUTIONS FOR THE PROBLEMS OF PART I IN THE PROVIDED SPACE AND CIRCLE THE APPROPRIATE ANSWER FOR EACH PROBLEM OF PART II.
- 2. Grading policy:
 - 12 points for each problem of PART I.
- 4 points for each problem of PART II: 0 point for no answer, -1 for a wrong answer or more than one answer of PART II.

GRADE OF PART 1/72:

GRADE OF PART II/28:

TOTAL GRADE/100:

Part I (1). Find the absolute maximum and minimum values attained by the function f(x,y)=xy-x-y+3 on the triangular region R in the xy-plane with vertices (0,0), (2,0), (0,4).

AMERICAS UNIVERSIDA LIBRARY OF BEHRUT

Part I (2). Evaluate the integral

$$\int_0^2 \int_{y/2}^1 y \, e^{x^3} \, dx \, dy.$$

-

Part I (3). Set up a triple integral (without evaluating it) in cylindrical coordinates for the volume of the solid bounded by the xy-plane, the cylinder $r^2 = \cos 2\theta$, and the sphere $x^2 + y^2 + z^2 = 1$.

Part I (4). Evaluate the integral

$$\int \int_{R} \sin\left(\frac{y-x}{y+x}\right) \, dx \, dy,$$

where R is the trapezoid in the xy-plane with vertices (1,1), (2,2), (4,0), and (2,0), by making the change of variables: u=y-x, v=y+x.

Part I (5). Evaluate the line integral

$$\oint_C 3xy\,dx + 2\ddot{x}^2\,dy,$$

where C is the boundary of the region R bounded above by the line y=x and below by the parabola $y=x^2-2x$. Interpret this integral in terms of vector fields.

Part I (6). Find the interval of convergence of the power series

$$\sum_{n=2}^{\infty} \frac{(2x-1)^n}{\ln n}.$$

State where the series converges absolutely and conditionally.

Part II

1. If $f(x,y) = 2x^2y/(x^4 + y^2)$, then

(a)
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$
.

(b)
$$\lim_{(x,y)\to(0,0)} f(x,y) = 1$$
.

(c)
$$\lim_{(x,y)\to(0,0)} f(x,y) = 2$$
.

- (d) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.
- (e) None of the above.
- 2. An estimate of the integral

$$\int_0^1 \frac{1 - \cos x}{x^2} \, dx$$

with an error less than 1/(6!5) is

(a)
$$1/2! + 1/(4!3)$$
.

(b)
$$1/2! - 1/(4!3) + 1/(6!5)$$
.

(c)
$$-1/2! + 1/(4!3) - 1/(6!5)$$
.

(d)
$$1/2! - 1/(4!3)$$
.

- (e) None of the above.
- 3. The function defined by

$$f(x,y) = \tan\left(\frac{x^3 - y^3}{x^2 + y^2}\right)$$

for $(x, y) \neq (0, 0)$, and f(0, 0) = 0

- (a) is continuous at (0,0).
- (b) has no limit at (0,0).
- (c) has a limit at (0,0) but is discontinuous at (0,0).
- (d) is bounded in the xy-plane.
- (e) None of the above.

- 4. If w = f(x, y) where $x = e^r \cos \theta$ and $y = e^r \sin \theta$, then
 - (a) $w_{xx} + w_{yy} = w_{rr} + w_r/r + w_{\theta\theta}/r^2$.
 - (b) $w_{xx} + w_{yy} = -w_{rr} + w_r/r + w_{\theta\theta}/r^2$.
 - (c) $w_{xx} + w_{yy} = w_{rr} + w_r/r w_{\theta\theta}/r^2$.
 - (d) $w_{xx} + w_{yy} = w_{rr} w_r/r + w_{\theta\theta}/r^2$.
 - (e) None of the above.
- 5. An equation of the tangent plane to the surface with equation $z^3+xz-y^2=1$ at the point (1,3,2) is
 - (a) 2x + 6y + 13z = 10.
 - (b) 2x + 6y 13z = 10.
 - (c) 2x 6y + 13z = -10
 - (d) 2x 6y + 13z = 10.
 - (e) None of the above.
- 6. The volume of the solid bounded by the cylinder $y=x^2$ and the planes y+z=4 and z=0 is given by the triple integral
 - (a) $\int_0^4 \int_0^{4-y} \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy \, dz$.
 - (b) $2 \int_0^4 \int_{\sqrt{y}}^2 \int_0^{4-y} dz \, dx \, dy$
 - (c) $\int_{-2}^{2} \int_{0}^{x^{2}} \int_{0}^{4-y} dz dy dx$.
 - (d) $\int_0^4 \int_0^{4-z} \int_{-\sqrt{y}}^{\sqrt{y}} dx \, dy \, dz$.
 - (e) None of the above.

7. The function $f(x,y) = x^3 + 3xy + y^3$ admits

- (a) a saddle point and a local minimum value.
- (b) no saddle point and no local minimum value.
- (c) a local minimum value and no saddle point.
- (d) a saddle point and no local minimum value.
- (e) None of the above.

1 4