

ALCHICAN ENIVERSITY LIBRARY OF BEIRUT

Math. 201 Final Exam. (Time: 140 minutes)

N. Nahlus & H. Yamani Jan 28, 2004

Name	I.I	······	Circle yo	ur section number	
(Sec 9 at 1W)	(sec 10 at 12:30T)	(sec 11 at	2T)	(sec 12 at 3:30T)	

Part 1 (50 %) 10 multiple choice problems (No Penalty)

- 1. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1.07}}$. Then the series is
- A) Conditionally convergent
- B) Absolutely convergent
- C) Divergent
- 2. Consider the series $\sum_{n=1}^{\infty} (-1)^n \left(\frac{3^n+5}{n!}\right)^n$. Then the series is
- A) Conditionally convergent
- B) Absolutely convergent
- C) Divergent
- 3. Consider the series $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n} \text{ and } \sum_{n=2}^{\infty} (-1)^n \frac{n! (n+5)!}{(2n)!}.$ Then
- A) 1st series diverges & 2nd series diverges
 B) 1st series converges & 2nd series diverges
 C) 1st series diverges & 2nd series converges
 D) 1st series converges & 2nd series converges

- 4. The domain of convergence of $\sum_{n=2}^{\infty} (-1)^n \frac{(x-1)^n}{3^n n \ln n}$
- A) $-2 \le x < 4$ B) $-2 < x \le 4$
- C) -2 < x < 4 D) $-2 \le x \le 4$
- E) x = 1 & x = 4
- F) None of the above
- 5. The Maclaurin series of $f(x) = \int_0^x \frac{1 \cos t^{3/2}}{t} dt$ is
- A) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n!} \frac{x^{3n}}{3n}$
- B) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n!} \frac{x^{3n-1}}{3n-1}$ C) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n!} \frac{x^{3n+1}}{3n+1}$ D) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n!} \frac{x^{6n}}{6n}$
- E) None of the above

Do not forget to integrate!

- A) k = -3
- B) k = 1/3
- C) k = 3
- D) k = -1
- E) k = 1
- F) k = -1/3
- G) None of the above

^{6.} Suppose $z = f(\frac{x-y}{3y})$ where f is a differentiable function. Then $x\frac{\partial z}{\partial x} = ky\frac{\partial z}{\partial y}$ where

7. Let $f(x, y) = e^{-3xy+5}$. Then its critical point is

- A) a local max.
- B) a local min.
- C) a saddle point.

- 8. Consider the paraboloid $x^2 + y^2 4z = 1$ and the sphere $x^2 + y^2 + z^2 = 3$. Then the *tangent planes* to both surfaces at the intersection point (1, 1, 1) are
- A) perpendicular
- B) parallel
- C) neither perpendicular nor parallel.

9. Given that F(x, y, z) = 8. If the components of ∇F are never zero, then

$$\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \quad & \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial y} \quad \text{are}$$

A) +1 &
$$\frac{\partial z}{\partial y}$$
 resp. B) +1 & $-\frac{\partial z}{\partial y}$ resp.

C)
$$-1 & \frac{\partial z}{\partial y}$$
 resp. D) $-1 & -\frac{\partial z}{\partial y}$ resp. E) None of the above

- 10. The value of the double integral $\int_{0}^{2} \int_{y/2}^{1} 3ye^{x^3} dxdy$ is
- A) 7/2 (e-1)
- B) 9/2 (e-1)
- C) 2(e-1)
- D) 8(e-1)
- E) 25/2 (e-1)

Part II (50 %) (Subjective)

11. (5%) Find the area of the surface cut from the bottom of the paraboloid $z = 2x^2 + 2y^2$ by the plane z = 8. (Grading: 4pts for setting it up & changing it to polar)

12. (7 %) Use Green's Theorem to find $\oint_C (2xy^3 + x)dx + 4x^2y^2dy$

where C (traversed counterclock wise) is the boundary of the "triangular region in the 1^{st} quadrant enclosed by the x-axis, x=1 and $y=x^2$

^{13. (5%)} Set up (<u>but do not evaluate</u>) the double integral(s) in <u>polar</u> coordinates to find the area of the "triangular" region in the first quadrant bounded by $y=3x^2$, x=0 & x+y=4. <u>Hint</u>: The point (1, 3) is a corner point of the region.

14. (8 %)

- (i) Show that $\mathbf{F} = (x^2 y)\mathbf{i} (x + y^2)\mathbf{j}$ is a conservative vector field (ii) Find a potential function for \mathbf{F}
- (iii) Evaluate $\oint_C (x^2 y) dx (x + y^2) dy$ where C is the line segment from (0, 1) to (2,0).

15. (5%) Set up (<u>but do not evaluate</u>) the triple integral(s) in <u>Spherical</u> coordinates to find the volume and <u>in the first octant</u> of the surface inside the cylinder $x^2 + y^2 = 4$ and inside the sphere $x^2 + y^2 + z^2 = 29$

16. (5%) Set up (<u>but do not evaluate</u>) the triple integral(s) in Cylinderical coordinates to find the volume in the 1st octant common to the cylinders $x^2 + y^2 = 4$ and $x^4 + z^2 = 1$.

17. (5 %) Consider the transformation u = x - xy & v = xy

(so
$$x = u + v & y =$$
)

- (i) Show that the Jacobian $J = \frac{\partial(x, y)}{\partial(u, v)} = \frac{1}{u + v}$.
- (ii) Use the above transformation to find $\iint_R x \, dy \, dx$ where R is the region bounded by the curves x xy = 1, x xy = 5, xy = 2, xy = 3

18. (5%) Use Lagrange multipliers to find the points closest to the origin on the hyperbolic cylinder $x^2 - y^2 = 1$

19. (5 %) Find by inspection potential functions for the following conservative fields

(i)
$$F = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$$
 for $(x, y) \neq (0, 0)$

(ii)
$$F = \frac{x}{x^2 + y^2} \mathbf{i} + \frac{y}{x^2 + y^2} \mathbf{j}$$
 for $(x, y) \neq (0, 0)$

(iii)
$$F = \frac{x}{(x^2 + y^2)^2} \mathbf{i} + \frac{y}{(x^2 + y^2)^2} \mathbf{j}$$
 for $(x, y) \neq (0, 0)$

Box your answers