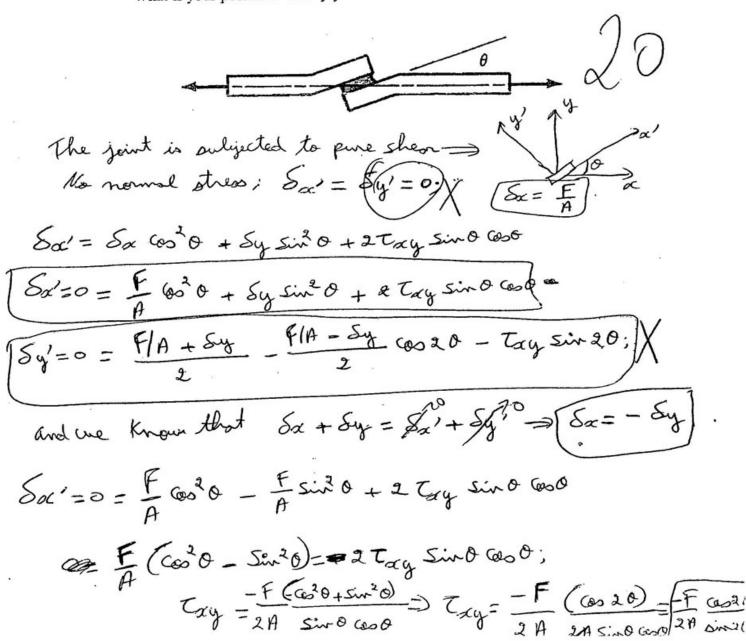
Name:


1) (30 pts) An engineer wishes to determine the shearing strength of a certain epoxy cement. The problem is to devise a test specimen such that the joint is subjected to pure shear. The joint shown in the figure, in which two bars are offset at an angle θ so as to keep the loading force F centroidal with the straight shanks, seems to accomplish this purpose. Using the contact area A and designating S_{su} as the ultimate shearing strength, the engineer obtains

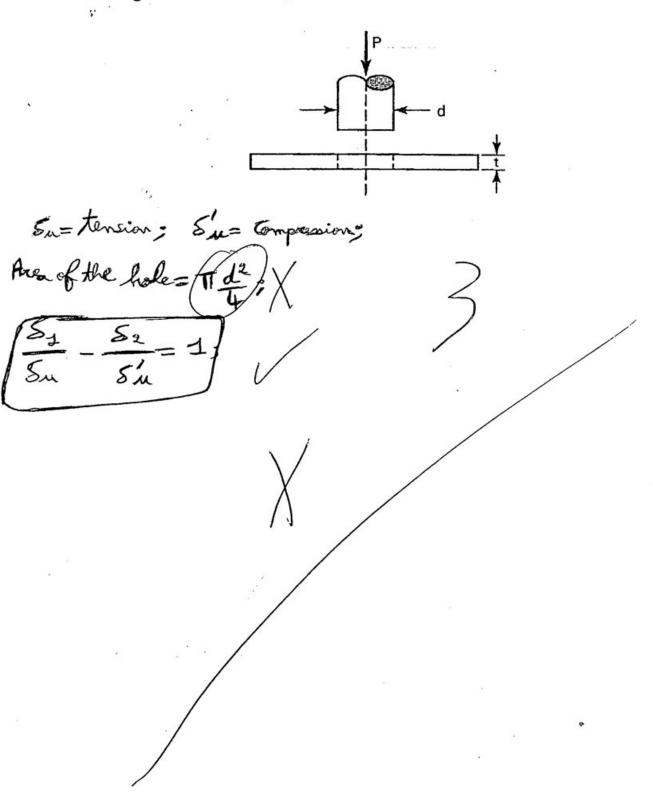
$$S_{su} = \frac{F}{A} \cos \theta$$

The engineer's supervisor, in reviewing the test results, says the expression should be

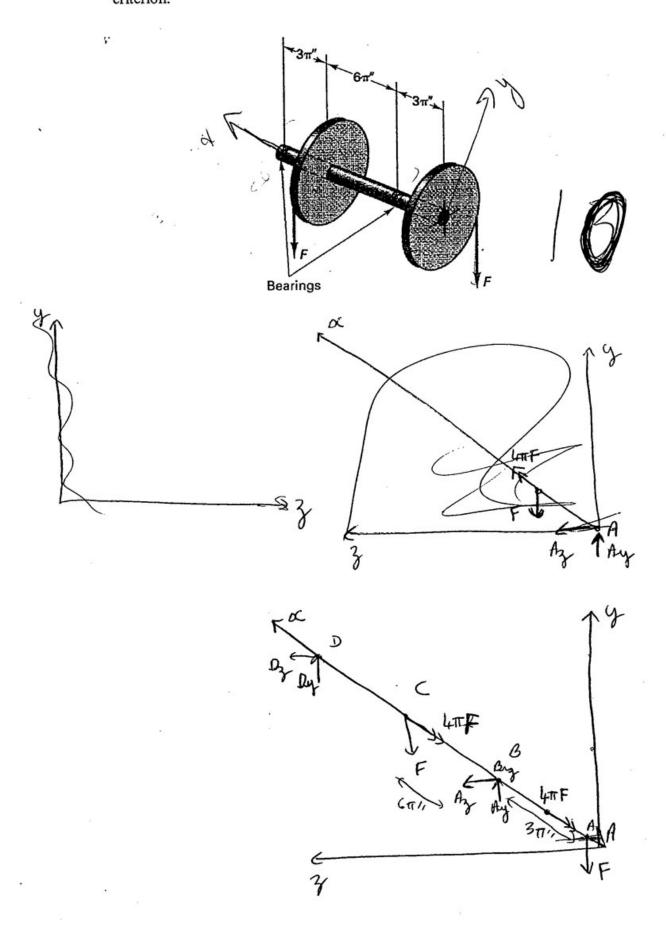
$$S_{su} = \frac{F}{A} \left(1 + \frac{1}{4} \tan^2 \theta \right)^{\frac{1}{2}} \cos \theta$$

What is your position? Justify your answer.

$$S_{1,2} = \frac{F/A}{A} + \frac{F/A}{A} + \frac{F^{2}}{A} + \frac{F^{2}}$$


*

٠


700

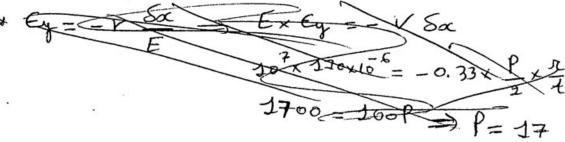
, ,

2) (20 pts) A plate, t meters thick, is fabricated of a material having ultimate strengths in tension and compression of σ_u and σ'_u Pa, respectively. Calculate the force P required to punch a hole of d meters in diameter through the plate using the Mohr-Coulomb failure criterion. Assume that the shear force is uniformly distributed through the thickness of the plate.

3) (30 pts) Two pulleys of 4π -in radius are attached to a 2-in diameter solid shaft, which is supported by bearings, as shown. If the yield stress in shear is 6000 psi, determine the largest magnitude of the forces F that can be applied using the Tresca criterion.

Assuming proper alignement of Bearings; E Fy =0 => | Ay + Dy = 2 F | 0; EEZ=0=) 13+Dz=0 2 Elly=0 → -Dz (1211) - Az (311) = 0; Dz (1241) = Az (341) 3. EMy =0 = - F(3T) + Ay (3T) + Dy (12h) =0; (12Th (Dy) + 3Th fly = 9TT F.) Substituting: 12TD) Determining Vmax, Tmax and Mmax in the shaft: $0 \leq \alpha \leq 3\pi''$ $\frac{4\pi F_y}{4F} = \frac{1}{2} \frac{1}{$ J) 3π" < x < 9π" HITELF OAZ WIFF -DTX2 1482 ONZ2 ONZ2 ONZ2 Mzz X 3) 911" Ex SI2TI" ant of Op ant and then we get moment diagram and Shear force diagram.

4) (20 pts) A stain gage is installed in the longitudinal direction on the surface of an aluminum beverage can, as shown. The radius-to-thickness ratio of the can is 200. When the lid of the can is popped open, the strain changes by $\varepsilon_o = 170 \times 10^{-6}$. What was the pressure p in the can assuming that $E = 10^7$ psi and $\nu = 0.33$.


$$\frac{R}{t} = 200; \ \epsilon_0 = 170 \times 10^6; \ E = 10^7 \text{ psi}; \ V = 0.33.$$

$$S_{\alpha} = \frac{f}{2} \frac{\pi}{t} = \frac{200 f}{2} - 100 f;$$

$$S_{q} = f \frac{\pi}{t} = 200 f;$$

$$\epsilon_0 = 170 \times 10^6 = \frac{\epsilon_{\alpha} + \epsilon_{\alpha}}{2} + \frac{\epsilon_{\alpha} - \epsilon_{\alpha}}{2} \approx 20 + \frac{\epsilon_{\alpha} + \epsilon_{\alpha}}{2} = 170 \times 10^6;$$

$$170 \times 10^6 = \frac{\epsilon_{\alpha} + \epsilon_{\alpha}}{2} + \frac{\epsilon_{\alpha} + \epsilon_{\alpha}}{2} = \epsilon_{\alpha} = \frac{\epsilon_{\alpha} + \epsilon_{\alpha}}{2} + \frac{\epsilon_{\alpha} + \epsilon_{\alpha}}{2} = \epsilon_{\alpha} = 170 \times 10^6.$$

$$Ey = \frac{Sy}{E} - V \frac{Sa}{E}$$